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In the last decade, object-based image analysis (OBIA) has been extensively recognized as an effective classification method for very
high spatial resolution images or integrated data from different sources. In this study, a two-stage optimization strategy for fuzzy
object-based analysis using airborne LIDAR was proposed for urban road extraction. The method optimizes the two basic steps of
OBIA, namely, segmentation and classification, to realize accurate land cover mapping and urban road extraction. This objective
was achieved by selecting the optimum scale parameter to maximize class separability and the optimum shape and compactness
parameters to optimize the final image segments. Class separability was maximized using the Bhattacharyya distance algorithm,
whereas image segmentation was optimized using the Taguchi method. The proposed fuzzy rules were created based on integrated
data and expert knowledge. Spectral, spatial, and texture features were used under fuzzy rules by implementing the particle swarm
optimization technique. The proposed fuzzy rules were easy to implement and were transferable to other areas. An overall accuracy
of 82% and a kappa index of agreement (KIA) of 0.79 were achieved on the studied area when results were compared with reference
objects created via manual digitization in a geographic information system. The accuracy of road extraction using the developed
fuzzy rules was 0.76 (producer), 0.85 (user), and 0.72 (KIA). Meanwhile, overall accuracy was decreased by approximately 6%
when the rules were applied on a test site. A KIA of 0.70 was achieved on the test site using the same rules without any changes. The
accuracy of the extracted urban roads from the test site was 0.72 (KIA), which decreased to approximately 0.16. Spatial information
(i.e., elongation) and intensity from LiDAR were the most interesting properties for urban road extraction. The proposed method
can be applied to a wide range of real applications through remote sensing by transferring object-based rules to other areas using
optimization techniques.

1. Introduction

Urban road network information is essential for several
geospatial and geographic modeling applications such as
flood simulations [1], environmental studies [2], and traffic
accident analysis and prevention [3, 4]. Information on
urban roads can also help decision makers make strategic
and effective decisions, which are important for sustainable
urban planning and management. LiDAR is one of the best
approaches to gather 3D terrain information [5]. Recently,

LiDAR data have been used for road network extraction and
road geometric modeling. LIDAR provides highly accurate
elevation data that can be used to extract 3D models of
different types of objects, along with their geometric char-
acteristics. Additional information, such as image intensity
and aerial orthophotos, collected by LiDAR systems provides
considerable opportunities for geometric road modeling.

In the last decade, object-based image analysis (OBIA)
has been recognized as one of the most effective classifica-
tion techniques for very high spatial resolution images or
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integrated data from different sources (e.g., aerial orthopho-
tos and LiDAR data) [6]. Compared with pixel-based clas-
sification techniques, OBIA provides additional information
that can be used to improve the discrimination of land cover
classes [7]. OBIA has two main steps. First, image segmenta-
tion is the process of creating nonoverlapping homogeneous
objects from image pixels based on their spectral, spatial,
and texture information. In this step, OBIA generally uses
the multiresolution segmentation (MRS) algorithm [8]. The
main advantage of OBIA is that it processes satellite images
in a manner similar to that of the human brain; that is,
this technique identifies landscape features as objects [9].
The size and shape of image objects are controlled by three
main parameters, namely, scale, shape, and compactness, as
in the MRS algorithm [6]. Scale controls the size of image
objects, whereas the other two parameters control the shape
of image objects in terms of geometry and smoothness. The
scale parameter defines the allowed maximum heterogeneity
of grid cell values within image objects. Small-scale values
create small image objects, which can be used to classify
specific image objects with certain rule sets. By contrast,
large values of the scale parameter generate relatively large
image objects, which typically lead to the loss of detailed
information. Therefore, an appropriate scale parameter is
critical for accurate classification and information extraction
from satellite images. The shape and compactness parameters
are also essential. The selection of their values directly affects
the final image objects and the classification results.

Selecting the values of segmentation parameters in OBIA
classification approach is achieved via a method called trial-
and-error optimization [10]. This visual estimation method
is subjective, time-consuming, and labor intensive. Recent
segmentation parameter selection methods are based on
segmentation accuracy measures by comparing machine-
created segments with hand-digitized ones. Considering
these advances in object-based analysis, the development of
transferable rule sets remains a challenge mainly because
creating appropriate image segments and identifying multiple
optimal scales for extraction for a particular feature are
difficult tasks. Knowledge-based feature extraction can only
be applied if the features of interest are segmented properly,
which require selecting multiple scales. This technique will
allow the use of spatial information. As the shape and
boundary of the considered features, texture and contextual
information for feature extraction are described efficiently by
the segmentation process. Therefore, appropriate segmenta-
tion by selecting the optimum multiple scales in OBIA is a
critical task for accurate feature extraction and for developing
knowledge-based and transferable rule sets. In this study,
a new strategy for selecting the optimum segmentation
parameters by optimizing both image segments and class
separability is proposed.

LI Related Studies. Among the methods used to extract fea-
tures from remote sensing data, fuzzy object-based methods
are becoming increasingly popular. Compared with that of
other approaches, the accuracy of fuzzy-based classification
is less sensitive to thresholds [11]. In addition, fuzzy logic
is considered an appropriate classification method for urban
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feature extraction because it models uncertainties among the
considered classes; these uncertainties are typically found in
complex urban areas [12]. Jabari and Zhang [11] developed
fuzzy rules for delineating road networks from GeoEye-1
and QuickBird images in an urban environment; the results
showed that the roads could be extracted at 85% user accu-
racy. Spectral, geometric, and neighborhood information
were used for road extraction. Grote et al. [13] developed
a region-based method for extracting road networks from
LiDAR data in suburban areas. Their method used very
high-resolution (VHR) color infrared orthophotos and a
digital surface model (DSM). Intensity, normalized difference
vegetation index, area and length, width, elongation and
convexity, and height from DSM were used to extract roads
using the approach proposed by the authors. The accuracy
assessment demonstrated that correctness was approximately
90% for extraction with DSM. Sebari and He [14] developed
fuzzy-based rules for OBIA classification approach to extract
roads in an urban environment. They used spectral and
shape (i.e., elongation and size) information in the rule. A
correctness of 81% was achieved.

