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Abstract 20 

The transition of thinking wastes as resources is likely to become one of the major challenges 21 

of this century. Because of its exceptionally high nitrogen (N) and phosphorous (P) 22 

concentration, human urine is particularly suitable to be processed for fertiliser production. In 23 

the present study, forward osmosis (FO) was employed to mine the P and N from human urine. 24 

Two Mg2+-fertilisers, i.e. MgSO4 and Mg(NO3)2 were selected as draw solution (DS) to 25 

dewater synthetic non-hydrolysed urine. In this process, the Mg2+ reverse salt flux (RSF) were 26 

used to recover P as struvite. Simultaneously, the urea was recovered in the DS as it is poorly 27 

rejected by the FO membrane. The results showed that, after 60% urine concentration, about 28 

40% of the P and 50% of the N were recovered. XRD and SEM – EDX analysis confirmed that 29 

P was precipitated as mineral struvite. If successfully tested on real urine, this process could be 30 

applied to treat the urine collected in urban areas e.g., high-rise building. After the filtration, 31 

the solid struvite could be sold for inland applications whereas the diluted fertiliser used for 32 

direct fertigation of green walls, parks or for urban farming. Finally, reduction in the load of 33 

N, P to the downstream wastewater treatment plant would also ensure a more sustainable urban 34 

water cycle. 35 

 36 

Keywords: Forward osmosis, Urine treatment, Phosphorous recovery, Nitrogen recovery, Fertilizer 37 

draw solution.  38 
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1. Introduction 39 

Sustainability in wastewater treatment is one of the significant  issues of this century (Xie et 40 

al. 2016). In particular, rethinking wastewater as a valuable resource is crucial in meeting 41 

adequate sanitation, water and fertilier demand to feed a growing population (Elser and Bennett 42 

2011, Xie et al. 2016). For these reasons, the efficient separation, treatment and reuse of human 43 

urine have gained increasing attention due to its inherent value potential (Maurer et al. 2006, 44 

Udert and Wächter 2012, Zhang et al. 2014). In fact, despite the low volumetric load of urine 45 

(i.e., less than 1% of the overall wastewater volume), it accounts for approximately 80% of the 46 

nitrogen (N), 50% of the phosphorus (P) and 55% of the potassium (K) load in most of the 47 

wastewater treatment plants (Liu et al. 2016, Maurer et al. 2006, Udert and Wächter 2012, 48 

Zhang et al. 2014). In particular, the amount of P contained in the urine is the single most 49 

significant source from urban areas (Zhang et al. 2014). Given the forecasted depletion of 50 

minable phosphorous rocks, reusing the P from waste streams could significantly enhance the 51 

sustainability of the urban water cycle (Xie et al. 2014, Xie et al. 2016). Additionally, with the 52 

increase in the size and densities of modern cities high-rise buildings are already becoming 53 

necessary. In these, urine separation and gravity-driven collection might become a feasible 54 

choice. After treatment, the recovered nutrients could be reused in several urban applications 55 

such as green walls, parks or urban farming. Simultaneously, the load of N, P to the downstream 56 

wastewater treatment plants would be reduced, possibly making their operation less energy 57 

demanding (Ishii and Boyer 2015, Kavvada et al. 2017). 58 

Despite the applicability of raw human urine for direct fertigation, its nutrients imbalance (i.e., 59 

mainly N), and low nutrients concentration (i.e., N: 0.9%, P: 0.06%, K: 0.3%) as well as 60 

possible contamination of unwanted xenobiotic (e.g. hormones and pharmaceuticals), makes 61 
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its large-scale application challenging. Besides, if transportation were required, then the costs 62 

of those above only, would offset the market value of urine as fertiliser (Maurer et al. 2006, 63 

Udert and Wächter 2012). Therefore, up-concentration of urine and/or selective nutrients 64 

recovery has recently attracted increased attention from the scientific community. Several 65 

technologies are currently studied to achieve these goals. Among them, nutrients precipitation 66 

as mineral fertiliser, or concentration as liquid fertiliser, have shown to be the most mature. 67 

