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Abstract

Background: Data from patients with rare diseases is often produced using different platforms and probe sets because
patients are widely distributed in space and time. Aggregating such data requires a method of normalization that makes
patient records comparable.

Results: This paper proposed DBNorm, implemented as an R package, is an algorithm that normalizes arbitrarily
distributed data to a common, comparable form. Specifically, DBNorm merges data distributions by fitting functions to
each of them, and using the probability of each element drawn from the fitted distribution to merge it into a global
distribution. DBNorm contains state-of-the-art fitting functions including Polynomial, Fourier and Gaussian distributions,
and also allows users to define their own fitting functions if required.

Conclusions: The performance of DBNorm is compared with z-score, average difference, quantile normalization and
ComBat on a set of datasets, including several that are publically available. The performance of these normalization
methods are compared using statistics, visualization, and classification when class labels are known based on a number
of self-generated and public microarray datasets. The experimental results show that DBNorm achieves better
normalization results than conventional methods. Finally, the approach has the potential to be applicable
outside bioinformatics analysis.
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Background
Personalised or precision medicine aims to find specific
therapeutics best-suited for individuals based on their
genomic data [10]. It is considered a promising approach
for diseases with a genetic component such as cancer. A
common approach for quantifiably capturing genomic
information is via oligonucleotide microarray technology
where gene expression is measured by the signal inten-
sities of probe pairs [12]. Affymetrix GeneChip1 microar-
rays are the most popular and are applied in thousands
of bioinformatics studies worldwide.
Although next-generation sequencing and RNA sequen-

cing are increasingly popular, oligonucleotide microarray
technology is still in use, and a great deal of microarray data

is available. However, it is difficult to compare the results
derived from different cohorts (for longitudinal studies) [8],
or from multiple sources because of variations in the
microarray platforms used or differences in sample prepar-
ation or operator sophistication. Because of advances in
microarray technology, Affymetrix microarray technologies
and probe sets are regularly updated, and it is implausibly
expensive to regenerate data after each update. This is
especially the case in domains such as rare cancers where
data from samples collected infrequently over a long period
must be combined to produce enough patient data for
comparative analysis.
Normalization is essential in microarray data analysis to

enable accurate comparison of expression levels between
and within samples [5]. A number of normalization
methods have been proposed such as Average Difference
(AvgDiff) [c], Total Count (TC) [2], and Trimmed Mean of
M values (TMM) [15]. These methods normalize micro-
array data by aligning the mean and/or variance and work
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well when the data has the same distribution, but with lin-
ear differences in parameters. Spline-based methods [23]
were proposed to normalize data by doing regression on
local features. However, these methods fail when the distri-
butions themselves differ, which is likely to be the case in
practice. Aligning distributions of different shapes is done
by defining features of the distributions and then minimiz-
ing the differences in these features, for example, using
smooth non-linear curves and quantile normalization [17].
Schmid et al. [18] comprehensively compared normalization
methods on microarray data.
The performance of such methods depends on good

choices of distribution features. They are often ineffi-
cient since multiple features must be aligned simultan-
eously. Most popular software packages for gene
expression data analysis and research such as IRON
[21], MAAMD [6], AGA [4] and BatchQC [13], use
these standard normalization methods. Another widely
used normalization software is ComBat [11] which is
proposed to standardize mean and variance of micro-
array data by empirical Bayes. A drawback of this
method is that it is hard to control the distribution of
data after normalization. A recent survey of Affymetrix
microarray data normalization software can be found in
[20]. Our approach dealing with distributions opens the
way to normalising data generated from different plat-
forms or chip-sets.
We propose an efficient, distribution-based

normalization method, DBNorm that works on micro-
array data from multiple sources regardless of the
distributions of the data in each. Because it scales data
from different sources into the same distribution they
will necessarily also have similar mean, variance and dis-
tribution features such as quantiles. We first compare
the performance of DBNorm with four state-of-the-art
methods: z-score, average difference (AvgDiff ) [19],
quantile normalization and ComBat on gene expression
data derived from diagnostic bone marrow from
pediatric Acute Lymphoblastic Leukaemia (ALL) pa-
tients on different Affymetrix platforms. As well as the
standard approach of statistical evaluation of
normalization methods [5, 14], this study also evaluates
the performance of normalization methods in the
context of downstream utilization of the data for
visualization and classification. The performance of
DBNorm is also evaluated on a set of benchmark
datasets, including a dilution/mixture dataset, a spike-
in dataset, and a public acute lymphoblastic
leukaemia dataset.