In addition, Li et al. [15] provided a hierarchical method
for urban road extraction. Their method encompassed two
main steps. The first step involved obtaining the road
region of interest from a VHR image, whereas the second
step involved hierarchically representing this road region
of interest in a binary partition tree and extracting roads
at hierarchical levels. Geometric features (i.e., compactness
and elongation) and structural features (i.e., histograms
and morphological profiles) were used to guide the region
merging of the binary partition tree. The method was tested
on two different data sets, and correctness rates of 85% and
57% were achieved for the two data sets. The low accuracy of
the second study area was attributed to the dense urban areas.
Hamedianfar and Shafri [16] developed fuzzy-based parame-
ters for object-oriented classification for various impervious
surface and roofing materials. The authors proposed a set
of rules for road extraction from WorldView-2 images by
combining spectral and spatial features. A user accuracy of
92% was achieved following their road class rules.

The literature review indicated that previous studies used
fuzzy object-based analysis without optimizing segmentation
parameters. As mentioned earlier, the optimum values of
the scale, shape, and compactness parameters are critical
for accurate classification and feature extraction. Although
several studies have provided clear guidelines for selecting
the optimum values of segmentation parameters, they dis-
regarded class separability distance when selecting the opti-
mum segmentation parameters. In the present study, a novel
two-stage optimization strategy for OBIA is presented and
tested by using it to extract road networks from LiDAR data
combined with high-resolution orthophotos. In this strategy,
the Taguchi method is used to optimize the segmentation
parameters, whereas the Bhattacharyya distance is used to
optimize class separability.

1.2. Study Areas. The study areas were selected from some
regions of the Universiti Putra Malaysia campus located in
Selangor State, Malaysia (Figure 1). Two pilot sites were
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FIGURE I: Study sites used for method development and method evaluation.

selected. The first site was for method development, whereas
the second site was for method transferability testing. Geo-
graphically, the first study area is located in a region that
extends from the upper left longitude of 3°00'14.48'N and
latitude of 101°42'14.7E to the lower right longitude of
3°00'00.7N and latitude of 101°42'44.12'E of the WGS84
coordinate system. Meanwhile, the second study area is
located 4 km away from and to the right side of the first study
area. The study and test areas are characterized by a mixture of
urban, asphalt road, and vegetation features. Buildings vary in
terms of roofing material, shape, and size; asphalt roads vary
in width and condition.

2. Methodology

In this study, a two-stage optimization strategy for fuzzy
object-based analysis was proposed to extract urban roads
from airborne LiDAR data. The two-stage optimization
technique was used to optimize the image segmentation and
image classification processes simultaneously by selecting the
optimum scale parameter that maximized class separability
and the optimum shape and compactness parameters that
optimized the final image segments. The method proposed
in this study was developed through the following steps
(Figure 2). First, LIDAR point clouds and aerial orthophotos
were preprocessed and analyzed to prepare the input data
for urban road extraction. Second, the scale parameter was
optimized using the Bhattacharyya distance algorithm [17]
and the best ranges of the scale parameters were selected
for further analysis. Afterwards, the shape and compactness
parameters were optimized using the Taguchi method [18].

After the three parameters of the segmentation algorithm
were optimized and selected, the input image was segmented
using the optimum values of scale, shape, and compactness.
Finally, fuzzy rules were developed using the decision tree
and fuzzy c-mean algorithms, which enabled the classifica-
tion of image segments and the extraction of urban roads.

2.1. LiDAR Data Acquisition and Processing. The LiDAR data
used in this study were collected on March 8, 2013, using Riegl
LM Q5600 and Hassleblad 39 Mp camera. The device has a
spatial resolution of 13 cm, a laser-scanning angle of 60°, and a
camera angle of approximately —45°. In addition, the posting
density of the LIDAR data is 3-4 pts/m”.

The collected LiDAR point clouds (i.e., LAS file) were
converted into vector points in ArcGIS 10.3 software. The
vector points created from the LiDAR point clouds had 2D
coordinates (i.e., X and Y) and height information as attribute
data. To convert these vector points into raster format, the
first outliers from the point clouds were removed. In this
research, outliers were removed using “Locate Outliers,” a
tool in ArcGIS 10.3 software. This tool identifies anomalous
elevation measurements from terrain, TIN, or LAS data
sets that exceed a defined range of elevation values or
have slope characteristics inconsistent with the surrounding
surface (ESRI, 2016). Afterwards, the filtered point clouds
were converted into a raster surface at 0.13 cm spatial res-
olution using a TIN-based interpolation method [4]. The
produced raster surface represented the DSM (Figure 3) with
a spatial resolution the same as the orthophotos (0.13 cm).
This allowed using the orthophoto and the produced DSM
for creating the image objects.



Journal of Sensors

[Intensity][ DSM ][ DEM I[R]lG][B]
nDSM
Layer stacking
{ Create image objects
Iterate (mmmomm - D Y
i=1to15 ! Scale=10? || Shape=0.5 1, Compactness = 0.5
Calculate class separability (Bhattacharyya distance)
1 Optimal scale . Shape = 0.5 | 1 Compactness =0.5 |

________

_________________

Create image objects

Develop fuzzy rules

[ Feature selection (particle swarm) }

[ Classify and extract urban roads ]

FIGURE 2: Overall steps for two-stage optimization and fuzzy object-based analysis for urban road extraction.

