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ABSTRACT
In this paper, an ensemble method, which demonstrated efficiency in GIS
based flood modeling, was used to create flood probability indices for the
Damansara River catchment in Malaysia. To estimate flood probability, the
frequency ratio (FR) approach was combined with support vector machine
(SVM) using a radial basis function kernel. Thirteen flood conditioning
parameters, namely, altitude, aspect, slope, curvature, stream power index,
topographic wetness index, sediment transport index, topographic
roughness index, distance from river, geology, soil, surface runoff, and
land use/cover (LULC), were selected. Each class of conditioning factor was
weighted using the FR approach and entered as input for SVM modeling
to optimize all the parameters. The flood hazard map was produced by
combining the flood probability map with flood-triggering factors such as;
averaged daily rainfall and flood inundation depth. Subsequently, the
hydraulic 2D high-resolution sub-grid model (HRS) was applied to
estimate the flood inundation depth. Furthermore, vulnerability weights
were assigned to each element at risk based on their importance. Finally
flood risk map was generated. The results of this research demonstrated
that the proposed approach would be effective for flood risk management
in the study area along the expressway and could be easily replicated in
other areas.
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1. Introduction

Flood events are typically regarded to be the most common natural disaster worldwide (Stefanidis &
Stathis 2013). Hence, flood risk management is an important challenge in many cities. Rapid urbani-
zation, population growth, economic development, and climate change will increase the magnitude
of this challenge (Huong & Pathirana 2013). Considerable and irreparable damages to farmlands,
transportation, bridges, and many other aspects of urban infrastructure prove the urgent require-
ment for flood control and prevention (Tehrany et al. 2014; Pradhan et al. 2014).

Flood risk analysis and risk mitigation are two components of flood risk management. Flood risk
analysis aims to investigate where the risk of flood occurrence is unacceptably high and where risk
mitigation actions are required. Therefore, comprehensive flood risk analysis by detecting hazardous
and risky areas is an essential part of risk management to estimate the amount of damages that can
occur because of flooding (Meyer et al., 2008).
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The recent improvements in the efficiency of remote sensing (RS) and geographic information
system (GIS) technologies have initiated a revolution in hydrology, particularly in flood manage-
ment, which can fulfil all the requirements for flood prediction, preparation, prevention, and dam-
age assessment (Tehrany, Pradhan, & Jebur 2013). Among different GIS-based flood models
presented in the literature, artificial neural networks (Kia et al., 2011), frequency ratio (FR) (Lee
et al. 2012), logistic regression (Pradhan 2010), adaptive network-based fuzzy inference system
(Chau et al. 2005), multi-layered feed forward network (Kar et al., 2015), decision trees (Tingsan-
chali & Karim 2010; Merz et al. 2013; Tehrany et al. 2013), and support vector machines (SVMs)
(Zhou et al. 2013; Tehrany et al. 2014) are the most widespread techniques that utilize RS and GIS
tools. Although flood forecasting and prediction models are available, the accuracy of flood predic-
tion maps remains a critical issue. In flood modelling, a high accuracy for flood prediction mapping
should be achieved, and thus, new and efficient models should be explored to increase the accuracy.

Flood risk can be expressed as a combination of hazard and vulnerability (Apel et al., 2008; Inter-
governmental Panel on Climate Change 2014; Vojinovi�c & Abbott 2012). In particular, risk is a
mathematical expectation of the vulnerability (consequence) function. Flood probabilities are deter-
mined to produce flood hazard maps. Hydraulic models may result in uncertainties because they
require complete and sufficient hydrological data (Horritt 2006); therefore, using RS data and GIS-
based models can be considered a complementary approach to flood modelling (Lecca et al. 2011).

The current research aims to determine the flood risk level in a study area that is affected by
annual flooding. An appropriate flood prediction assessment is required in the study area to prevent
incurring additional cost in the future because of the proximity of the area to an expressway, whose
construction has already reached an exorbitant cost. As the main components of risk assessment,
flood hazard and vulnerability indices were developed in this research through an accurate RS data
and GIS-based ensemble model. The result of this research will provide an overall and accurate pic-
ture of flood vulnerable areas using detailed information to protect lives and properties along the
New Klang Valley Expressway (NKVE) in case of flood events by implementing appropriate disaster
management techniques.

2. Study area

Severe flood events that occurred during the past decades in Malaysia have seriously threatened its
population, economy, and environment. This finding is evident from the increase in the amount of
damages caused by a series of extreme floods in Malaysia over the last 50 years (Tehrany et al.
2013). One of the huge economic disadvantages of flooding is damages to highways. Thus, the Dam-
ansara River catchment along NKVE, which is seriously affected by flooding, was selected as the
study area for a detailed flood hazard and risk analysis and modelling. The Damansara River catch-
ment is located beside Kampung Baru Subang in Selangor, Malaysia. The study area is situated at
3�8ʹ45.600 latitude and 101�32ʹ27.2400 longitude. Damansara River stretches from Sungai Buloh to
Shah Alam. The location and boundary of the study area were accurately delineated using a digital
elevation model (DEM), as shown in Figure 1.