Implementation
This section describes the main principle of DBNorm,
followed by the workflow used to normalize two
microarray data samples.

Distribution-based normalization
Distribution-based normalization transforms values from
one scale to another and keeps the order of the magni-
tudes of the original values unchanged. The probeset
and sample value in the dataset that was the minimum
before normalisation will remain the minimum after
DBNorm. However, the value itself will be different.
Similarly, the probeset sample value that was the max-
imum before normalisation will be the one that is the
maximum after DBNorm, albeit taking a different value.
In summary, the order of probeset sample values remains
the same before and after normalisation. However, the
values may differ. Our distribution-based normalization
(DBNorm) method is based on this natural principle and
is achieved by mapping the probabilities of values in one
distribution to another. The fitting functions supported in
the DBNorm package are polynomial, Fourier and
Gaussian fitting. It also supports fitting distributions using
user-defined functions.
The target, desired, distribution might be known in

particular contexts, but it is more typical to choose
the dataset with the largest number of rows as the
best target, transforming the other, smaller datasets to
match. DBNorm fits functions to the values of each
probeset by regarding them as probability density
functions. The values in each column are then scaled
to the desired distribution, also regarded as a prob-
ability distribution. Consider two columns of microar-
rays M1 and M2 representing intensities of the same
probesets, but with different distributions. Suppose
that their fitted probability density functions are f(∙)
and g(∙) respectively. Given an element m1 ∈ M1, the
probability of m1 is PM1 m1ð Þ.

PM1 m1ð Þ ¼ PM1 t≤m1½ � ¼
Z m1

−∞
f tð Þdt ð1Þ

We want an element m’1 in M2 such that the probabil-
ity of m1 in M1 is equal to the probability of m’1 in M2.
This can be expressed in the following equation:

PM1 m1ð Þ ¼ PM2 m′
1

� � ¼>

Z m1

−∞
f tð Þdt ¼

Z m′
1

−∞
g tð Þdt

ð2Þ
The microarray column of M1 can be scaled to the

same distribution as column M2 via Eq. (2). This
transformation necessarily preserves the order of values
in each column.

Workflow of DBNorm
The DBNorm package was coded to normalize target
microarray data by rescaling the column distributions to
match a chosen distribution. This process is displayed by
an example in Fig. 1.
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Suppose that there are two microarray data sources:
source 1 (DS1) and source 2 (DS2). Merged together
without normalization, they tend to form two clusters
with each cluster from one data source. This can be seen
in Fig. 1 where high dimensional merged probeset data-
set is compressed into two dimensions by Principal
Component Analysis (PCA) for visualization.
DBNorm generates distribution information (visible in a

histogram). In this example, the distributions DS1 and DS2
are fitted by polynomial functions denoted by f(t) and g(t).
The element m1 is mapped to m’1 via Eq. (2). The normal-
ized DS1 shows a very similar distribution to DS2. As a re-
sult, when we merge normalized DS1 with DS2, the result
of a PCA shows that data samples from these two sources
mix well, no longer separating based on source.
DBNorm can also rescale microarray data to a

standard distribution by choosing g(t) to be a stand-
ard probability density function, e.g. a normal distri-
bution. Code for this example, and an example of
normalizing a data source to a standard distribution
are included in the user manual of the DBNorm
package.