The point clouds were then filtered to ground and
nonground points using multiscale curvature classification
(MCC) [19]. MCC is an iterative multiscale algorithm for
classifying LiDAR returns into ground and nonground [19].
The MCC algorithm was developed at the Moscow Forestry
Sciences Laboratory of the United States Forest Service Rocky
Mountain Research Station. It integrates curvature filtering
with a scale component and variable curvature tolerance.
During this stage, a surface is interpolated at different res-
olutions using the thin-plate spline method [19], and points
are classified based on a progressive curvature threshold
parameter, which increases as resolution coarsens to com-
pensate for the slope effect because data are generalized.
The same interpolation technique was then used to generate
the digital elevation models (DEMs) for the study and test
areas (Figure 4). Afterwards, the DSM and DEM rasters

were used to produce the nDSM raster by subtracting DEM
from DSM. In addition, the intensity raster was generated
by interpolating the ground point clouds with the related
intensity attribute information of the point clouds (Figure 5).

Meanwhile, the aerial orthophoto was first corrected
geometrically to fit exactly into the LiDAR point clouds using
the intensity raster (Figure 6). Finally, the LiDAR-derived
DEM and DSM, intensity, nDSM, and aerial orthophoto were
used as a subset based on the boundary of the study area
to prepare the final input data for method development and
urban road extraction.

2.2. Feature Subset Selection via Particle Swarm Optimization
(PSO). In object-based or knowledge modeling, a large num-
ber of features are present in the data sets; however, not all of
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FIGURE 3: DSMs derived from airborne LiDAR data: (a) DSM of the study area used for method development and (b) DSM of test area.
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FIGURE 4: DEMs derived from LiDAR point clouds: (a) DEM of the study area used for method development and (b) DEM of the test area.

these features are useful for classifying and extracting infor-
mation. Therefore, the first step in object-based analysis or
knowledge modeling is selecting features from those available
in the data sets. Useful features from the data sets for a par-
ticular object extraction process can be selected using opti-
mization techniques. Such techniques aim to select a small
number of relevant features to achieve similar or better clas-
sification results than using all the available features. The final
features to be selected should be relevant. Including irrelevant
and redundant features in the analysis may produce poor
classification results because of the course of dimensionality.

Considering the aforementioned reason, only relevant fea-
tures should be selected for accurate modeling.

Several optimization methods, such as greedy search-
based sequential forward selection and sequential backward
selection, can be used for feature selection. However, these
techniques suffer from various problems such as stagnation
in local optima and high computational cost [20]. An efficient
global search technique, such as evolutionary computation
(EC), is required to address feature selection problems more
effectively. PSO is one of the EC techniques based on
swarm intelligence [20]. Compared with other techniques,
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FIGURE 5: LiDAR intensity derived by interpolating the intensity attributes of LIDAR point clouds: (a) intensity of the study area used for

method development and (b) intensity of the test area.

FIGURE 6: Aerial orthophotos: (a) study area used for method development and (b) test area.

such as genetic algorithm and simulated annealing, PSO is
computationally less costly and converges more rapidly [20].
Therefore, this technique was used in this study.

PSO was proposed by Kennedy and Eberhart in 1995
[21, 22]. This technique is motivated by social behavior, such
as birds flocking and fish schooling. In PSO, knowledge is
optimized through social interaction in the population, in
which thinking is not only personal but also social. The
useful features from the available features of eCognition
software were selected using PSO optimization implemented
via MATLAB. PSO was used to minimize the classification
error rate. The fitness function is given in (1), which is used to
minimize the classification error rate obtained by the selected

features during the evolutionary training process and the
number of selected features [20, 23].

w X Traingg + (1 — w) x Testgg_
F= #Features ER @

X ————————— +(1—a) x =,
#All Features ER,;

where w is a constant number (the weight of the classification
error rate obtained from the training data) and w € [0, 1],
Traingg_is the classification error rate obtained from the
selected feature subset and the training subset data, Testgg_is
the classification error rate obtained from the selected feature
subset and the testing subset data, & is a constant number (the
weight of the number of selected features), #Features stands
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TABLE 1: Selected features via PSO used for classification.

Quantifiable . . .
Property attribute Description/mathematical formulation
Height nDSM nDSM = DSM - DEM
Spectral S | bands of
attributes Color pgctra ands o Digital number of blue, green, and red bands
aerial orthophoto
2-m-A
=222
Elongated shapes Elongation index where A and P are the area and the perimeter of
image object
e
Sl= —,
Smooth obj Shape ind A
) mooth objects ape index where SI is the shape index, e is the border length,
SﬁaFi)alt and A is the area of the image object
attributes R . Calculated by the area of the object divided by the
Distribution of pixels . . . .
in space Density approximated average of the major and minor axes
of the ellipse fitted to the object
Describes the difference between a master rectangle
Rectaneular shape Rectaneular fit and the considered object using the same measure of
8 P 8 area, width, and length for the master rectangle (1 =

complete fitting object, 0 = no fit)

Textural GLCM- Sx 1 .
HOM = — - h. (i,

attributes Texture homogeneity ;;1 +(i- j)2 (i)

for the number of selected features, #All Features represents
the total number of features available for classification, ER,
is the classification error rate obtained from the selected fea-
tures, and ER,y; is the classification error rate obtained from
all the available features. The error rate of the classification
results can be calculated using (2) [23, 24], as follows:

FP + FN
TP + TN + FP + EN’

where TP, TN, FP, and EN stand for true positives, true
negatives, false positives, and false negatives, respectively.

Error Rate (ER) = (2)

2.3. Knowledge Modeling and Creation of Fuzzy Rule Sets.
Knowledge modeling is the process used to model the
knowledge used by an expert to identify land cover/land
use objects in aerial photos or satellite images. In this
study, spectral, spatial, and texture properties were used to
describe land cover/land use objects. For each property, a
set of quantifiable attributes was determined using several
mathematical formulations. The useful features (quantifiable
attributes) selected by the PSO technique were used to create
fuzzy rule sets. The details of these attributes are provided in
Table 1.