As shown in Table 1, information regarding the hydro-geomorphological characteristics of the
study area, such as basin slope, area, and length, was calculated using GIS Spatial Analyst tools. First,
a flow direction map was extracted from the DEM from which the watershed boundary was delin-
eated using hydrology basin tool. Next, main river length and upstream distance were calculated by
using the flow length option in hydrology toolbox. Next, basin slope was calculated by using surface
raster-based tool in percentage. Then using Zonal statistical analysis, average value was extracted.
The total area of the Damansara River catchment was estimated at approximately 116.9 km2, while
the length of Damansara River was 22.22 km. Figure 2 shows the Damansara River catchment with
its flow direction over the study area.
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3. Data used

3.1. Flood inventory

To evaluate flood risk in an area, analysing records of past flood events is essential (Manandhar
2010). Therefore, an inventory map is considered the most essential factor for predicting future
disaster occurrence; such map can represent single or multiple events in a specific area (Tien Bui
et al. 2012a). In the current research, a flood inventory map was primarily created by mapping the
single flood locations where the exceed water has been running by using the field measurement and
surveying. The prepared flood inventory map comprised 110 fluvial-flooded events, when collected
from 2010 to 2015 over Damansara river catchment.

Figure 1. Location map of the study area.

Table 1. Hydro-geomorphological details for Damansara river catchment.

Hydrological characteristics Value

Basin slope (D) 0.07
Maximum flow distance (m) 22222.66
Max flow distance slope (D) 0.01
Stream centroid to outlet (m) 8426.41
Area facing south 53%
Area facing north 47%
Maximum stream length (m) 21473.58
Maximum stream slope (D) 0.00
Basin length (m) 15625.50
Basin shape factor 2.09
Basin perimeter (m) 71440.35
Basin average elevation (m) 37.86
CENTROID X 397595.17
CENTROID Y 346340.79
Basin LA county lateral 65.00
Basin LA county basin hydrograph 2.00
Basin area (km2) 116.90
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The flood inventory map was divided into 70% training area and 30% validation area (Tunusluoglu
et al., 2007), as shown in Figure 3. The training flood locations (77 out of 110 points) were randomly
selected. Then, the flood layer, which was considered a dependent factor, was constructed. The flood
layer was developed using two sets of value, namely, 0 and 1. 0 indicates the absence of flood events,
whereas 1 indicates the presence of flood events across an area. Similarly, an equal number of points
(77 out of 110) were selected as non-flooded areas to achieve a value of 0. Flooding could not occur in
high-elevation regions such as hills; hence, non-flooded areas were randomly selected from these loca-
tions. The remaining flood locations (33 points) were utilized for model validation.

3.2. Flood-conditioning factors

In recent years, many spatial methods have been proposed by researchers for mapping flood hazard
and risk zones to spatially delineate flood-prone areas. Building a flood hazard assessment model
requires a set of flood-related parameters (Tehrany et al. 2014). The precision and quality of meth-
ods can be affected by the manner in which an accurate GIS database is used. Therefore, flood-con-
ditioning factors should be optimized to enhance results.

The flood-conditioning factor data set used in this research consisted of 13 factors, namely, alti-
tude, aspect, slope, curvature, stream power index (SPI), topographic wetness index (TWI), sedi-
ment transport index (STI), topographic roughness index (TRI), distance from river, soil, geology,
surface runoff, and land use/cover (LULC). In this research, the cell of each conditioning factor was
resized to 5 m £ 5 m, and the grid of the Damansara River catchment was constructed with 2650
columns and 2623 rows.

3.2.1. DEM-derived factors
The DEM was built using Interferometric Synthetic Aperture Radar (IFSAR) images with a pixel size
of 5 m £ 5 m which was captured in 2014. Consequently, all topographical map factors, such as alti-
tude, slope, aspect, curvature, STI, SPI, TWI, and TRI, were derived from the DEM.

Figure 2. Watershed basin area with flow direction of Damansara river catchment.
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One of the most influential parameters in flood studies is elevation (Figure 4(a)), and a flood
event occurring in highly elevated areas is nearly impossible (Botzen et al. 2012). Water flows from
highly elevated terrains toward lower regions, and thus, the probability of flood occurrence is natu-
rally higher in flat regions. Moreover, topographical parameters that are directly affected by flow
extent and runoff speed have important roles in flood occurrence (Kia et al. 2011). Each topographi-
cal parameter related to flood occurrence in any area is extracted directly from the DEM. Thus, a
highly precise DEM is essential (Pradhan 2009).

