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This paper explores the wind noise reduction mechanism of porous microphone windscreens by 

investigating the spatial correlation of wind noise. The spatial structure of the wind noise signal is 

studied by calculating the magnitude squared coherence of the pressure measured with two 

microphones at various separation distances. It is found that the coherence of the two signals 

decreases with the separation distance and the wind noise is spatially correlated only within a certain 

distance less than the turbulence wavelength. Comparing the spatial coherence between the wind 

noise outside and inside a porous microphone windscreen with that without the windscreen shows that 

the coherence is reduced significantly in a certain frequency range where the windscreen diameter is 

approximately 2 to 4 times of the turbulence wavelengths, which corresponds to the most effective 

wind noise reduction frequency range of the windscreen. Experiment results with a fan are presented 

to support the simulations. It is concluded that the wind noise reduction mechanism of porous 

microphone windscreens is related to the spatial decorrelation effect on the wind noise signals 

provided by the porous material and structure.  
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1. Introduction 

Wind noise due to the pressure fluctuations on microphones is inevitable for acoustic 

measurements with flow presence, such as in outdoor atmosphere and in the ventilation system in 

ducts (Mcguinn et al., 1997; Raspet and Webster, 2015). Previous research shows that the fluctuation 

wake due to the interaction between microphone and flow is the dominant wind noise source for 

indoor low-turbulence conditions, whereas the dominant source of pressure fluctuations at the 

microphone in outdoor atmosphere is the intrinsic turbulence in the incoming flow (Morgan and 

Raspet, 1992; Strasberg, 1988). Various methods have been explored in the past to attenuate the wind 

noise, among which porous microphone windscreens are widely used (Raspet et al., 2006). This paper 

is devoted to understanding the wind noise reduction mechanism of porous microphone windscreens.  

Porous microphone windscreens with different diameter have been extensively studied 

experimentally in both indoor and outdoor environments. Wang et al. (2012) measured the self-noise 

of microphone windscreens in an anechoic wind tunnel and found that the wind noise is generally 

more effectively attenuated by windscreens with larger diameters, but windscreens with diameter 60 

mm and 90 mm showed similar performance. Lin et al. (2014) measured the wind noise reduction of 

different types of windscreens in the low frequency range from 20 Hz to 200 Hz, finding that the 

noise reduction of a single layer fabric windscreen (40 cm diameter) is much better than the spherical 

windscreens (7 cm and 20 cm diameter) and double layer (30 cm and 40 cm diameter) windscreens 

for wind speeds above 2.0 m/s.  

In addition to these experimental studies, different theoretical models have been proposed to 

investigate the performance of microphone windscreens. Phelps (1938) calculated the pressure inside 

microphone windscreens by averaging the pressure fluctuations on the windscreen surface based on 

the assumption that the air flow is irrotational and the windscreen is a rigid sphere. Similarly, with the 

smooth rigid sphere model, Zheng and Tan (2003) investigated the Reynolds number effects on the 

wind noise reduction performance of spherical microphone windscreens. However, the real 

microphone windscreens are mostly made of porous materials and far from the smooth rigid sphere. 

To narrow the gap between the smooth rigid sphere model and the real windscreens, Xu et al. (2011) 

modelled the windscreen as porous materials in numerical simulations and investigated the effect of 

the windscreen shape on the wind noise reduction performance. They found that the horizontal ellipse 

windscreen with medium flow resistivity provided the most effect wind noise reduction.  

Using a different approach, Van Den Berg (2006) analysed the measured wind noise inside 

microphone windscreens and showed that the windscreen could be considered as a first order low pass 

filter for pressure variations due to atmospheric turbulence. Raspet et al. (2014) proposed to calculate 

the pressure inside porous windscreens with the pressure averaged over the windscreen surface which 

is weighted with the correlation length. The longitudinal and transversal correlation lengths were 

measured with a pressure tube array inside a 180 mm porous microphone windscreen, and results 
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show that the predicted pressure level at the centre of the windscreen is lower than the measured wind 

noise level (Raspet et al., 2014).  