Pure data-driven rules developed for object-based anal-
ysis are generally difficult to transfer [24]. Meanwhile, fuzzy
logic allows the formulation of knowledge given in a natural
language with vague and imprecise expressions [14]. Fuzzy
logic also avoids the use of hard boundaries between the
considered classes and thus allows easy and efficient selection
of thresholds [14]. That is, classification accuracy is less sen-
sitive to thresholds when fuzzy logic is used [11]. In addition,
fuzzy logic is considered an appropriate technique for urban
feature extraction because it models uncertainties among the

considered classes; these uncertainties are typically found
in urban areas [12]. The aforementioned reasons justify the
use of fuzzy logic in object-based analysis for urban road
extraction and to generate thematic maps for the study areas.

In general, fuzzy rules can be developed in two ways.
First, fuzzy rules can be developed using training data and
clustering algorithms. Second, they can be developed using
expert knowledge on object identification. Both approaches
have advantages and disadvantages. For example, data-driven
fuzzy rules are highly sensitive to the selection of training
data, whereas the expert knowledge-based approach is rela-
tively difficult to perform and knowledge may be difficult to
convert into quantifiable attributes. In this study, both meth-
ods were integrated for fuzzy rule-based creation because
rules were initially generated based on training data using two
algorithms (decision tree and fuzzy c-mean), and then, the
rules were assessed and modified based on expert knowledge.
This manner of assessment and modification ensures that the
rules are logical and can be potentially transferred to other
areas. Such approach also ensures that quantifiable attributes
are correctly assigned for each class.

First, a small number of training data (10 objects per
class) was generated for the considered classes, including
urban roads. A small number of training data were selected to
avoid including incorrect samples and to ensure that the rules
satisfactorily defined the objects. Afterwards, a decision tree
algorithm was applied on the training data, and a set of crisp
rules was generated. In addition, the fuzzy c-mean algorithm
was applied in the same training data set to generate fuzzy
rules that could recognize the considered classes. Utilizing
expert knowledge (i.e., that of the authors of this article in
this case), the two sets of crisp and fuzzy rules were analyzed.
Finally, by understanding the importance of each quantifiable
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TABLE 2: Fuzzy rule sets developed by analyzing the decision tree and the fuzzy c-mean clustering algorithms.

Land cover class Fuzzy rules

IF nDSM is High AND R is High THEN Object is Building

IF nDSM is High AND Density is High AND G is Low AND Rectangular Fit is High THEN Object is Building

Building IF nDSM is High AND GLCM-Hom is High AND Rectangular Fit is High THEN Object is Building
IF Intensity is High AND nDSM is High AND Rectangular Fit is High THEN Object is Building
IF nDSM is Low AND R is High AND Density is Low THEN Object is Road
Road IF nDSM is Low AND R is Low AND GLCM-Hom is Low THEN Object is Road
IF Intensity is High AND nDSM is Low AND R is Low AND Elongation is High THEN Object is Road
IF nDSM is Low AND R is High AND Density is Low THEN Object is Road
IF nDSM is High AND R is Low THEN Object is Urban Tree
Urban tree IF nDSM is High AND Density is High AND G is Low AND Rectangular Fit is Low THEN Object is Urban Tree
IF nDSM is High AND GLCM-Hom is High AND Rectangular Fit is Low THEN Object is Urban Tree
IF Intensity is High AND nDSM is High AND Rectangular Fit is Low THEN Object is Urban Tree
Grass land IF Intensity is High AND nDSM is Low AND R is High THEN Object is Grass Land
IF Intensity is High AND nDSM is Low AND B is Low THEN Object is Grass Land
IF nDSM is Low AND R is High AND Density is High THEN Object is Bare Land
Bare land IF nDSM is Low AND GLCM-Hom is High AND Shape Index is Low THEN Object is Bare Land
IF nDSM is Low AND R is High AND Density is High THEN Object is Bare Land
Water IF nDSM is Low AND R is Low AND GLCM-Hom is High AND B is High THEN Object is Water
IF Intensity is High AND nDSM is Low AND R is Low AND B is Low THEN Object is Water
Shadow IF Intensity is Low AND nDSM is Low AND R is High THEN Object is Shadow

IF nDSM is Low AND GLCM-Hom is High THEN Object is Shadow

attribute for each class and by determining the number of
attributes required to recognize a particular class, the final
version of the fuzzy rules was formulated (Table 2).

2.4. Selection of the Optimum Range Values for the Scale
Parameter. In OBIA, the accuracy levels of feature extraction
and object classification are generally controlled through seg-
mentation quality [8]. High-quality segmentation (perfectly
coinciding with the reference objects) can be achieved by
selecting the optimum values for its user-defined parameters
(i.e., scale, shape, and compactness). However, the value of
the scale parameter directly affects the accuracy of object
classification. Therefore, before optimizing the scale param-
eter for segmentation, selecting a range of scale values that
can achieve high classification accuracy for image objects is
necessary. The optimum range values of the scale parameter
can be selected by choosing the values that maximize class
separability distance. Figure 7 illustrates an experiment that
analyzes the effect of the scale parameter on classification
accuracy. Scale parameters ranging from 10 to 150 were
analyzed for the class separability distance, which was mea-
sured using the Bhattacharyya distance algorithm. Figure 7
shows three peaks in the graph, which indicate that the scale
parameters that can achieve the best classification results on
the data set and the training samples are used.