Slope is another topographical factor that is regarded as an important parameter in hydrology
(Tehrany et al. 2013) because of its effect in producing runoff in an area and its influence on runoff
speed. An increase in slope degree decreases time for surface infiltration; subsequently, a huge
amount of water enters the drainage network and causes a flood event (Figure 4(b)). Slope aspect
commonly refers to the horizontal direction toward which the slope of a mountain is facing. An
aspect map also plays a significant role in assessing the slope stability of a local terrain, depending
on the type of slope face (Figure 4(c)). Curvature, which is split into three classes (convex, concave,
and flat regions), is another influential parameter in flood occurrence (Figure 4(d)).

SPI and TWI are water-related parameters that are calculated using the following formulas (Gok-
ceoglu et al. 2005):

SPI ¼ As tanb; (1)

TWI ¼ lnðAs=tanbÞ; (2)

Figure 3. Flood inventory map.
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where As is the specific catchment area (m2m¡1), and b is the local slope gradient measured in
degree.

The SPI factor indicates the erosive power of water flow (Figure 4(e)). TWI represents the effect
of topography on runoff generation and the amount of flow accumulation at any location in the
river catchment (Gokceoglu et al. 2005), as shown in Figure 4(f).

The accuracy of a topographic index can be estimated with regard to grid spacing and terrain
roughness by comparing the topographic index surface with respect to reference data. TRI, as one of
the morphological parameters widely used in flood analysis, is calculated using the following equation:

TRI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Abs max2 �min2ð Þ;

p
(3)

Figure 4. Flood-conditioning factors: (a) altitude, (b) slope, (c) aspect, (d) curvature, (e) SPI, (f) TWI, (g) TRI, (h) STI, (i) distance from
river, (j) soil, (k) geology, and (l) surface runoff.
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where max and min are largest and smallest values of the cells in the nine rectangular neighbourhoods
of altitude (Figure 4(g)).

The erosion and deposition processes are characterized using STI (Figure 4(h)), as presented in
the following equation (Moore & Wilson 1992):

STI ¼ ðmþ1Þ � ðAs=22:13Þm� sinðB=0:0896Þn; (4)

where As is the specific catchment area (i.e., the upslope contributing area per unit contour length)
estimated using one of the available flow accumulation algorithms in the Hydrology toolbox of

Figure 4. (Continued)

1086 H. MOJADDADI ET AL.



ArcGIS, and B is the local slope gradient in degrees. The contributing area exponent, m, is generally
set to 0.4, whereas the slope exponent, n, is generally set to 1.4.

3.2.2. Distance from river
Flood occurrences in the study area are frequent along the stream. Thus, distance from the river was
considered another geomorphology-related conditioning factor. Subsequently, a distance from the
river map was generated because the streams would disrupt the stability of the slopes either by toe
undercutting or by saturating parts of the materials lying within the water level of stream ways. Dis-
tance from a river is represented by the proximity of rivers and drainages in an area. In the current
research, a distance from the river map was developed from the vector map of rivers using Euclidean
distance in ArcGIS 10.3 software. Then, the resulting shapefile was converted into a 5 m raster and
divided into 10 classes using the quantile method (Figure 4(i)).

3.2.3. Lithological and soil type
Lithological and soil maps are highly important parameters in finding sensitive areas prone to flood-
ing. Soil type directly affects the drainage process because of soil characteristics, such as texture, per-
meability degree, and structure. The study area is characterized by seven soil types. The spatial
distribution of each soil type is shown in Figure 4(j). Lithological information regarding the perme-
ability of rocks is also required in flood hazard assessment. Therefore, soil types and lithology are vital
for conducting analysis in this research. Figure 4(k) presents the geology map, which shows that three
types of lithology cover the study area. The majority of the eastern section of the study area is covered
by acid intrusives, whereas the western section is covered by phyllite, slate, shale, and sandstone.

3.2.4. Surface runoff
Soil capacity is fully saturated by water throughout the land, and water flow exceeds the limits
required for surface runoff (Figure 4(l)). This parameter was estimated using an empirical equation
called the Soil Conservation Service curve number (SCS-CN) method,

Q ¼ ðP � 0:2sÞ
P þ 0:8s

(5)

S ¼ 1000
CN

� 10; (6)

where Q is the direct runoff (mm), P is the accumulated rainfall (mm), S is the potential maximum
soil retention (mm), and CN is the curve number.

3.2.5. LULC
Another primary related factor that strongly contributes to flooding is LULC. A detailed under-
standing of LULC is extremely essential for environmental and natural hazards (Rizeei et al. 2016).
Vegetated areas are less prone to flooding because of the negative correlation between a flood event
and vegetation density. However, urban areas are typically composed of impermeable surfaces and
bare lands, which increase storm water runoff. In this research, a land-use map played a crucial role
in flood hazard modelling as one of the conditioning factors and criteria for vulnerability assess-
ment. Therefore, considering the importance of this factor, a very high resolution image obtained
from the WorldView-3 satellite was used to extract an LULC map. The WorldView-3 satellite is the
first multi-payload, super-spectral, high-resolution commercial satellite that operates at an altitude
of 617 km. It provides 31 cm panchromatic resolution, 1.24 m multi-spectral resolution, 3.7 m short
wave infrared resolution, and 30 m CAVIS resolution, that was captured on 9th of December 2014.