Similar to porous microphone windscreens, spatial filters and wind fences with different porosity 

were used to attenuate the infrasonic wind noise outdoors (Abbott et al., 2015; Hedlin and Raspet, 

2003). Abbot and Raspet (2015) developed a calculation model to predict the wind noise below 50 Hz 

in a 2.9 m high and 5.0 m diameter wind fence, and showed that the low frequency wind noise is only 

due to turbulence-shear interaction in the undisturbed region while the higher frequency wind noise is 

due to a combination of the turbulence-turbulence and turbulence-shear interactions inside the 

enclosure and the turbulence interactions on the surface of the enclosure.  

Most of the above studies focused on the wind noise inside the windscreen measured with a single 

microphone, without considering the spatial structure of the wind noise. Recent wind noise 

measurements with microphone arrays showed that the wind noise remains somewhat stable over a 

finite distance and time (Bass et al., 1995). Shields (2005) employed a three-axis orthogonal 

microphone array with ten sensors in each arm to measure the outdoor wind noise and studied the 

time domain correlation as a function of sensor separation in the frequency range from 0.05 Hz to 50 

Hz. The results show that the correlation varies as e3.2Xcos(2X) in the downwind direction and 

decays as e7Y in the crosswind direction, where X and Y are the separation in wavelengths in the 

downwind and crosswind direction, respectively.  

Wilson et al. (2007) measured the outdoor wind noise with a 7×7 planar horizontal microphone 

array and found that the wind noise is substantially correlated for the microphone separations smaller 

than the size of the turbulent eddies while the wind noise becomes nearly uncorrelated when the 

microphone separation increases beyond the eddy size. In a further study, Wilson and White (2010) 

compared the spatial and temporal structure of wind noise and acoustic signal measured with the 

planar microphone array using the wavelet cross spectrum method and formulated a Gaussian-

mixture-model classifier to distinguish between blasting sounds, music and wind noise.   

This paper investigates the wind noise reduction mechanism of porous microphone windscreens 

by examining the effect of the porous windscreens on the spatial structure of wind noise (signal). The 

spatial structure of the wind noise is studied by using the magnitude square coherence of the pressure 

measured with two microphones at various separation distances first, and then the wind noise 

reduction with porous microphone windscreens is investigated. Finally, the spatial coherence between 

the wind noise outside and inside the porous windscreens are calculated to investigate the wind noise 

reduction mechanism. Both numerical and experimental results show that the porous microphone 

windscreens are more effective in reducing wind noise in a certain frequency range where the spatial 

structure of wind noise is decorrelated by the porous windscreen. 
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2. Simulation model 

The diagram of the simulation model is shown in Fig. 1, where a uniform air flow with mean 

speed U enters the computation domain from the right boundary. The computation domain is 34D in 

the downwind direction and 10D in the crosswind direction. Five solid cylinders are placed upstream 

to generate turbulence. The diameter and the interval between cylinders are both D and the solid 

cylinder array is 4D from the flow inlet boundary. Two sets of simulations are performed.  
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Fig. 1. Diagram of the simulation model (a) without and (b) with microphone windscreen.  

 

In the first set of simulations in Fig. 1(a), there is no microphone windscreen and the pressure 

fluctuations at two microphone locations M1 and M2 with various separation distances are monitored 

to study the spatial structure of wind noise. The fluid flow is described by the Navier-Stokes equations 

for viscous incompressible flow (Currie, 2013), 
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where u is the velocity, p is the pressure,  is the fluid density and  is the viscosity of the fluid.  

In the second set of simulations in Fig. 1(b), a microphone windscreen of diameter D0 (grey circle 

in the figure) is placed 10D from the upstream solid cylinder array. The pressure fluctuations outside 

(at position M1) and inside (at position M2) the microphone windscreen are recorded and compared 

with that without windscreen to investigate the effect of the microphone windscreen on the spatial 

structure of the wind noise. The microphone windscreen is modelled as porous medium, inside which 

the fluid flow is governed by the continuity equation and the momentum conservation equation 

proposed by Nithiarasu et al. (Nithiarasu et al., 1997),  
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where  is the porosity of the porous medium, K is the permeability of the porous medium, and C is 

the inertial coefficient.  
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Equations (1) to (4) were solved in FLUENT 16.0 with the boundary conditions of velocity and 

stress continuity at the windscreen surface. The models were built, and meshed in ANSYS 