Image object hierarchies that incorporate spatial infor-
mation describing each of these situations separately fre-
quently provide better classification results than a spatial
representation constrained within a single operative scale.
Although multiscale representations exhibit advantages over
single-scale representations, a corresponding increase in
data processing and storage demands occurs. Therefore, the
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FIGURE 7: Class separability distance estimated using the Bhat-
tacharyya distance algorithm used to optimize the scale parameters.

minimum number and configuration of object scales (hier-
archical levels) that maximize the potential final land cover
classification accuracy when they are combined should be
identified while minimizing excess data processing [25]. This
analysis also determines the best number of segmentation
levels that can be used to classify land cover/land use classes
in the data set. Therefore, three segmentation levels with
different scale values were used. In this analysis, the scale
parameters for the three segmentation levels are determined
within a range of values. The exact scale parameter for
each segmentation level should be determined by applying
another optimization technique. The selection of the exact
scale parameters for the three segmentation levels is discussed
in the next section.

2.5. Selection of the Optimum Values for the Scale, Shape,
and Compactness Parameters. After the range values for the
scale parameter were selected, the exact values for the scale,
shape, and compactness parameters should be optimized. As
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TABLE 3: Factors and their levels used to optimize image segmentation.
Factor Level 1 Level 2 Level 3 Level 4
Segmentation level 1
Scale 30 35 40 45
Shape 0.1 0.3 0.5 0.9
Compactness 0.1 0.3 0.5 0.9
Segmentation level 2
Scale 105 110 115 120
Shape 0.1 0.3 0.5 0.9
Compactness 0.1 0.3 0.5 0.9
Segmentation level 3
Scale 135 140 145 —
Shape 0.1 0.5 0.9 —
Compactness 0.1 0.5 0.9 —
TABLE 4: L, and L, orthogonal arrays and the POF used to optimize the shape and compactness parameters.
Run Level 1 Level 2 Level 3
MI Variance POF MI Variance POF MI Variance POF
(0] 0.396 0.930 1.327 0.599 0.964 1.563 1.464 1.011 2.474
(2) 0.233 1.000 1.233 0.795 0.971 1.765 0.373 0.885 1.258
3) 0.438 0.865 1.303 0.647 0.963 1.610 0.320 0.000 0.320
(4) 0.141 0.411 0.552 0.523 0.000 0.523 1.000 0.947 1.947
(5) 0.371 0.962 1.333 0.859 0.956 1.815 0.000 0.904 0.904
(6) 0.000 0.967 0.967 0.704 0.986 1.690 0.523 0.616 1.138
(7) 1.000 0.697 1.697 0.692 0.901 1.593 0.326 0.945 1.271
(8) 0.174 0.000 0.174 0.698 0.049 0.746 0.969 1.000 1.969
9) 0.013 0.954 0.967 0.668 1.000 1.668 0.404 0.332 0.736
(10) 0.565 0.801 1.366 0.113 0.958 1.072
11) 0.578 0.758 1.336 0.783 0.998 1.782
(12) 0.867 0.274 1.141 0.738 0.415 1.153
(13) 0.329 0.952 1.280 0.554 0.978 1.532
(14) 0.035 0.891 0.927 0.000 0.979 0.979
15) 0.307 0.798 1.105 0.434 0.948 1.381
(16) 0.060 0.207 0.268 1.000 0.480 1.480

mentioned earlier, selecting these parameters using the trial-
and-error method is time-consuming and labor intensive.
Consequently, Taguchi optimization was used in this study.

The first step in implementing the Taguchi method is
to design an orthogonal array to test a set of choices [26].
An orthogonal array is related to the situation in which the
columns for independent variables are “orthogonal” to one
another. These tables provide an easy and consistent design
for experiments. Selecting the orthogonal array depends on
the number of levels and the number of parameters [25]
(Table 3). This technique is frequently used in cases in
which various levels of parameters are available. For example,
several combinations, which require a significant amount of
time for testing, can be used. However, by using the Taguchi
technique, choices will be considerably reduced to a small
number of experiments.

Taguchi optimization can be implemented by conducting
the following steps. First, the objective of the process should

be determined. This step involves defining the possible
values of a particular parameter for the process. Second,
the parameters that can influence the process are defined.
These parameters exhibit variable values that can affect
accuracy or performance; thus, the level should be defined
by the user depending on the effect of a parameter on
the process. In this study, the range values of the scale
parameter were determined using the Bhattacharyya distance
algorithm, as mentioned earlier, whereas the levels of the
shape and compactness parameters were determined through
their minimum (min = 0) and maximum (max = 1)
values. Subsequently, the experiments were performed after
the appropriate orthogonal array was designed. The effect of
each parameter on performance was then measured.

In the next step, the plateau objective function (POF)
was measured for each test to examine segmentation quality
by using each testing combination and to determine the
optimum segmentation parameters (Table 4). POF is the
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FIGURE 8: Land cover classes of the study area used for method
development (with their assigned segmentation levels).

combination of Moran’s index and a variance indicator.
Then, signal-to-noise ratio (SNR) was measured to assess the
results of the segmentation tests. A high SNR indicates high
segmentation accuracy. Equation (3) is used to calculate SNR,
as follows:

SNRz—lOlogm(%Ziz), 3)
Yi
where # is the number of repetitions under similar test
situations (n = 1 in this study) and y denotes the POF values
obtained from each segmentation test. The SNR table was
then completed, and the optimum condition was determined.
Selecting image segmentation parameters is complicated
because multiple spatial scales can convey important infor-
mation on physical characteristics, which define a specific
class or feature [27]. A single image segmentation config-
uration may not be optimal to distinguish all the features
in a typical image. Consequently, optimization techniques
were used in this study to select the appropriate combination
of user-defined parameters for segmentation. The optimiza-
tion techniques used also determined the best number of
segmentation levels required to classify image objects and
to extract the considered information accurately. Once the
required number of segmentation levels is identified with
their associated user-defined parameters, each segmentation
level should be assigned to its corresponding land cover/land
use classes. In this research, the visual interpretation of the
segmented images was used to determine the appropriate
segmentation level for each class. According to the conducted
analysis, shadow and urban tree classes were assigned to
segmentation level 1; urban road and building classes were
assigned to segmentation level 2; water body, grassland,
and bare land classes were assigned to segmentation level 3
(Figure 8).