Datasets
This section describes the datasets used for evaluating
the proposed normalization (DBNorm) method.
The acute lymphoblastic leukaemia (ALL) dataset in

this study was collected using Affymetrix microarray

data of the diagnostic bone marrow of 146 childhood
ALL patients collected by The Children’s Hospital at
Westmead, Sydney, Australia2 over ten years. As a result,
samples were run on several generations of platforms.
Table 1 gives dataset details. In particular, the number

of patients whose samples were run on each platform is
small. To evaluate the performance of normalization
methods based on classification accuracy, we consider
relapse as a class label.
We also use a set of public domain datasets whose de-

tails are listed in Table 2. The dilution/mixture dataset is
from 75 Affymetrix HG-U95A (version 2) arrays from
one source of RNA derived from liver with one micro-
array (source A) having half the amount of RNA than
source B. These two sources are hybridized to human
array (HGU95A) covering 12,625 genes with 201,800
Affymetrix microarray probes [7]. Specifically, there are
three scanners and each one array replicate was proc-
essed in different scanner. The data can be found in
Bioconductor.3

The spike-in dataset [9] is generated on Affymetrix
platforms HGU133 and HGU95. The platform HGU133
data contains 42 samples with 22,300 genes and 248,152
Affymetrix microarray probes, while the platform
HGU95 data contains 59 samples with 12,626 genes and
201,807 Affymetrix microarray probes. Each RNA source
has been contaminated with additional RNA resulting in a
highly disproportionately mixed set of genes which light

Fig. 1 An example application of DBNorm. Probesets from data source 1 (top left) and probesets from data source 2 (bottom left) are visualised
with PCA and show platform specific variation. DBNorm takes histograms of probe sets from each data source (second column) and fits a curve
to the shape (column 3). The formula (middle column 3) normalises data source 1 to take the shape of data source 2. PCA visualisation of the
combined dataset (bottom right) shows reduction in platform specific variation
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up in non-uniform distributions. This dataset can be
found on Bioconductor.4

The public acute lymphoblastic leukemia (ALL)
dataset contains 20 samples of the MLL subtype across
two Affymetrix microarray platforms: HG-U133A and
HG-U133B. The dataset is published in [16] and can be
accessed via Bioconductor5 as well. To construct an arti-
ficially uniform but widely dispersed dataset to test the
normalization, we compared 22,283 random and non-
matching probesets between the two platforms.

Results and discussion
Applying DBNorm to the Westmead ALL dataset
As different platforms have different probesets (Table 1),
only the common probes from different platforms can
be used to merge data from them. For Affymetrix micro-
array data, there are 11,288 common probes for the plat-
forms U133A, U133A2, U133Plus2 and HG1ST.
Table 3 gives the statistics of the common probesets

for each platform. It shows that statistics differ across plat-
forms as expected. Platforms U133A2 and U133Plus2 are
more similar to one another than U133A, and platform
HG1ST is quite different from all three. This is also
confirmed in Fig. 2 where the distribution of all samples
from U133A2 (Fig. 2(b)) is similar to the distribution of all
samples from U133Plus2 (Fig. 2(c)) and the distribu-
tion of all samples from HG1ST (Fig. 2(d)) is quite
different from the others. Normalization is essential
for downstream analysis.
We choose platform U133Plus2 as the target and

transform the other datasets to match (Fig. 2(g)). This
shows the ability of DBNorm to match an arbitrary dis-
tribution. We assume a polynomial probability density
function for all platforms. Figure 2(e), (f ) and (h) show

the distributions of the datasets from platforms U133A,
U133A2 and HG1ST respectively after normalization. It
is clear that these three datasets now have a similar dis-
tribution to the dataset from platform U133Plus2.
We use the Kullback–Leibler Divergence to calculate

the distribution similarities for each platform before and
after normalization; the results are given in Table 4.
Before normalization, the distributions are different. The
biggest difference is between platforms HG1ST and
U133Plus2, 0.2300, followed by the difference (0.1475)
between platforms U133A and U133Plus2, and the
difference (0.1177) between platforms U133A2 and
U133Plus2.
We further compare these standard normalization

techniques: z-score, Average Difference (AvgDiff ), Com-
Bat and Quantile normalization with DBNorm. First, we
compare the statistical properties of the distributions
produced by these techniques (Table 5). All normalize
data into similar ranges, but there are non-trivial differ-
ences in the resulting distributions.
Visualization provides another way to assess the qual-