Workbench 16.0, and simulated in ANSYS FLUENT 16.0. In the simulations, the boundary condition 

of the flow inlet was set to “velocity inlet”, the output boundary condition was set to “pressure outlet”, 

the upper and lower boundaries were set as “wall”, and the microphone windscreen is modelled as 

“porous media zone”. In the simulations, the diameter of the upstream cylinders was D = 50 mm. The 

permeability and inertial coefficients were set as K = 10-7 m2 and C = 50 m-1, respectively. For each 

simulation, the time history of velocity and pressure fluctuations at the monitoring location was 

recorded for 5 s with a sampling rate of 10 kHz.  

To investigate the spatial structure of the wind noise, the Magnitude Squared Coherence (MSC) 

between the pressure fluctuations recorded at M1 and M2 were calculated (Carter et al., 1973), 
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where 12(f) is the cross spectral density, 11(f) and 22(f)  are the auto spectral density at frequency f. 

To quantitatively examine the wind noise reduction performance of the windscreens, the Wind Noise 

Reduction (WNR) are defined as (Abbott et al., 2015) 
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where Pws(f) and P0(f)  are the pressure Power Spectral Density (PSD) with and without windscreen at 

frequency f, respectively.  

 

3. Simulations 

3.1 Spatial structure of the wind noise 

In the first set of simulations in Fig. 1(a) where no microphone windscreen is present, the 

microphone location M1 is fixed and M2 is moved to change the separation distance d from 30 mm to 

90 mm with a step of 15 mm. The obtained pressure PSD at location M1 are shown in Fig. 2(a) at 

various wind speeds from 2 m/s to 14 m/s, and the wind noise is almost flat in the low frequency 

range while decays rapidly in higher frequency range above 200 Hz. The wind noise increases with 

the mean wind speed but the rate of noise level change decreases with growing velocity. These two 

observations are consistent with the wind noise spectra measured in a small anechoic wind tunnel by 

Alamshah et al. (2015).  
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                                         (a)                                                                            (b) 

Fig. 2. (a) The Pressure Spectral Density (PSD) as a function of frequency and (b) the Magnitude 

Squared Coherence (MSC) as a function of the ratio of the separation distance (fixed to 30 mm) to 

turbulence wavelength (the turbulence wavelength  is the variable for the horizontal axis) for the 

wind noise at different wind speeds  

 

To examine the spatial structure of the wind noise, the MSC between the pressure fluctuations at 

M1 and M2 are calculated and illustrated in Fig. 2(b) as a function of the separation distance to the 

turbulence wavelength ratio (d/), where the separation distance d is fixed at 30 mm. The turbulence 

wavelength is a parameter that is used to characterise the length scale of the turbulent eddies, which 

can be calculated by  = U/f where U is the mean wind speed and f is frequency. A larger turbulence 

wavelength corresponds to turbulent eddies with larger size. It is also proportional to the inverse of 

frequency, and large turbulence wavelength corresponds to low frequency 

Figure 2(b) shows that when the separation distance is smaller than the turbulence wavelength (i.e. 

d/ < 1), the wind noise at location M1 and M2 are coherent, whereas when the separation distance is 

larger than the turbulence wavelength (i.e. d/ > 1), the wind noise becomes incoherent. This is 

reasonable because when the turbulent eddy size is smaller than the separation distance, the 

instantaneous pressure recorded at location M1 and M2 come from different eddies, hence the 

pressure signals are incoherent. In contrast, when the turbulent eddy size is larger than the separation 

distance, the instantaneous pressure at location M1 and M2 are caused by the same eddy, therefore the 

pressure signals are coherent. It can also be observed from Fig. 2(b) that the MSC at different wind 

speeds are similar when the turbulence wavelength is larger than the separation distance (i.e. d/< 1).  