3. Results and Discussion

In this section, the results obtained from the study on a two-
stage optimization for fuzzy object-based analysis using air-
borne LiDAR and orthophotos for urban road extraction are
presented and discussed. The selection of the segmentation
parameters is first described. Then, the results obtained from
the classification of image objects based on the fuzzy rules
proposed in this study are provided and explained.
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compactness parameters for the fuzzy object-based analysis. The
SNR measures how the response varies relative to the target value
under different noise conditions. The negative values are due to
the logarithmic transformation used in SNR formula. The negative
values indicate nonfavorable parameter values for the given task.

3.1. Results of the Selection of the Segmentation Parameters.
User-defined MRS parameters were optimized using the
Bhattacharyya distance and Taguchi approaches. Figure 9
shows the SNRs for each segmentation parameter and level.
For segmentation level 1, the highest SNR value of the scale
parameter suggests that the best value for the scale parameter
in segmentation level 1 is 40 (scale level 3). Similarly, Figure 9
indicates that the shape value of 0.5 (shape level 3) is the
best for segmentation level 1. Meanwhile, the best value for
compactness in segmentation level 1is 0.3 (compactness level
2).

For segmentation level 2, the analysis shows that the
best scale value is 115 (scale level 1). Meanwhile, the best
values for shape and compactness are both 0.1 (shape level 1
and compactness level 1). Furthermore, the analysis indicates
that the appropriate scale value for segmentation level 3 is
0.5 (scale level 2), whereas the best values for shape and
compactness are both 0.1 (shape level 1 and compactness level
1).

In the MRS algorithm, the scale parameter defines the
size and heterogeneity of an object. The scale value of 40
was selected using the two-stage optimization method for
segmentation level 1, which included two classes (i.e., urban
tree and shadow), because this threshold, combined with
the other two parameters, was the best for extracting the
considered land cover classes. Higher scale values cause over-
segmentation in the shadow class, whereas lower scale values
result in undersegmentation in the urban tree class. Mean-
while, the two-stage optimization applied in this research
suggested a shape parameter value of 0.5 for segmentation
level 1. The sum of the weight values of the shape and color
parameters is 1. High shape values are recommended for
regular objects, whereas small-scale values are suggested for
objects with obvious spectral characteristics. In segmentation
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level 1, urban trees have nearly similar shapes (i.e., compact),
whereas shadows have different shapes because they are
formed by urban trees and tall buildings. This result led to
the selection of the intermediate shape value of 0.5 to balance
between shape and color properties. In addition, the com-
pactness parameter refers to the compactness degree in each
segmented object; when weight is high, the internal object
is compact. Meanwhile, the smooth parameter (smooth =
1-compactness) represents the smoothness of the segmented
object boundary. In this study, a low compactness value was
selected for the urban tree and shadow classes. Therefore, the
study area has noncompact shadows from tall trees.

Furthermore, a scale value of 110 for segmentation level 2
was selected for the two-stage optimization technique applied
in this study (Table 3). This segmentation level is considered
suitable for extracting building and road features depending
on the scale parameter as determined by the Bhattacharyya
distance and Taguchi approaches. However, low values for
both shape and compactness were selected (0.1), which
indicated uncertainties in road boundary detection, because
buildings were compact and had smooth shapes. Accordingly,
high shape and compactness values were selected. Optimiza-
tion was applied to select suitable parameters for both classes
(building and road) simultaneously, and thus, low values were
selected because of the effect of noncompact and nonsmooth
roads.

Water bodies, bare lands, and grasslands were assigned
to segmentation level 3 based on the visual interpretation
of the aerial orthophoto. They have relatively large areas
and are mostly homogenous. In terms of segmentation
parameters, the scale value of 140 was determined as the best
threshold to separate the three classes and to describe the
objects. Meanwhile, the shape and compactness values of 0.1
were suitable using the proposed optimization method. The
low shape and compactness values can be justified because
the three classes have noncompact and rough shapes. This
condition is attributed to the presence of urban trees within
grasslands and bare lands (Figure 6(a)).

3.2. Segmentation Assessment. The assessment of the seg-
mentation results and the optimization of the segmentation
parameters may improve classification results and final road
networks. In addition, if image objects are created accurately,
then classification rules can be more efficiently optimized
and transferred to other study areas. Therefore, although the
segmentation parameters were selected using optimization
techniques, the segmentation results should still be assessed.
In this study, the segmentation results were evaluated by
comparing the extracted objects with the reference objects
created via manual digitization in a geographic information
system (GIS). The geometric quality of segmentation was
evaluated using two indices: area ratio (R,) and position
error (EP)' Area ratio yields accurate information on the
percentage of the area extracted for each object, which is
defined as follows [14]:

_ A(Object

N Object
RA — ref ) ext)

R 4
A (ObjeCtref) ( )

where A is the area.

1

Position error is related to the mean distance between the
extracted objects and their corresponding objects in reference
data. This error is determined according to the characteristic
points in the two data. The characteristic points for buildings
correspond to building corners, whereas those for roads are
selected along road axes. Position error is determined by the
following equation [14]:

_ ZZ:I (\/(Xext - )(ref)2 - (Yext - Yref)2> (5)

p n >

E

where 7 is the number of characteristic points; (X, Yey) cOI-
respond to the coordinates of an extracted point; and (X,
Y,.¢) are the coordinates of the corresponding characteristic
point on the reference layer.

3.3. Classification Assessment. Classification results were
assessed in eCognition software using its accuracy assessment
tools. Results are shown in Tables 5 and 6. The overall
accuracy of the produced thematic map was first calculated.
Then, producer and user accuracies were calculated for
each class. Finally, the kappa index of agreement (KIA) was
calculated for the whole classified map and for each class. KIA
is calculated using the following equation [28]:

(A-E)

KIA = ——,
(N -E)

(6)

where A is the number of samples in the accurately predicted
class, E is the number that will be predicted accurately via
random class selection, and N is the total number of samples
in that class.