While recovering P, K as solid fertiliser is generally performed via struvite or K-struvite 68 

precipitation (Etter et al. 2011, Wilsenach et al. 2007), recovering N, P, K as liquid fertiliser 69 

has shown to be more challenging. Among the technologies investigated, nitrification-70 

distillation (Udert and Wächter 2012), nanofiltration (NF) (Pronk et al. 2006), reverse osmosis 71 

(RO) (Maurer et al. 2006), adsorption (Tarpeh et al. 2017) and stripping (Tarpeh et al. 2018, 72 

Xu et al. 2017) were the most promising ones.  73 

However, despite the high potential of the nitrification-distillation process, at present, its costly 74 

operation makes its applicability limited (Fumasoli et al. 2016). Pressure-driven NF/RO are not 75 

often employed due to their unsatisfactory rejection of urea and ammonia (the most 76 

predominant compounds in human urine) as well as high capital and operational costs (Maurer 77 

et al. 2006, Zhang et al. 2014). While conventional ammonia stripping is high energy and 78 

chemical intensive, electrochemical stripping in combination with electrodialysis and 79 

membrane stripping might be a more feasible approach (Tarpeh et al. 2018). However, the 80 

production of chlorination by-products (e.g., ClO3
-, ClO4

-) would still be a significant drawback 81 

of mediated electro-oxidation of urine  (Zöllig et al. 2015). Finally, adsorption using ion 82 

exchange resins could be a useful technology to recover the N in the urine once the engineering 83 

questions about post-treatment of the eluent or eluate for pharmaceutical removal are 84 

addressed.  85 
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On the other hand, the process of P-recovery via struvite precipitation has been adequately 86 

addressed and understood, showing its cost-effectiveness, simple operation and safety in the 87 

final product (de Boer et al. 2018, Etter et al. 2011, Wilsenach et al. 2007, Xu et al. 2017). The 88 

downside of this process is that it does not alleviate the issue related to the large volume of 89 

human urine, and the recovery of both N and K is not addressed. Finally, this process also 90 

requires the addition of extra magnesium source to recover >90% of phosphorous, which comes 91 

at an additional cost (Maurer et al. 2006).  92 

With these premises, to achieve the ambitious goal of combining urine volume reduction with 93 

nutrients recovery, while maintaining low operational costs, the feasibility of using osmotically 94 

driven forward osmosis (FO) process was recently investigated (Zhang et al. 2014). The 95 

principle of FO relies on the natural water transport across a semi-permeable membrane from 96 

a low concentration solution (feed) to a higher one (draw) until the thermodynamic equilibrium 97 

is reached (Phuntsho et al. 2012). The advantages of FO consist of lower fouling propensity as 98 

well as possible lower energy demand, especially when there is no need for draw solution 99 

regeneration or further feed brine management (Van Der Bruggen and Luis 2015). In particular, 100 

the concept of fertiliser driven forward osmosis (FDFO) has shown to be a viable FO 101 

application to reclaim and reuse wastewater and impaired waters for agriculture application 102 

(Chekli et al. 2017, Valladares Linares et al. 2016, Van Der Bruggen and Luis 2015). However, 103 

the primary inherent drawback of this process was identified as the reverse draw solute 104 

diffusion (RSF). In fact, the RSF of the fertiliser draw solution to the feed can compromise the 105 

final quality of the brine (i.e., by exceeding the nutrients concentration standards for direct 106 

brine discharge) but also can cause an economic loss of valuable fertiliser. Moreover, in the 107 

context of urine dewatering via FO, if RO brine is selected as DS, the loss in rejection of small 108 

and uncharged compound (e.g. urea) can contaminate the diluted DS thereby jeopardising the 109 
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process (Liu et al. 2016, Zhang et al. 2014). Zhang et al. (Zhang et al. 2014) have already tried 110 

to apply FO to concentrate human urine, using RO brine as DS. Their study showed that urea 111 

is practically not rejected by the FO membrane, therefore, impeding a safe discharge of the 112 

diluted RO brine in the environment. 113 

We herewith present a novel FDFO concept for concentrating human urine, where both 114 

limitations of FO (i.e., RSF of the draw solutes and urea/NH3 rejection loss), are beneficial to 115 

recover both nitrogen and phosphorous from urine. In fact, in this study, the feasibility of using 116 

a Mg2+-based fertiliser draw solution to dewater fresh (i.e. non-hydrolysed) human urine is 117 

investigated. In this concept, the reverse solute diffusion will trigger P-recovery via struvite 118 

precipitation, while the rejection loss of urea/NH3 will enrich the Mg-fertiliser with valuable 119 

nutrients. At the same time, the final volume of urine will be reduced thereby improving the 120 

efficiency in downstream processes for N-recovery (e.g. ammonia stripping). This initial study 121 

will address the following: (1) Screening of suitable Mg2+-fertiliser draw solutions based on 122 