The MSC as a function of the separation distance to wavelength ratio for various separation 

distances are compared in Fig. 3 for wind speeds U = 4 m/s and U = 10 m/s, where the variable along 

the horizontal axis is the turbulence wavelength . Figure 3 shows that the pressure at M1 and M2 are 

incoherent when the separation distance is larger than the turbulence wavelength (i.e. d/ > 1) 
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regardless of the separation distance between microphones. When the turbulence wavelength is larger 

than the separation distance, the pressure at M1 and M2 are coherent, however the coherence 

decreases with increasing separation distance, which indicates that large eddies decay with spatial 

distance as they are advected downstream by the mean flow.  

 

  

                                         (a)                                                                            (b) 

Fig. 3. The Magnitude Squared Coherence (MSC) as a function of the ratio of the separation distance 

to turbulence wavelength (the turbulence wavelength  is the variable for the horizontal axis) for 

various separation distance for the wind noise at wind speed (a) U = 4 m/s and (b) U = 10 m/s.  

 

3.2 Wind noise reduction by porous microphone windscreens 

To investigate the wind noise reduction performance of the porous microphone windscreens with 

different diameters at various wind speeds, the pressure inside the porous windscreens (M2 in Fig. 

1(b)) is simulated and compared with that when the windscreen is absent. The WNR as a function of 

frequency for a 90 mm porous windscreen is illustrated in Fig. 4(a) for various wind speeds, which 

shows that the porous windscreen attenuate the wind noise more effectively in a certain frequency 

range and the centre frequency of this range increases with wind speed. The WNR of porous 

windscreens with different diameters are compared in Fig. 4(b) at the wind speed U = 4 m/s. Similarly, 

the wind noise is the more effectively reduced in a certain frequency range which moves to lower 

frequency region with increasing windscreen diameter.  
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                                         (a)                                                                            (b) 

Fig. 4. The Wind Noise Reduction (WNR) as a function of frequency for (a) 90 mm windscreen at 

various wind speeds and (b) windscreens with different diameters for the wind noise at wind speed U 

= 4 m/s.  

 

Figure 5 shows the WNR as a function of the windscreen diameter to turbulence wavelength ratio 

(D0/), where the WNR tends to form a single curve and the porous windscreen is most effective in 

wind noise reduction when the windscreen diameter is approximately 2 to 4 times of the turbulence 

wavelengths (2 < D0/ < 4) regardless of the wind speed and windscreen diameter. When the 

turbulence wavelength is much larger than the windscreen diameter (D0/ < 0.1), the porous 

windscreen has almost no effect in wind noise reduction. With the turbulence wavelength increasing, 

the wind noise reduction first increases and then decreases after reaching the maximum. When the 

turbulence wavelength is much smaller than the windscreen diameter (D0/ > 10), the wind noise 

reduction approaches zero again.  

  

                                         (a)                                                                            (b) 
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Fig. 5. The Wind Noise Reduction (WNR) as a function of ration of the windscreen diameter to 

turbulence wavelength (the turbulence wavelength  is the variable for the horizontal axis)  for (a) a 

90 mm windscreen at various wind speeds and (b) windscreens with different diameters for the wind 

noise at wind speed U = 4 m/s.  

 

To understand the mechanism of the wind noise reduction by the porous microphone windscreen 

and the existence of this effective frequency range, the MSC of the pressure outside and inside the 90 

mm porous microphone windscreen (M1 and M2 in Fig. 1(b)) is calculated and compared with that 

when the windscreen is absent. The pressure PSD and MSC in Fig. 6 show that the pressure PSD is 

reduced significantly in the frequency range between 200 Hz to 600 Hz. This can be more clearly 

observed in Figs. 6(c) and (d), where the WNR and MSC difference as a function of the windscreen 

diameter to turbulence wavelength ratio (D0/) are shown respectively. Figure 6(d) shows that 

compared to the MSC without the porous windscreen, the MSC with the windscreen is reduced 

significantly when the windscreen diameter is approximately 2 to 4 times of turbulence wavelength (2 

< D0/ < 4), which corresponds to the most effect wind noise reduction frequency range in Fig. 6(c).  

This observation indicates the mechanism of the wind noise reduction by porous microphone 

windscreens is related to the spatial deccorelation provided by the porous material and structure. 