3.4. Results of Image Classification. Figure 12 shows the classi-
fication results on the study area used for model development.
The quality of segmentation used to generate the classification
map is presented in Figures 10 and 11. The average area ratio
of all the classes was 80.80%. This finding indicates that most
of the extracted objects are accurately matched with the ref-
erence objects. Meanwhile, the minimum and maximum area
ratios were 62% (for grass) and 99% (for water), respectively.
The low accuracy of grass was ascribed to some of the grass
objects being merged together after the image was segmented.
The highest accuracy was obtained for the water class because
only a few water objects were present, and all of these were
accurately extracted. The spectral information of the aerial
orthophoto enabled the accurate extraction of water and the
separation of water from surrounding nonwater objects (i.e.,
bare lands and grasslands). In addition, the minimum and
maximum position errors in the segmented objects were 1.02
(water class) and 3.8 (building class), respectively.

In evaluating the classification results, an overall accuracy
of 82% and a KIA of 0.79 were achieved when the results
were compared with the reference objects created via manual
digitization in GIS. The producer, user, and KIA accuracies
for each class and the detailed confusion matrix are presented
in Tables 5 and 6. The KIA of the building class was 0.82.
This value indicated that most of the buildings were extracted
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TaBLE 5: Classification assessment (confusion matrix, per class accuracies, and total accuracies) on the study area used for method

development.
User class/sample Building Road Tree Grass Bare Water Shadow Sum
Confusion matrix
Building 65 0 0 0 7 0 0 72
Road 2 59 1 8 10 0 1 81
Tree 1 0 68 2 0 1 72
Grass 0 0 1 23 1 1 31
Bare 7 7 0 2 66 0 0 82
Water 0 0 0 4 0 4
Shadow 0 0 0 0 24 30
Sum 76 66 75 36 88 5 27
Accuracy
Producer 0.85 0.89 0.90 0.63 0.75 0.80 0.88
User 0.90 0.72 0.94 0.74 0.80 1 0.80
KIA per class 0.82 0.86 0.88 0.60 0.68 0.80 0.88
Overall accuracy (%)
82
Kappa index of agreement (KIA)
0.79
TaBLE 6: Classification assessment (confusion matrix, per class accuracies, and total accuracies) on the test site.
User class/sample Tree Road Building Grass Bare Shadow Sum
Confusion matrix
Tree 58 0 1 7 0 18 84
Road 3 54 1 0 2 3 63
Building 2 6 116 15 4 22 165
Grass 2 1 53 0 59
Bare 5 10 5 3 57 83
Shadow 0 0 0 1 0 37 38
Sum 70 71 124 79 63 85
Accuracy
Producer 0.82 0.76 0.93 0.67 0.90 0.43
User 0.69 0.85 0.70 0.89 0.68 0.97
KIA per class 0.79 0.72 0.90 0.62 0.88 0.38
Overall accuracy (%)
76
Kappa index of agreement (KIA)
0.70

accurately and separated from other classes. However, mis-
classifications between buildings and vehicles on the roads
typically occur because cars are rectangular and elevated
objects (approximately 1.2m). These characteristics, which
are similar to most of the buildings in the study area, lead
to a decrease in the KIA of the building class. To address this
problem in the future, spectral information should be con-
sidered or more advanced rules should be developed using
contextual and geometric information. Shadow objects were
extracted at a KIA accuracy of 0.88. This high accuracy was
achieved because shadow objects were dark and differed from

other natural classes (i.e., water, bare land, and grassland).
They were distinguished from the building class because of
the difference in height and were differentiated from roads
because of their spatial characteristics (roads were elongated,
whereas shadows had lower values in this property). Shadows
mostly occur because of tall buildings and urban trees. Water
bodies were extracted at a KIA accuracy of 0.80. Spectral
information, such as the red band of the aerial orthophoto as
well as intensity and height information from LiDAR data, is
the most important feature used to differentiate water bodies
from other classes in the study area. Accuracy was reduced to
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FIGURE 12: Classified map produced by the fuzzy object-based
approach (study area used for model development).

0.80 because one of the grass objects was classified as water
given the similar texture and spectral information between
water and grass objects. The rules developed for the water
class indicate that spatial information is not as important
as spectral information because water bodies have spatial
characteristics similar to those of some grassland and bare
land classes. In addition, the shape of water bodies is not
unique and depends on the study area. Therefore, developing
rules that use only spectral, texture, and height information
is important.

Urban trees are easily differentiated from other classes
because of the difference in height; they are distinguished
from buildings through intensity and rectangular fit prop-
erties. Urban trees were extracted at a KIA accuracy of
0.88. Given that urban trees are typically located within bare
lands or grasslands, they are differentiated from surrounding
objects with different characteristics. Texture (homogeneity)
information and intensity information are also useful in
differentiating urban trees from some of buildings with
specific roofing materials. The results demonstrated that the
proposed fuzzy rules enabled the extraction of bare lands and
grasslands at an average KIA accuracy of 0.64. After the inter-
pretation of the produced thematic map and the statistical
information of the confusion matrix, the low accuracy was
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FIGURE 13: Urban roads extracted using the proposed fuzzy rules (study area used for method development).

ascribed to some of the objects merging during segmentation.
This situation led to the loss of the characteristics and
properties used to define these classes in rule development.
Misclassifications mostly occurred between bare lands and
roads, grasslands and roads, and bare and grasslands because
some of the small bare land and grassland objects exhibited
similar spatial characteristics with roads (i.e., the elongation
property of roads was the same as those of small grassland and
bare land objects). The interpretation of the results indicated
that additional spectral and contextual information would be
necessary to improve the accuracy of feature extraction.