After performing preprocessing approaches, such as geometric, radiometric, and atmospheric
corrections, the object-based SVM algorithm was implemented using ENVI 5.3 to classify the
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Worldview-3 image. The details of the SVM segmentation and classification method are provided in
Table 2.

The final land-use map presented in Figure 5 classifies land use into seven classes, namely, high-
way, bare land, forest, built-up land, green and recreation areas, road, and water body. The study
area is mostly covered by built-up land and forest.

4. Methodology

The methodology applied in the present research comprises different phases that are illustrated in
the overall flowchart shown in Figure 6. As defined, flood risk is generally represented as the product
of a hazard and the vulnerability of an exposed environment (M€uller et al. 2011). The spatial hazard
model was generated in GIS environment using a combination of a probability map obtained from
an ensemble model and rainfall as a triggering factor. The risk map was also produced by integrating
hazard and vulnerability maps to show the flood risk levels across the study area. To apply the GIS-
based ensemble model for flood hazard modelling, each conditioning factor was classified using the
quantile method as a requirement of FR modelling (Ayalew & Yamagishi 2005). Then, the FR model
was applied, and each FR value was assigned to each class of conditioning factor. Each flood-related
layer was built in ArcGIS and then transformed into ASCII format and entered as input in the SPSS
modeller for SVM analysis.

4.1. Optimizing flood-conditioning factors using FR

Flood-conditioning factors should be identified to evaluate flood probability throughout a specific
time and in a particular environment (Yalcin et al. 2011). Applying the FR method as one of the
GIS-based approaches can considerably contribute in identifying the effect of each flood-related
parameter on flood events in a study area (Tehrany et al. 2013). The FR value illustrates the relation-
ship between each class of conditioning factor and flood location, so weights will be precisely
assigned to each class under each factor (Neshat & Pradhan 2015). An FR value > 1 indicates a
strong relationship, whereas an FR value < 1 denotes a weak correlation (Akgun et al. 2007), as
shown in Table 3.

The estimated FR ratio for weighting each conditioning factor was normalized within the range
of 0–1. Each conditioning factor varies in dimension, and thus, normalization should be performed
to make a factor appropriate for use as a direct input for SVM modelling. A popular technique used
for the normalization process is as follows (Choi et al., 2009):

Yi ¼ yi � ymin

ymax � ymin
(7)

If yi ¼ i ¼ 1; 2; ::< nð Þ, then Yi indicates the normalized values of yi. ymin and ymax represent the
minimum and maximum value of yi; respectively. Consequently, each data category, including the
nominal and interval classes, was transformed into a single scale ranging from 0 to 1 to enter as
input into the SVM model.

Table 2. Details of SVM segmentation and classification method.

Segment setting Merge setting Classification algorithm

Scale
level Algorithm

Merge
level Algorithm

Textural
Kernel size Method Threshold

Type of
kernel

Gamma in
kernel

Penalty
parameter

50 Edge 90 Full lambda schedule 3 SVM 5 Radial basis 0.03 100
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4.2. Flood probability evaluation using SVM

SVM is based on statistical learning theory to minimize operational risk standard (Yao et al. 2008).
Nonlinear structures can be converted into linear structures because of the creation of a hyperplane,
which can generate the process (Jebur et al. 2014a). The transformation of data via a mathematical
function is identified as the kernel function. The basis of this method is the hyperplane formation sepa-
ration of the training data set. A separating hyperplane is created in the original space of n coordinates
(xi parameters in vector x) between the points of two distinct classes (Marjanovi�c et al. 2011).

The peak edge of separation is found among the classes via SVM, and the hyperplane is classified
in the central part of the peak edge (Marjanovi�c et al. 2011). The point classification will be based
on hyperplane changes, and is classified as 1 if it will be overhead the hyper-plane, and as ¡1 if it
will not be overhead. Through this rule, the new data feature can be used to anticipate the set to
which a different record should fit. Support vectors are known as the neighbouring training points
of the optimal hyperplane.

For example, assume a training data set of instance-label pairs (xi, yi) with xi 2 Rn, yi 2 f1;�1g,
and i = 1,…,m. In the current flood probability estimation case, x is a vector of each input space,
including altitude, aspect, slope, curvature, TWI, SPI, TRI, STI, distance from river, lithology, soil,
surface runoff, and land use. Both flooded and non-flooded pixels are illustrated using two classes
{1, ¡ 1}. Thus, recognizing the optimal separating hyperplane is the objective of the SVM model.
For the case of linear separable data, a separating hyperplane can be defined as follows:

yi w ¢xi þ bð Þ� 1� ξ i (8)

where w is the norm of the normal of the hyperplane, b is the offset of the hyperplane from the ori-
gin, and ξ i denotes positive slack variables. The optimization problem can be solved by designating

Figure 5. Classified land-use map used as a flood-conditioning factor and vulnerability criteria assessment.
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an optimal hyperplane using Lagrangian multipliers (Samui 2008).