When the turbulence wavelength is much larger than the windscreen, the wind noise is coherent no 

matter whether the windscreen is present or not, there is barely any reduction in wind noise. When the 

diameter of the windscreen is between 2 to 4 times of the turbulence wavelength (2 < D0/ < 4), the 

spatial structure of wind noise is docorrelated by the windscreen, the windscreen is most effective in 

wind noise reduction in this frequency range. When the turbulence wavelength is much smaller than 

the windscreen, the wind noise itself is incoherent and the windscreen is ineffective.  

  

                                        (a)                                                                            (b) 
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                                        (c)                                                                            (d) 

Fig. 6. (a) The pressure Power Spectral Density (PSD) and (b) the Magnitude Squared Coherence 

(MSC) as a function of frequency, (c) the Wind Noise Reduction (WNR), and (d) the MSC difference 

(MSC) as a function of the ratio of the windscreen diameter (90 mm) to the turbulence wavelength 

(the turbulence wavelength  is the variable for the horizontal axis) for the wind noise at wind speed 

U = 10 m/s.  

 

The simulation results show that the wind noise level increases with the wind speed and the wind 

noise is spatially coherent at low frequency range where the turbulence wavelength is larger than the 

separation distance, but the coherence decreases with the separation distance. The porous microphone 

windscreens are more effective in reducing wind noise in the frequency range where the windscreen 

diameter is approximately 2 to 4 times of the turbulence wavelength. The wind noise reduction 

mechanism of the porous microphone windscreen seems related to the decorrelation of the spatial 

structure of wind noise. The spatial decorrelation is due to the viscous and inertial forces introduced 

by the porous microphone windscreen, which are shown as the third and fourth terms on the right side 

of Eq. (4). How is wind noise reduced by the windscreens, how does the spatial decorrelation happen 

and what is the relationship to the viscous and inertial forces are still not clear, which will be 

investigated in the future.  

 

4. Experiments 

To verify the reliability of the simulations, experiments were performed with a fan in a quiet 

small meeting room, as shown in Fig. 7(a). The fan and the microphone were approximately 0.8 m 

above the floor, with a separation distance of 0.5 m. The wind noise was measured with two B&K 

Type 4189 prepolarized free field 1/2'' microphones both equipped with a B&K ZC0032 preamlifier, 

which were connected to a two channel B&K Type 2270 Hand-held Analyser. The system was 

calibrated with a B&K Type 4231 calibrator. The wind noise reduction by spherical porous 
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microphone windscreens with different diameters was measured in the experiments. The 

arrangements of the microphones without and with a 90 mm porous microphone windscreen are 

shown in Fig. 7(b) and (c), respectively.  

 

 

Fig. 7. (a) The experimental setup and the microphone locations (b) without and (c) with a 90 mm 

windscreen with a porosity of 40 PPI.  

 

In the experiments, the fan ran at its highest speed and the mean wind speed around the 

microphone was about 3.8 m/s. The wind noise was first measured by a bare microphone at M1 inside 

the air flow and the background noise was measured by placing the microphone out of the flow but at 

the same distance from the fan. The wind noise and the background noise spectra of the environment 

with the fun running are given in Fig. 8(a), which indicates that the wind noise level is much higher 

than the background noise, hence the measurement results with the microphone placed inside the air 

flow were primarily due to the wind from the fan. The peak at 62.5 Hz and its harmonics in the 

background noise are the mechanical noise due to the fan blade.  

The spatial structure of the wind noise was first measured without the presence of the microphone 

porous windscreen as shown in Fig. 7(b). The pressure at two microphones with different separations 

distance was measured and the MSC are compared in Fig. 8(b). It can be seen that when the 
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separation distance is larger than the turbulence wavelength (i.e. d/ > 1), the wind noise at the two 

microphones are incoherent, while when the separation distance is smaller than the turbulence 

wavelength, the wind noise is coherent but the coherence decreases with increasing separation 

distance due to the decay of the turbulent eddies.  