FO performance, (2) Comparison between experimental results and model-based predictions 123 

and, finally, (3) Critical analysis of the process efficiency and feasibility regarding 124 

nutrients/water recovery and waste volume reduction.  125 

 126 



7 

 

2. Materials and Methods 127 

2.1 Feed and draw solution 128 

 129 

Figure 1 Schematic diagram of the process. 130 

In Figure 1 the schematic representation of the system is displayed for a better understanding 131 

of the process. The synthetic fresh urine feed solution (FS) was prepared according to the recipe 132 

of Udert et al. (Udert et al. 2006), and its composition is displayed in   133 
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Table 1. Fresh urine was selected over stored urine because of several reason. Firstly, fresh 134 

urine has a about half the osmotic pressure compared to hydrolysed urine. This means that, 135 

theoretically, higher Jw and concentration can be achieved when fresh urine is chosen. Secondly 136 

the acidic pH of fresh urine (i.e. 5.5 - 6.5), caused by the presence of uric and oxalic acids, 137 

would likely reduce membrane scaling during the operation. Nevertheless, real urine is a very 138 

dynamic solution in which urea, if stored in non-sterile conditions, is hydrolysed to NH3/NH4
+ 139 

and carbonate. The urea hydrolisation process causes a rise in the pH to around 9 triggering the 140 

precipitation of Mg2+
 and Ca2+

 in the form of carbonates and phosphates (Maurer et al. 2006, 141 

Randall et al. 2016). Therefore, the experiments conducted in this study aim at validating the 142 

initial hypothesis but further investigations using real urine should be performed. MgSO4 and 143 

Mg(NO3)2 were finally selected as suitable Mg-fertiliser DS for this application. In fact, to our 144 

knowledge, the only other soluble Mg-fertilisers are MgCl2 and Mg(H2PO4)2. However, the 145 

high Cl2 concentration of the first makes it applicability as fertiliser limited and, for the second, 146 

the P-recovery as from the urine would likely be jeopardised by the PO4 RSF of Mg(H2PO4)2. 147 

Similarly, one intrinsic limitation of using Mg(NO3)2 is the RSF of NO3
- that could offset the 148 

urea/NH4
+-N gained from the feed rejection loss. Additionally, the high osmotic pressure of 149 

Mg(NO3)2 (i.e. 84 bars at 1 M) would ensure high water flux and urine up-concentration. Non 150 

Mg2+-based fertilisers could also be used if the ultimate target is urine concentration and N-151 

recovery. However, that is outside the scope of the present work. All chemicals used in this 152 

study were reagent grade and purchased from Sigma-Aldrich Australia. Draw and feed 153 

solutions were prepared by dissolving the salts in deionised (DI) water.  154 

  155 
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Table 1 Composition and characteristics of the synthetic (non-hydrolysed) urine feed solution(Udert et al. 156 

2006). *Calculated with OLI System Analyser. ** Based on Udert et al. (Udert et al. 2006). 157 

Composition       Concentration [g/L] Characteristics 

Urea 16.2 pH* 4.51 [-] 

NH4Cl 1.80 Osmotic Pressure* 13.4 [bar] 

Na2SO4 (anhydrous) 2.30 Alkalinity** 0.02 [M] 

NaH2PO4 (anhydrous) 2.90 Ionic Strength** 0.18 [M] 

KCl 4.20 TDS* 9.1 [g/L] 

NaCl 0.18    

 

 