Minimize
Xn
i ¼ 1

ai � 1
2

Xn
i ¼ 1

Xn
j ¼ 1

aiajyiyjðxixjÞ (9)

Subject to
Xn
i ¼ 1

ai yj ¼ 0; 0�ai � c (10)

where ai denotes the Lagrange multipliers, C is the penalty, and the slack variables ξ i allow penal-
ized constraint violation.

When the hyperplane is not separated using the linear kernel function, the initial input data may be
transformed into a high-dimensional feature space using several nonlinear kernel functions. New data
classification will be performed through the decision function, which is described as follows:

g xð Þ ¼ sign
Xn
i ¼ 1

yiajK xi; xj
� �þ b

 !
(11)

where K (xi, xj) is the kernel function.

Figure 6. Overall methodology flowchart.
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Table 3. FR spatial correlation between flooded area and each conditioning factor.

Factor Class FR Factor Class

Elevation (m) 1–13 2.98 TWI 0.96–5.47
13–19 2.34 5.47–6.08
19–23 2.08 6.08–6.62
23–28 1.49 6.62–7.07
28–33 1.08 7.07–7.53
33–38 0.89 7.53–7.99
38–44 0.68 7.99–8.45
44–49 0.64 8.45–9.057
49–63 0 9.057–9.89
63–332 0 9.89–20.44

Slope (degree) 0–1.68 1.7 STI 0
1.69–4.48 1.35 0–0.72
4.49–7.84 1.03 0.72–1.44
7.85–11.8 1.28 1.44–2.15
11.9–16.2 1.17 2.15–2.87
16.3–21 1.09 2.87–4.31
21.1–26.3 1.01 4.31–6.41
26.4–33 0.72 6.41–9.33
33.1–45.6 0.6 9.33–15.79
45.7–71.4 0.06 15.79–183.01

Aspect Flat 1.5 TRI 0
North 1.04 0–0.05

Northeast 1.05 0.05–0.11
East 0.99 0.11–0.16

Southeast 1.59 0.16–0.21
South 1.56 0.21–0.32

Southwest 0.57 0.32–0.48
West 0.35 0.48–0.69

Northwest 0.59 0.69–1.17
1.17–13.59

Land use Bare land 0.69 Soil type 1 (TMG-AKB-LAA)
Forest 0.24 2 (MCA-TVY-GMI)

Highway 0.16 3 (RGM-JRA)
Recreation 2.7 4 (SDG-KDH)

Road 0.66 5 (STP)
Urban 0.77 6 (ULD)
Water 0.42 7 (MLD)

Geology Acid intrusive 0.8 Curvature Concave
Phyllite, slate, shale and sandstone 0.93 Flat

Vein quartz Convex
0

SPI 0 0 Distance from river (m) 0–62
0–32.15 1.05 62–65

32.15–64.29 0.37 65–67
64.29–96.44 0.31 67–90
96.44–128.58 0.26 90–96
128.58–160.73 0.21 96–110
160.73–225.02 0.2 110–115
225.02–321.46 0.15 115–122
321.46–546.48 0.12 122–124
546.48–8,197.27 0 124–143

Surface runoff 81.2–177 0.19
178–518 0.51
519–582 1.1
583–603 1.9
604–624 1
625–1020 1.17
1030–1490 1.35
1500–1750 1.74
1760–1820 1.84
1830–2800 1.68
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Kernel type selection in an SVM model can be considered a vital step because it directly controls
effective training and classification accuracy (Yao et al. 2008). Linear (LN), polynomial (PL), radial
basis function (RBF), and sigmoid (SIG) are the four kernel types used in SVM. LN is regarded as a
distinctive case of RBF although SIG execution is equivalent to that of RBF for the given factors
(Song et al. 2011). When RBF is used in the processing, LN is no longer required. In terms of accu-
racy, RBF generates more reliable and solid outcomes compared with SIG because of its higher fit-
ness in interpolation. A potential shortcoming of RBF is its failure to create long-range
extrapolation. By contrast, PL exhibits better extrapolation fitness (Tehrany et al. 2014). RBF was
used in the present study to estimate flood occurrence probability.