ity of normalizations. We compare the results of z-score
normalization, AffyDiff, Quantile, ComBat and DBNorm,
and visualize them using principal component analysis
(PCA) [1] in two dimensions. In Fig. 3, patients whose
data was generated from different platforms are marked
in different colours. Green dots are patient’s data from
HG1ST; blue dots from U133A; red dots from U133A2;
and black dots from U133Plus2.
The result of applying z-score normalization only is

illustrated in Fig. 3(a) where the integrated data shows
marked platform artifacts. In the diagram, there are
three major clusters. The cluster at the top-left corner is
patient data from HG1ST, and is far from the other two
clusters; the distribution of HG1ST is quite different
from the other three platforms. The cluster at the bot-
tom represents the patient data from U133A, and the
remaining cluster is for patient data from U133A2 and
U133Plus2. Although patients from these two platforms
are close enough to form one cluster, they are not well
mixed. Fig. 3(b) and (c) illustrate the result for AvgDiff
and quantile normalization respectively. They disperse
the data regardless of the platform to some extent but
not much. Figures 3(d) and (e) are the results of ComBat
and DBNorm. Both of them can mix patients from dif-
ferent platforms together and DBNorm can compress

Table 1 Westmead Acute Lymphoblastic Leukaemia (ALL) dataset

Platform Patients Probesets Relapse (Y/N)

Affymetrix_U133A 18 22,283 6/12

Affymetrix_U133A2 44 22,277 13/31

Affymetrix_U133Plus2 44 54,675 6/38

Affymetrix_HG1ST 40 33,297 8/32

Table 2 Public domain datasets

Public domain datasets Platform Samples Microarray

Dilution/mixture HG-U95A cRNA
data source A

75 201,800

HG-U95A cRNA
data source B

75 201,800

Spike-in HGU133 42 248,152

HGU95 59 201,807

Public ALL HG-U133A 20 22,283

HG-U133B 20 22,283

Table 3 Statistics of the ALL microarray data

Platform Probesets min max mean std

Affymetrix_U133A 11,288 3.335 14.504 6.457 1.606

Affymetrix_U133A2 11,288 2.961 14.946 6.577 2.075

Affymetrix_U133Plus2 11,288 2.451 15.019 6.515 2.294

Affymetrix_HG1ST 11,288 1.749 13.874 6.274 1.966
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patents in a smaller area because after normalization
DBNorm can achieve a narrow value range (Table 5).
Meanwhile, DBNorm provides an explicit way to control
which distribution the input data is scaled into while
ComBat does not.
Classification can further evaluate the quality of nor-

malizations. Specifically, if data samples from different
platforms are not well mixed, classifiers must differenti-
ate the important variation between records of different
classes from the irrelevant variation between records in
different (platform-based) clusters. We compare predic-
tion accuracy before and after normalization for the
Westmead dataset, which is the only dataset for which
we have a class label, relapse. We use a soft margin Sup-
port Vector Machine (SVM) [3] with a Gaussian kernel
as the classification technique to classify the normalized
dataset based on relapse. To avoid the influence of ran-
domness, we applied Leave-one-out-cross-validation [22]
to evaluate the average performance of the built classi-
fier by running 146 times as there are 146 patients. The
reason for choosing LOOCV instead of the commonly
used K-fold cross validation is that the dataset is

somewhat imbalanced, with 33 relapsing patients and
113 patients who did not relapse and LOOCV can make
full use of the whole dataset. Also, because of the imbal-
ance issue, the performance of the classifier is evaluated
by accuracy, F-measure, ROC AUC (Table 6) and p-
value with confidence interval as 0.95 (Table 7). Table 6
shows the accuracy, F-measure and AUC averaged over
the training set and test set sections of LOOCV respect-
ively for each of the methods. The AUC value for the
test portion for a method, for example, is the average of
the AUC value for each patient (i.e. each left out point).
Table 7 shows the p-value derived from a paired t-test
comparing the mean of the sample of AUC values over
patients for the test portion for each method compared
with DBNorm. It demonstrates that classification after
using DBNorm is statistically significantly better than
the other methods.
Table 6 shows that the performance of the classifiers

on test dataset differ. DBNorm normalization achieves
the highest accuracy (0.84) and F-measure (0.73)