2.2 Forward osmosis experimental set-up 158 

An FO set-up, similar to the one used in our previous study (Phuntsho et al. 2012), was 159 

employed in the present research. In particular, for the bench-scale experiments, commercially 160 

available thin-film composite (TFC) polyamide (PA) membranes (Toray Chemical Korea Inc., 161 

South Korea) were tested. Transport and structural parameters of the FO membranes (A, B and 162 

S values) were determined using both traditional pressure driven method (at 8 bars pressure) 163 

and the FO method proposed by Tiraferri et al. (Tiraferri et al. 2013). The results are displayed 164 

in  165 

  166 
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Table 2. The crossflow membrane unit consisted of an FO cell with channels dimension of 2.6 167 

cm width x 7.7 cm length x 0.3 cm depth, with an active membrane area of 20.02 cm2. The DS 168 

tank was placed on a digital scale connected to a computer to record the transported volume. A 169 

conductivity and pH meter (Hach, Germany) were connected to the feed tank to record the pH 170 

and conductivity of FS. Triplicates of each experiment were conducted. 171 

  172 
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Table 2 Key proprieties of the FO membranes and draw solutions used for this study. 173 

  Unit TFC 

Active layer [-] Polyamide 

Manufacturer [-] 

Toray Industry 

Inc. 

A [L.m-2.h-1.bar-1] 6.64 

BNaCl [L.m-2.h-1] 1.17 

BMgSO4 [L.m-2.h-1] 0.91 

BMg(NO3)2 [L.m-2.h-1] 3.58 

S [µm] 409 

DMgSO4 [m2.h-1] 1.70×10-6 

DMg(NO3)2 [m2.h-1] 3.31×10-6 

2.3 Modelling of water flux, reverse salt flux and achievable P-recovery 174 

To better understand and comment the experimental results, the water flux (𝑱𝒘 ), specific 175 

reverse salt flux (SRSF) have been modelled via the classical solution-diffusion model coupled 176 

with the diffusion-convection transport in the membrane support layer (Tang et al. 2010). 177 

Membrane pure water permeability (A) and the MgSO4 and Mg(NO3)2 salt permeability 178 

coefficients (i.e., BMgSO4, BMg(NO3)2)  were determined via equation 1 based on the 179 

corresponding water flux and RO rejection data (at 8 bar pressure) (Zhang et al. 2014). The 180 

diffusivity coefficients of MgSO4 (i.e., DMgSO4) and Mg(NO3)2 (i.e., DMg(NO3)2) have then been 181 

calculated using OLI Stream Analyzer software. The results are displayed in  182 

  183 
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Table 2. 184 

𝐵 =  
𝐽𝑤(1−𝑅)

𝑅
                                                                (1)         185 

The impact of the internal concentration polarisation (ICP), on the porous support layer of the 186 

FO membrane, needs to be considered to obtain a more realistic theoretical Jw and Js values. 187 

Since all the experiments have been carried out in FO mode (i.e., active layer (AL) facing the 188 

feed solution (FS)), equation two was used to predict the water flux (Tang et al. 2010, Zhang 189 

et al. 2014).  190 

𝐽𝑤 = 𝜎 𝐾𝑚 ln (
𝐴𝜋𝐷 + 𝐵𝑠

𝐴𝜋𝐹 + 𝐽𝑤 + 𝐵𝑠
)    (AL-facing FS)                                                    (2)         191 

Where σ is the reflection coefficient, assumed as unity (complete rejection of the solute),  𝐾𝑚 192 

is the mass transfer coefficient, of the selected DS, given by the ratio between the diffusivity 193 

of the salt and the structural parameter (S) of the membrane (i.e.𝐾𝑚 = 𝐷 𝑆⁄ ). The transport 194 

coefficients for water and solutes are expressed as A and Bs. Finally, 𝜋𝐷 and 𝜋𝐹 are the DS and 195 

FS bulk osmotic pressure, respectively. Assuming that the osmotic pressure of the DS follows 196 

the van’t Hoff equation, the reverse salt flux (𝐽𝑆) can be calculated using equation 3. Where β 197 

is the van’t Hoff coefficient (i.e., 2 for MgSO4 and 3 for Mg(NO3)2), Rg is the universal gas 198 

constant, and T is the absolute temperature (Tang et al. 2010). 199 

𝐽𝑆 = 
𝐵𝑠

𝐴∙𝛽𝑅𝑔𝑇
 𝐽𝑤                                                            (3)         200 