4.3. Flood risk evaluation

Risk analysis mainly aims to determine the probability of a specific hazard that will result in
damage. The correlation between the frequency of a disastrous event and the intensity of its
consequences is determined via risk evaluation. In the present study, flood risk evaluation aims to
ascertain the expected degree of loss because of a flood event. The ‘risk’ (R) is commonly expressed
as follows:

R ¼ f ðHL;VLÞ (12)

where HL and VL represents flood hazard and flood vulnerability, respectively.
As discussed earlier, a hazard map is one of the essential components of flood risk analysis. The

assumption that rainfall is one of the primary triggering factors of flood occurrence over a study
area, which results in extreme events such as flooding and overflowing, contributes to the prepara-
tion of a flood hazard map. The average daily Rainfall data were obtained from 15 rainfall gauge sta-
tions in and around the study area. Then, the daily average precipitation for 6 years (2010 to 2015)
was used to create the rainfall density map with the inverse distance weighting (IDW) interpolation
model. Another hazardous triggering factor is ‘Flood inundation depth’ which can be estimated by
using 2D HRS model. 2D high-resolution sub-grid models take an advantage of wetting and drying
algorithm. Mostly in numerical flood models for surface flows, drying and wetting algorithm is basi-
cally reined by artificially placing which called screens in grid’s velocity points once the water depth
drops fall below a defined drying threshold, while eliminating the Screens once the water depth rises
beyond a flooding threshold (Casulli 2009).

The flow hydrograph is calculated to bring a stream flow into the 2D flow area. There are some
requirement for this analysis: (1) flow hydrograph (Q/t), and (2) energy slope of stream (degree).

In this research hourly stream, flow has been used since February 2010 to February 2015 in order
to model the maximum flood inundation depth. For each river reach a related station was used to
generate stream flow and then input to the model for unsteady analysis. Stream flow data recorded at
four gauging stations have been used as the upstream boundary condition. Figure 7 presents the loca-
tion of water level, rainfall and rain gauges station in and around the Damansara river catchment.

Maximum flood inundation depth then integrates with daily average of precipitation in order to
create the hazardous triggering layer. The flood probability map is transformed into a hazard map
by multiplying it with hazardous triggering layer. To calculate the hazard map, the following equa-
tion is used:

H ¼ f PS;Tpi

� �
(13)

where H indicates the hazard probability, PS indicates the probability obtained from the ensemble of
FR and SVM analysis, and Tpi is the hazardous triggering layer. Moreover, these two maps should be
the standardized into a common dimensionless scale before they are combined given that the scales of
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their data are different from each other. The following equation is used for the standardization:

Xij ¼
Xj � Xij

Xmax�j � Xmin�j
(14)

where Xij represents the standardized score for the ith alternative and the jth attribute; Xij is the raw
score; and Xmax�j � and Xmin�j are the maximum and minimum scores for the jth attribute,
respectively.

Vulnerability is another indispensable factor in flood risk evaluation; it is commonly regarded as
a factor that leads to circumstances that make a system or an individual prone to damage caused by
a hazard (Muller, Reiter, & Weiland 2011). A set of site-specific parameters is frequently used to
evaluate vulnerability.

Flood vulnerability (VL) can be defined mathematically as follows:

VL ¼ P DL � 0jL½ �; 0�DL � 1ð Þ (15)

where DL is the assessed (definite) or the expected (forecasted) damage to an element given the
occurrence of a hazardous flood event (L). Vulnerability is the probability of total loss to a specific
element or the proportion of damage to an element given the occurrence of a flood event. In both
cases, vulnerability is expressed on a scale from 0 to 5, with 0 indicating the lack of damage and 5
indicating complete loss or destruction. Vulnerability to floods is expressed in economic (monetary,
quantitative) and heuristic (qualitative) scales. When using economic measures, vulnerability is
most commonly expressed in terms of element value, such as monetary, intrinsic, and utilitarian val-
ues. When expressed heuristically, flood vulnerability is described in a qualitative (descriptive) term
that indicates the expected or definite damage to an element at risk.

Figure 7. Location of water-level, rainfall and rain gauges station in and around the Damansara river catchment.
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4.4. Validation

Validation is another important process that should be performed to evaluate the efficiency and pre-
cision of the derived result. The area under the curve (AUC) method has been widely used in
numerous studies to estimate the performance of probability modelling (Althuwaynee et al. 2012).
On the basis of this approach, the probability map is split into equal area classes and grades (from
the least to the most value). The flood probability level can be specified through success and predic-
tion curves. A curve is created by plotting the accumulative percentage of flood-prone areas (from
the maximum to the minimum probability) on the x-axis and the accumulative percentage of flood
locations on the y-axis. A steeper curve indicates a higher number of flood locations falling into the
most-prone category. The AUC range varies from 0.5 to 1.0, and the highest accuracy has a value of
1.0, thereby suggesting that model performance is completely satisfactory in predicting disaster
occurrence without any bias. Therefore, an AUC value that is closer to 1.0 indicates the precision
and trustworthiness of the model.