3.5. Results of Urban Road Detection. Figure 13 shows the
urban roads extracted using the proposed fuzzy rules. Height,
spectral, spatial, and texture information were used for
road extraction. The accuracy of road extraction using the
developed fuzzy rules was 0.76 (producer), 0.85 (user), and
0.72 (KIA). Spatial information (i.e., elongation) and intensity
from LiDAR data were the most interesting properties for
their extraction. Several omissions were attributed to the
heterogeneity of the surface of roads and the shadows
projected onto roads by trees, buildings, or vehicles. The most
significant problems of road extraction were the presence of
trees along the roads and the undetected boundaries of roads.
Even spatial information is not useful in solving these prob-
lems because these problems occur during segmentation. To
address these problems, more advanced rules based on con-
textual and probability theories can be integrated. To improve
the quality of the extracted roads further, postprocessing
techniques, such as filtering, removing nonroad features,
and smoothing the extracted polygons, are necessary. The
quality of the final road features is critical for the applications
mentioned in Introduction. Roads can also be converted into
polylines that represent their centerlines. However, the aim
of this study is to extract roads in their complete geometry to
increase their use for a wide range of geospatial applications.

I Urban tree

[] Grassland

Bl Road [1 Bareland
B Building ] Shadow
I I T 0O
0 65 130 260 390 520

FIGURE 14: Test site map produced by the fuzzy object-based
approach.

3.6. Evaluation of the Transferability of the Fuzzy Rule Sets.
A transferability test is essential to ensure that the proposed
rules will extract the considered objects without any changes
in the rule base. Figure 14 shows the classified map using
the same segmentation parameters and the proposed fuzzy
rule sets. The test site used to evaluate the efficiency of the
proposed rules included the same classes except for water
bodies. Therefore, the test site was suitable for evaluating
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FIGURE 15: Roads extracted using the proposed fuzzy rules (test area).

the rules developed in this research. The test site is a subset
of the data set used in this research but has a different
urban environment. Assuming that most of the airborne
LiDAR data have similar characteristics (i.e., similar features
of nDSM, intensity, aerial orthophoto, and spatial resolution),
the proposed rules are most probably transferable to any
other study areas. However, slight changes in segmentation
parameters may be required because these rules depend on
the scale of the study area and the resolution of the data sets.

Overall accuracy was decreased by approximately 6%
when the rules were applied on the test site. A KIA of 0.70
was achieved on the test site using the same rules without
any changes. The first interpretation of this decrease in
accuracy suggested that some features in the new test site had
different properties, which were disregarded when the rules
were developed. Therefore, knowledge modeling should be
carefully integrated into data-driven rules as applied in this
research. Given the extensive variety of properties for natural
and man-made features, these issues remain a challenge. In
particular, the KIA accuracies of the building and grassland
classes increased from 0.82 to 0.90 and from 0.68 to 0.88,
respectively, because only one type of building structures was
found in the test site. By contrast, the accuracies of the urban
tree and shadow classes were decreased. The KIA accuracy
of the urban tree type decreased from 0.88 to 0.79, whereas
that of the shadow class decreased from 0.88 to 0.38. The
decrease in the urban tree type was normal because the rule
was created based on data integration and expert knowledge.
By contrast, the decrease in shadow accuracy was abnormal
(KIA decreased by approximately 0.50) mainly because of the
uncertainties in the testing samples. The low contrast of the
shadow features in the orthophoto made interpreting those
features difficult, and thus, the creation of testing samples was
affected.

Figure 15 shows the extracted urban roads from the test
site using the proposed fuzzy rules. The KIA accuracy of the
extracted urban road was 0.72, which decreased to nearly
0.16. Misclassifications mostly occurred between urban roads
and buildings and between urban roads and bare lands. In
the test site, many cars were located on the roads, which
were misclassified as buildings because of the similar spatial
properties of cars and buildings. In addition, the shadows
projected from tall trees and high cars also contributed
in decreasing road extraction accuracy. To improve the
result of urban road extraction, removing vehicles before the
classification process using several filtering techniques is sug-
gested. Further improvement can be achieved by developing
advanced rules for complex urban environments.

4. Conclusion

In this study, a two-stage optimization method for segmen-
tation parameter selection was presented. A fuzzy object-
based analysis technique for urban road extraction from air-
borne LiDAR data was also proposed. Suitable segmentation
parameters were selected using the two-stage optimization
method. In the first stage, the scale parameters were opti-
mized via PSO to improve classification. In the second stage,
suitable shape and compactness parameters were selected to
improve object creation using the Bhattacharyya distance.
The proposed fuzzy rules are easy to implement and are
transferable. The fuzzy rules were formulated based on
data samples and expert knowledge using the decision tree
and fuzzy c-mean algorithms. The results showed that the
proposed method could extract urban roads from LiDAR
data with a KIA accuracy of 0.72 on the test site.
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Feature selection using PSO contributed to improving
knowledge modeling by selecting relevant and useful fea-
tures and excluding nontransferable and problematic fea-
tures. Meanwhile, the two optimization techniques, namely,
Bhattacharyya distance and Taguchi, enabled the selection
of the best combination of segmentation parameters to
improve object creation and classification results. In addition,
integrating fuzzy logic into object-based rules contributed to
managing the complexity of classification in urban environ-
ments by involving uncertainties in the boundaries of the
used classes.

The main challenge in urban road extraction was the pres-
ence of urban trees along the roads, which created difficulties
in accurately extracting road features with complete geom-
etry. The presence of vehicles on urban roads also created
problems in urban road extraction. In addition, vehicles on
the roads formed shadows on the road surface, which also
affected the quality of final road extraction. Furthermore, a
variety of shadow shapes that could be present in the scene
made the extraction of some classes challenging. To solve
these limitations and problems, further research should be
conducted by focusing on the factors that created a wide
range and variety of problems.
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