The specific reverse salt flux (SRSF) can then be calculated as SRSF = Js / Jw. 201 

The theoretical minimum Mg2+ dose to precipitate 99%, 90% or 80% of PO4
3- as struvite 202 

(ammonium magnesium phosphate hexahydrate = NH4MgPO4.6 H2O was calculated assuming 203 
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Mg2+/PO4
3- the molar ratio of 1.1 ± 0.1 mol (Etter et al. 2011). In fact, the theoretical molar 204 

Mg2+/PO4
3- the ratio of 1 mol often not enough to achieve a good P-recovery. Given the initial 205 

PO4
3- concentration in the synthetic urine the minimum required Mg2+ - SRSF was calculated 206 

via equation 4. The variable in this equation is the feed up-concentration factor. The FS 207 

concentration factor defines the transported water volume, which determines the amount of 208 

Mg2+ supplied to the urine during the FO operation. 209 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑀𝑔2+ − 𝑆𝑅𝑆𝐹 [
𝑔
𝑀𝑔2+

𝐿
] =

(𝑀𝑔𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑
2+ −𝑀𝑔𝐼𝑛 𝑢𝑟𝑖𝑛𝑒

2+ )

[1−(
𝑉𝐹𝑒𝑒𝑑

𝐹𝑒𝑒𝑑𝑈𝑝−𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
)]

                              (4) 210 

By substituting the required stoichiometric Mg2+ on equation 4 (𝑀𝑔𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑) with the amount 211 

of magnesium already present in the urine (𝑀𝑔𝐼𝑛 𝑢𝑟𝑖𝑛𝑒), and considering 1L of urine, the 212 

minimum Mg2+-SRSF required to achieve PO4
3- recovery of 99%, 90% and 80% was 213 

calculated. In Figure S2 the minimum Mg2+ - SRSF is plotted as a function of the feed up-214 

concentration. From this figure, it can be seen that above 50% FS up-concentration, there is 215 

little variation in the required SRSF. That is because after 2 times FS up-concentration already 216 

50% of the volume is moved from the FS to the DS. 217 

2.4 Experimental protocol and performance evaluation 218 

Given this required Mg2+-SRSF, short-term experiments, with 1 M MgSO4 and 1 M Mg(NO3)2 219 

as DS and DI water as FS were performed. Water flux and Mg2+ - SRSF were measured in each 220 

experiment.  221 

For the experiments with synthetic urine as FS, the concentration of MgSO4 was increased to 222 

2 M to be able to reach at least 50% FS concentration (Figure S1).  Also, both FS and DS were 223 

acidified to a pH of 4, with a 4 M HCl solution, to avoid precipitation of Mg2+ salts on the 224 
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surface of the membrane. This acidification step, however, might not be necessary using real 225 

fresh urine due to the presence of organic acids (mostly uric acid). Yet, this has to be further 226 

investigated. Water flux, urine volume reduction were then recorded by weight measurements. 227 

Feed and draw samples were collected over time to measure urea and NH3 rejection as well as 228 

the magnesium RSF. After the FO filtration, the pH of the concentrated FS was increased to 229 

9.5, to trigger the mineral precipitation, by slowly adding 4 M NaOH solution. This step is not 230 

necessary when real urine is used since the remaining urea in the feed would spontaneously 231 

hydrolyse causing pH to rise to 9.5. Afterwards, the FS was then stirred for 2 hours and later 232 

filtered using a 0.45 µm pore-size filter (Merck, Millipore). 233 

Additionally, PO4
3- was measured in the feed (1) at the beginning of the experiment (2) after 234 

the FO concentration and (3) after mineral precipitation and filtration to calculate the P-235 

recovery. 236 

2.5 Analytical methods 237 

The reverse flux of magnesium was measured using microwave plasma atomic emission 238 

spectrometry (MP-AES) (Agilent Technologies, Australia), while sulphate (𝑆𝑂4
2− ), nitrate 239 