5. Results and discussion

5.1. Flood probability map using the GIS-based ensemble method

As shown in Table 3, the correlation of each class of each conditioning factor was estimated by
applying the FR model. The lowest class of altitude (ranging from 1 m to 13 m) obtains the highest
FR value at 2.98, which is representative of the highest correlation of this class with flood occurrence.
The natural behaviour of flooding, which occurs mostly in flat regions instead of in highly elevated
areas, can provide an appropriate proof for these results. In the case of aspect, the class of southeast
direction obtains the highest FR value at 1.59. The highest FR value is also assigned to slope range of
0–1.68 degree, which is at 1.70. In the case of the curvature factor, the flat areas obtain the highest
correlation. The highest (1.10) followed by concave (0.93) expectedly. FR values are also assigned to
the lowest (0–32.15) and highest (546.48–8197.27) values of the SPI factor, which means low power
streams, are more prone to be flooded. For the TWI factor, the class range of 0.96–5.47 exhibits the
lowest correlation (0.49) with flooding while class 9.89–20.44 has the highest coronation with flood
which means more likely to be wet. In the case of the TRI and STI factors, the class ranges of 0–0.05
and 0–0.72 obtain the highest FR values at 1.46 and 1.44, respectively, which show in smooth area
such as plain and alluvial type of river, the occurrence of flood is high and support the accuracy of
this model.

Another significant parameter in flood occurrence is distance from river. From the results derived
using the FR approach, the nearest class to river (0–62 m) obtains the highest FR ratio of 1.83. The
second class of distance from river (62–65 m) also achieves a high value, which can be attributed to
the long coverage of alluvial flood over the catchment.

In the case of geology, obviously, there was no meaningful correlation between its classes and
flood events because all the classes assigned below one, although class of phyllite, slate, shale,
and sandstone exerts more influence on flood occurrence rather than class of vein quartz. A
strong relationship exists between each type of LULC and their effects on the speed of water
flow and flood occurrence. In the study area, the regions covered by recreation areas achieve the
highest FR value of 2.70. In the case of soil type, type 1 soil (TMG-AKB-LAA) has the highest
FR value (2.34). However, soil types 2 (MCA-TVY-GMI) obtains the least value due to their soil
components, which indicates that no significant correlation exists between these soil types and
flooding. Lastly, the highest FR value (1.84) in the case of surface runoff is achieved at the range
of 1760–1820 mm of runoff, it can be noticed that where we have high surface runoff is almost
prone for flood as well.

When the FR value of each conditioning factor was evaluated, the weights of each range were
normalized as shown in Equation (7). Then, each conditioning factor was reclassified based on the
normalized FR weights. The reclassified conditioning factors were applied as input for SVM
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modelling. As mentioned earlier, RBF kernel was used to generate a flood probability map in GIS
environment. The probability index ranged from 0 to 1. Figure 8 shows ensemble FR-SVM optimi-
zation result and Figure 9 demonstrates the flood probability map generated from the ensemble FR-
SVM model. The highest probability of flood occurrence is located in regions with the lowest eleva-
tion and direction of the basin outlet.

Based on the result of ensemble SVM and FR modelling which as shown in Figure 8, geology,
aspect, TRI and soil factors are achieved the lowest rank, respectively, and consider insignificant
with flood probability in our study area. However, Altitude, Distance from River, STI and TWI are
the most significant parameters which are related to flood occurrence, respectively. The correlation
coefficient of this model was estimated as 0.7413 and mean absolute error was 0.2453.

Therefore, each class of conditioning factors along with each conditioning factor has been opti-
mized by ensemble FR and SVM model. Then all weighted layers were overlaid to generate the flood
probability map.

5.2. Flood risk mapping

In this study, a flood risk map was mainly derived from the combination of the hazard and vulnera-
bility maps as discussed earlier. During the first phase of this research, the ensemble of the FR and
SVM model was used to investigate flood probability across the catchment. During the second
phase, after the probability map was obtained, rainfall and flood inundation depth were selected as
the main triggering factor to combine with the probability of acquiring the hazard map as illustrated
in Equation (13). A final hazard map ranging from 0 to 1 was obtained as a result of this combina-
tion. The highest hazard level occurs in the southern part of the study area, where the elevation
toward the basin outlet is decreased. Figure 10 shows the classified hazard map of the study area.

In a next phase, after the final hazard map was prepared, the vulnerability map was evaluated as a
second initial component of the risk map. The vulnerability map was derived by relying on the data
collected from GIS maps with information on detailed land-use types. As mentioned earlier, the
land-use map was prepared using very high resolution satellite images from WorldView-3. The
overall accuracy of classification was at 84.07%, which could be considered accurate as previously
illustrated in Table 3. The value of a criterion was assigned to each element at risk based on their

Figure 8. Ensemble machine-learning optimization result.
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importance in the study area. The majority of the catchment area is also covered by built-up land,
where most of the residential areas and commercial centres are located. After the highway, vulnera-
bility criteria value (5) was assigned to the built-up land. The second highest value of vulnerability
(4) in this area was allocated to the highway because it is located at a lower elevation compared with
the built-up land. In case of flood occurrence across the highway, loss of human lives and damage to
properties will occur across the highway. Furthermore, the rescue operation of emergency workers,
such as firefighters, police officers, and medical personnel, in the built-up land will be interrupted
and delayed. Therefore, on the basis of expert opinion, the highway was determined as the second
most vulnerable element at risk in the study area. The lower vulnerability value based on expert
opinion was assigned to the road (3) and recreation area (2). However, the lowest vulnerability value
(1) was allocated to areas covered by forest because they are densely vegetated, which reduces the
speed of runoff.