It is noteworthy that the wind noise in the simulations is caused by the turbulent wake generated 

by the upstream solid cylinders, while the wind noise in the experiments is due to the turbulence 

produced by the fan blade. Therefore the experiment results are not compared with the simulation 

results quantitatively. However, the trend consistency between the measurement results in Fig. 8 and 

the simulation results in Fig. 3 can be an evidence of the reliability of the simulations.  

 

   

                                        (a)                                                                            (b) 

Fig. 8. (a) The pressure Power Spectral Density (PSD) as a function of frequency and (b) the 

Magnitude Squared Coherence (MSC) as a function of the separation distance to turbulence 

wavelength ratio (the turbulence wavelength  is the variable for the horizontal axis) measured for the 

wind noise at the wind speed U = 3.8 m/s in the experiments.  

 

The wind noise reduction by 4 porous microphone windscreens with different diameter was 

measured and compared in Fig. 9, where the wind speed is U = 3.8. The 45 mm and 90 mm B&K 

microphone windscreens are UA-1236 and UA-0237, respectively, of which the porosity is unknown. 

The 60 mm and the other 90 mm windscreens were customized with 40 PPI (Pores Per Inch) 

polyurethane foam. It is clear from Fig. 9(a) that the porous windscreens are most effective in a 

certain frequency range and the larger windscreen attenuates more wind noise in lower frequency 

region. Figure 9(b) presents the WNR as a function of the windscreen diameter to turbulence 

wavelength ratio (D0/), which shows that the porous windscreens are most effective in attenuating 

wind noise when the windscreen diameter is approximately 2 to 4 times of turbulence wavelength (2 < 

D0/ < 4). This is consistent with the simulation results in Fig. 5.  
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                                        (a)                                                                            (b) 

Fig. 9. The Wind Noise Reduction (WNR) as a function of (a) frequency and (b) the windscreen 

diameter to turbulence wavelength ratio for windscreens with different diameters measured for the 

wind noise at the wind speed U = 3.8 m/s. 

 

The pressure PSD inside the 90 mm microphone windscreen (40 PPI) is compared with that 

without windscreen and the background noise in Fig. 10(a), which shows that the wind noise levels 

are higher than the background noise; hence the measured noise is primarily due to the wind from the 

fan. The MSC between the pressures measured at two microphones are shown in Fig. 10(b), which 

shows that the MSC is reduced the most above 100 Hz. The WNR and the MSC difference as a 

function of the windscreen diameter to turbulence wavelength ratio (D0/) are shown in Figs. 10(c) 

and (d), respectively. It is clear that the MSC with the windscreen is reduced the most when the 

windscreen diameter is approximately 2 to 4 times of the turbulence wavelengths (2 < D0/ < 4), 

corresponding to the most effect wind noise reduction frequency range in Fig. 10(c). This is also 

consistent with the simulations in Fig. 6.  
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                                        (a)                                                                            (b) 

    

                                        (c)                                                                            (d) 

Fig. 10. (a) The pressure Power Spectral Density (PSD), (b) the Wind Nosie Reduction (WNR), (c) 

the Magnitude Square Coherence (MSC), and (d) the MSC differenrce measured without and with 40 

PPI porous microphone windscreens measured for the wind noise at the wind speed U = 3.8 m/s. 

 

5. Conclusions 

This paper investigates the spatial structure of wind noise and the physical mechanism of the wind 

noise reduction by the porous microphone windscreens. Simulation and experiment results show that 

the wind noise is spatially correlated within a certain distance of the turbulence wavelength. The 

coherence in the lower frequency range decreases with the separation distance due to the spatial decay 

of large eddies. The porous microphone windscreens are more effective in reducing the wind noise in 

a certain frequency range where the windscreen diameter is approximately 2 to 4 times of turbulence 

wavelength, and the mechanism of the wind noise reduction is related to the decorrelation effect of the 

spatial structure of wind noise due to the presence of the porous structure of microphone windscreens. 
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Future work will further investigate the physical mechanism of the wind noise reduction by the porous 

microphone windscreens and the quantitative relationship between the spatial docorrelation of the 

wind noise structure and the viscous and inertial forces introduced by porous microphone windscreens.   
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