(𝑁𝑂3
− ) and orthophosphate (𝑃𝑂4

3− ) anions were measured via ionic chromatography (IC 240 

Thermo Fisher Scientific, Australia). The forward flux of ammonium (𝑁𝐻4
+) and urea was 241 

measured via spectrophotometer, at 340 nm wavelength, using urea/ammonium Megazime kit. 242 

The crystals produced after the FO process were analysed by X-Ray diffraction (XRD) 243 

(Siemens D5000), over a Bragg angles ranging from 6° to 60° (Cu Kα, λ=1.54059 Å), and 244 

energy-dispersive X-ray spectroscopy (EDX) (Zeiss Supra 55VP, Carl Zeiss AG, Germany). 245 

The surface of the scaled membrane was analysed by scanning electron microscopy (SEM, 246 

Zeiss Supra 55VP, Carl Zeiss AG, Germany). Samples were firstly dried under air purging and 247 
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then lightly coated with Au/Pd. The SEM imaging was performed at an accelerating voltage of 248 

10 kV at different magnifications and at various points.  249 
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3. Results and Discussion 250 

3.1 Magnesium fertilisers screening and performance prediction 251 

As previously discussed, the initial criteria for the selection of suitable DS where that the 252 

chosen fertilisers should contain Mg2+ in their chemical formula while being fully water-253 

soluble and lacking a phosphate group. Only two fertilisers were selected as DS for this 254 

application, i.e., MgSO4 and Mg(NO3)2. Firstly, the osmotic pressure of the two DS was 255 

investigated. Between the two, Mg(NO3)2 generates by far the highest osmotic pressure at the 256 

same concentration (Figure S1) while having a higher diffusivity coefficient (  257 
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Table 1) (i.e., inducing less dilutive ICP). This means that a concentrated Mg(NO3)2 DS, could 258 

potentially achieve greater urine volume reduction with higher water flux compared to MgSO4. 259 

The higher water flux was confirmed experimentally (Figure 2). On the other hand, it has to be 260 

verified that the RSF of NO3-N from Mg(NO3)2 does not offset the nitrogen recovered from the 261 

rejection loss of urea-N/NH3-N. Overall, Mg(NO3)2 showed almost three times the water flux 262 

of MgSO4 at same concentrations. Higher SRSF were also measured with Mg(NO3)2, probably 263 

due to its higher diffusivity. 264 

After testing the DS with DI water as FS, the experimental results were then used to validate 265 

the model described in the previous section. Having a precise model, able to predict the 266 

performance of the selected DS, is important when it comes to developing an economic analysis 267 

of the FDFO under different operating conditions. By looking at Figure 2, it can be seen that 268 

the model shows good agreement with the Jw and SRSF measured during the bench-scale study. 269 

Given this good agreement, the developed model was then applied to predict the water flux of 270 

long-term tests using fresh urine as FS.  271 
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 272 

Figure 2. Experimental Jw and SRSF, with 1 M MgSO4 or Mg(NO3)2 as DS and DI-water as FS (columns) 273 

are plotted against the Jw and SRSF predicted using equations 2 and 3 (symbols). The input data for the 274 

modelling are displayed in  275 

  276 



19 

 

Table 2. FO operational conditions: Commercial TFC PA membrane, DS concentration 1 M, DS and FS 277 

volume 1 L, cross-flow velocity 8.5 cm/s; temperature 25 ± 1 °C; membrane orientation: AL - FS. 278 

3.2 Experiments with fresh urine as feed solution 279 

Once the model was validated with DI water as FS, long-term tests with fresh synthetic urine 280 

were conducted to measure Jw, FS up-concentration, Mg2+ - SRSF, P and N recovery data. The 281 

DS concentration used for these tests were: 2 M MgSO4 and 1 M Mg(NO3)2. Feed up-282 

concentration of 60% was targeted for both fertilisers.  283 

Starting with the effectiveness of the model when urine is used as FS, Figure 3 shows that the 284 

model generally well predicted the Jw, especially when Mg(NO3)2 is used. However, for 285 

MgSO4, after approximately 40% feed up-concentration the measured flux is higher than the 286 

modelled one. A possible explanation is the loss in osmotic pressure of the FS due to the urea 287 

movement to the DS, thereby increasing the osmotic pressure difference (Δπ) between FS and 288 