The final stage of this research aims to determine flood risk in the study area based on the quanti-
tative approach. Therefore, the flood hazard and vulnerability maps were combined to produce a
direct specific risk map using Eq. 12, and a flood risk map ranging from 0 to 1 was achieved, then
the final risk map was split into classified risk areas to improve visual interpretation. Hence, the
flood risk levels were clearly recognized. When classifying the flood risk map into categorical classes,
a quantile method was applied. This classifier is commonly recommended for this objective because
it uses mean values to create class breaks. Five risk levels, namely, no risk, low, moderate, high, and

Figure 9. Flood probability map for Damansara river catchment.
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very high, were distinguished using this approach (Figure 11). The percentages of each risk level in
the study area are also presented in Table 4. No risk and low-risk areas cover 42.8% of the entire
catchment. Moderate flood risk (30.2% of the catchment) is also depicted in regions close to the
high- and very high risk zones in the study area. The high areas cover 22.6% and very high risk areas
cover only 4.2% of the catchment.

5.3. Validation and field verification

The efficiency of the flood hazard map using the ensemble model was evaluated via receiver-operat-
ing characteristic (ROC) curve. The success rate and prediction rate curves were evaluated. The suc-
cess rate and prediction rate curves were produced using the flood training data set (70%) and the
flood validation data set (30%), respectively. The results are 89.7% and 78.9% for the success and
prediction rates, respectively (Figure 12).

Furthermore, multiple field visits were conducted to verify the derived results (Figure 13). The
flood location and condition was recorded during the fluvial flood events on 12 and 27 October
2014, 13 and 29 January 2015, and 18 February 2015. Expectedly, all the recorded inventory points
fell within the high-risk and very high risk zones, where the probability of flood was very high. This
process presents a good verification of the reliability of the applied model in the study area.

Figure 10. Flood hazard index map of Damansara river catchment.
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6. Conclusion

Flood occurrence is a serious and disastrous event that can happen practically anywhere. Therefore,
controlling the effects of flood is crucial, and can be performed via flood hazard and risk mapping.
Flood-prone areas must be identified to anticipate and analyse the spatial distribution of appropriate
flood management in the future. The research background indicates that various methods and tech-
niques have been applied to identify flood-susceptible areas. In the current research, the GIS-based
ensemble method of FR and SVM was used in the flood hazard mapping of the study area along

Figure 11. Flood risk levels of the study area.

Table 4. The area percentage of risk map for Damansara river catchment.

Code Class Area (m2) Area (km2) Percentage

1 Very low 14900472.19 14.90 12.75
2 Low 35307217.61 35.31 30.21
3 Moderate 35329035.80 35.33 30.23
4 High 26440455.04 26.44 22.63
5 Very high 4880703.38 4.88 4.18
Total 116857884.03 116.86 100%
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NKVE, and the location of the study area at Sungai Damansara is highly susceptible to flood occur-
rence. The Sungai Damansara catchment was used in the case study, and 13 indices were selected to
construct the evaluation system. In the case of topographical data, DEM was built from IFSAR
images with a pixel size of 5 m £ 5 m. Furthermore, LULC mapping, which was one of the effective
parameters of flooding, and vulnerability assessment were extracted from WorldView-3 satellite
imagery with 0.3 m spatial resolution. Each conditioning factor was optimized using the FR
approach and entered as input for SVM modelling. The correlation between each flood-related fac-
tor and flood location showed that areas with a low elevation, mild slope, and flat curvature exhibit
the highest probability of flood occurrence. The accuracy of the flood probability indices obtained
from this ensemble method was validated using AUC. The estimated success rate and prediction
rate of the applied method was at 89.7% and 78.9%, respectively. The most effective parameters that
would trigger flood occurrence in the study area were rainfall and flood inundation depth. Thus, it
was used as the triggering factor for flood hazard estimation. Rainfall data were derived from nine
rainfall stations in and around the study area within the last 5 years and flood inundation depth was
generated using hydraulic 2D HRS model. Furthermore, weights ranging from 1 to 5 were assigned
to the most vulnerable elements, which were selected based on precise land-use information. As the
main objective of this research, the risk level map was finally produced based on hazard and vulnera-
bility indices. The reliability of the results obtained from this study was also verified in the field.
Consequently, the ensemble method of FR and SVM can be efficiently used in flood hazard studies
because of its simple structure and robust performance. Furthermore, the FR model is an excellent
approach for ranking different classes of conditioning parameters. Therefore, each index map
derived from this study can be helpful to planners and decision makers for flood management and
planning in the study area.

Figure 12. Area under the curve for success rate (89.7%) and prediction rate (78.9%).
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