DS. The loss in osmotic pressure due to urea transport might be particularly evident for MgSO4 289 

due to its longer experimental time (due to the average lower water flux). Previous findings by 290 

Zhang et al. (Zhang et al. 2014) have already noticed this difference between experimental and 291 

modelled water flux during concentration of fresh synthetic urine with NaCl as DS. Another 292 

explanation could be due to the stripping of NH3 during the experiment, due to the relatively 293 

fast feed recirculation rate (i.e. 300 mL/min). However, ammonia volatilisation should not 294 

significantly affect the system since at pH ≤ 5, the equilibrium 𝑁𝐻3
𝑝𝐾𝑎=9.25
⇔     𝑁𝐻4

+ should be 295 

heavily shifted on 𝑁𝐻4
+  which is non-volatile. Besides, the NH3/NH4

+ concentration is 296 

relatively low comapred to urea. Finally, 60% FS volume reduction was achieved without any 297 

sign of membrane damage. In fact, decrease a in the water flux was mainly due to the increase 298 

in the osmotic pressure of urine (from about 11-13 bar to around 30 bar) and the decrease in 299 
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the osmotic pressure of the DS (due to dilution). Flushing the membrane with DI-water was 300 

generally enough to clean the membrane surface and restore the initial performances (Figure 301 

S3). Nonetheless, experiments having real urine as FS are necessary to better assess membrane 302 

fouling in this process. 303 

Overall, the model showed an acceptable agreement with the measured data and the 304 

experimental tests confirmed that at least 60% FS concentration was achievable without any 305 

sign of scaling on the membrane. 306 

   307 

Figure 3: Jw and FS up-concentration factor for the long-term FO experiment using 1 L of synthetic FU as 308 

feed and 1 L of 2 M MgSO4 (B) and 1 L of 1 M Mg(NO3)2 (A) as DS. 309 

3.3 Mineral phosphorous recovery 310 

Once the targeted FS concentration was reached, the pH of the feed was increased to 9.5 via 311 

the addition of a 4 M NaOH solution that resulted in a sudden mineral formation (Xie et al. 312 

2014). The FS was then left to stir at 500 rpm for 2 hours to allow full nucleation and crystals 313 

growth. This alkalinisation step expected to be unnecessary when real urine is used. In fact, the 314 

enzymatic hydrolysis of urea, which has spontaneously happens in real urine, would itself 315 

increase the pH up to 8.5 - 9.5 (Mehta et al. 2015, Randall et al. 2016, Udert et al. 2003). In 316 
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this process, the urea concentration after the FDFO process is about the same as in the diluted 317 

urine (i.e. 50% urea removal was achieved but also 60% volume reduction). Therefore, it is 318 

expected that, after the urea hydrolysation process, the concentrated urine would yield a similar 319 

final pH. Phosphorous and magnesium concentrations were measured before and after the 320 

alkalinisation of the feed, and the insoluble minerals produced were analysed via XRD and 321 

SEM - EDX. Figure 4 shows the amount of Mg2+ and PO4
3- before and after the mineral 322 

precipitation. Both draw solutions achieved around 40% PO4
3- removal despite the different 323 

DS molar concentrations and water fluxes. All the magnesium that diffused through the 324 

membrane during the process was removed after precipitation.  325 

 326 

 327 

 328 

Figure 4 Magnesium and phosphorous in the urine before the FO, after the FO and after the NaOH addition 329 

in the concentrated urine. Figure 4 (A) refers to the tests with 1 M Mg(NO3)2 and Figure 4 (B) to the ones 330 

with 2 M MgSO4. 331 

After desiccating at room temperature, the solids obtained from the alkalinised FS, SEM - EDX 332 

and XRD were used to identify the elemental composition and structure of the crystals. Figure 333 

5 shows the XRD spectrum of the precipitates while Figure 6 the SEM - EDX. In the XRD, the 334 
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peaks of the sample match quite well with the standard peaks of struvite, according to the 335 

literature, while the EDX shows that the molar ratio of Mg and P is almost 1:1 (Xie et al. 2014, 336 

Xu et al. 2015). The crystals obtained with both fertilisers were identical at the SEM – EDX 337 

and XRD spectrum. 338 

Finally, from these results, it can be concluded that almost all the Mg2+ that moved to the FS 339 

during the filtration has reacted with the NH4
+ and the PO4

3- in the urine to form insoluble 340 

struvite crystals. At 60% FS concertation, the RSF of Mg2+ was enough to recover 40% of the 341 

PO4
3- in the urine. 342 

 343 

Figure 5 XRD spectrum of the precipitates obtained from the concentrated FS after FO filtration. The 344 

solution pH was further increased to 9.5 by addition 4 M NaOH. Continuous stirring was applied for two 345 

h, and crystals were recovered and dried in a desiccator at room temperature. 346 
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 347 

Figure 6 SEM picture and EDX spectrum of the precipitates obtained after the filtration of the concentrated 348 

urine. 349 

3.4 Nitrogen recovery 350 

Finally, during the experiments, the concentration of urea and NH3 were measured in the DS 351 

while NO3
- in the FS (when Mg(NO3)2 was used as DS). Given the absence of charge and the 352 

low molecular weight of urea, it was hypostatize that the FO membrane could not well reject 353 

it, thereby leading to an enrichment of the fertiliser DS with extra nitrogen (Cath et al. 2005).  354 

The results, plotted in Figure 7, showed that this hypothesis was, at least partially, correct. In 355 

fact, at 60% FS concentration, up to 50% of the urea was recovered in the process. In particular, 356 

the flux of urea to the DS was found to be much higher than the RSF of NO3
- when Mg(NO3)2 357 

was used. 358 
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 359 

Figure 7 The histograms on the left y-axis show the total amount of urea-N “harvested” from the urine DS 360 

and the nitrate –N lost as reverse salt flux. On the right y-axis, the overall complete nitrogen recovery is 361 

plotted. Figure 7 (A) refers to the tests with 1 M Mg(NO3)2 and Figure 7 (B) to the ones with 2 M MgSO4. 362 

 363 

To conclude, at this stage, not all the P and N in the urine were recovered. However, the process 364 

still can be further optimised. For instance, the effect of transmembrane pressure (TMP) in the 365 

RSF and urea rejection could also be investigated. Additionally, the performances of real urine 366 

should be investigated as it will likely behave differently due to its very heterogeneous 367 

concentration. Nonetheless, the simplicity and low cost of the process could incentivise further 368 

investigations to reach higher P, N recovery. 369 

 370 

4 Conclusions 371 

This study investigated a novel application for FO to concentrate human urine while 372 

simultaneously recovering the phosphorous and nitrogen in it. Nitrogen recovery is achieved 373 

by urea transport over the FO membrane, enriching the fertiliser draw solution with urea. 374 

Simultaneously, phosphorous recovery is obtained on the feed side of the FO membrane by P-375 
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precipitation as struvite due to the RSF of Mg2+. In this process, the inherent limitations of FO 376 

(i.e. RSF and poor urea/NH3 rejection) are desirable and contribute to the simultaneous 377 

recovery of P/N from the urine, while reducing its volume. Process modelling, as well as 378 

experimental tests, were used to understand better and critically analyse the results. Two Mg2+-379 

fertilisers (i.e., MgSO4 and Mg(NO3)2) were identified as the most promising for this 380 

application. Among the two Mg(NO3)2 displayed a much higher water flux and osmotic 381 

pressure, achieving equal P and N recoveries as MgSO4. Overall, the FDFO process enables to 382 

obtain, simultaneously, the following outcomes: 383 

 Reducing the volume of urine by more than 60% thereby possibly improving the 384 

efficiency in downstream processes for N-recovery (e.g. ammonia stripping), 385 

 Recovering 50% of the nitrogen in the urine, 386 

 Recovering 40% of the phosphorous as struvite fertiliser.  387 

To conclude, this low cost and robust treatment process enable a unique way to integrate urine 388 

volume reduction and P and N recovery.   The economic feasibility of this technology, to 389 

produce fertiliser for green walls, parks or urban farming applications, should be further 390 

investigated in view of enhancing the sustainability of the urban water cycle.391 
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