Fig. 2 Plots of distributions of all genes across all patients from platform U133A, U133A2, U133Plus2 and HG1ST before and after normalization
by the proposed distribution-based normalization method

Table 4 Results of Kullback–Leibler Divergence

Distribution Comparsion Before normalization After normalization

U133A vs. U133Plus2 0.1475 0.0001

U133A2 vs. U133Plus2 0.1177 0.0001

HG1ST vs. U133Plus2 0.2300 0.0007

Table 5 Statistical evaluation of normalization methods

Method Min. 1st Qu. Median Mean 3rd Qu. Max.

z-score −1.741 −0.739 −0.112 0.000 0.553 4.688

AvgDiff −1.827 −0.742 −0.097 0.000 0.591 4.689

Quantile −1.628 −0.846 −0.082 0.000 0.673 3.910

ComBat −2.536 −0.811 −0.064 0.000 0.681 4.910

DBNorm −1.636 −0.854 −0.073 0.000 0.690 3.748
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followed by ComBat, Quantile normalization, with Avg-
Diff and z-score perform poorly. The classification result
on unnormalized data is worst which shows that
normalization is of great necessity in data preprocessing.

Applying DBNorm on public domain datasets
We now compare the performance of the normalization
methods on several public-domain datasets. The per-
formance of these normalized methods is evaluated from

statistical level including distributions and MA plot due
to lack of class labels. MA plot visualizes the differences
between measures taken into two selected samples by
transforming the data onto M (log ratio) and A (mean
average) scales which is considered as a major way to
compare the difference of two gene-expression sources.

Dilution/mixture dataset
For this experiment, we generate a dataset from both
source A and source B. Specifically, we choose 201,800
Affymetrix microarray features. The results of
normalization are illustrated in Fig. 4.
The dilution effect is clear in Fig. 4(c) where the over-

all ratio M is at 0.5. The red line is the row median of

Fig. 3 Visualizing gene expression data by principal component analysis (PCA). In the figure, green dots are patient data from HG1ST; blue dots
are from U133A; red dots are from U133A2; and black dots are from U133Plus2

Table 6 Evaluating normalization by SVM
Method Averaged LOOCV Training Averaged LOOCV Test

Accuracy F-measure ROC AUC Accuracy F-measure ROC AUC

Unnormalized 0.57 0.31 0.63 0.19 0.08 0.22

z-score 0.79 0.49 0.81 0.23 0.11 0.26

AvgDiff 0.87 0.58 0.90 0.41 0.29 0.45

Quantile 0.91 0.60 0.93 0.79 0.52 0.82

ComBat 0.94 0.67 0.95 0.81 0.61 0.85

DBNorm 0.97 0.72 0.98 0.84 0.73 0.87

Table 7 p-value of comparing DBNorm with the other
normalization methods in terms of ROC AUC on test dataset

Unnormalized z-score AvgDiff Quantile ComBat

DBNorm 2.2 × 10−16 6.7 × 10−16 4.5 × 10−13 2.1 × 10−14 2.9 × 10−13
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Fig. 4 Visualization and comparison of normalization performance on Dilution/mixture dataset
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Fig. 5 Visualization and comparison of normalization performance on Spike-in dataset
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Fig. 6 Visualization and comparison of normalization performance on the public ALL dataset
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the standard Dilution/mixture dataset, while the blue
line is a base. The effect of good normalization will bring
the red line close to the blue line where M = 0. Further-
more, Figs. 4(a) and (b) show that the data from the two
sources have different ranges and that their distributions
have a slight difference.
Z-score normalization narrows the gap between the

red and blue lines as illustrated in Fig. 4(f ). However, the
samples are widely spread at both sides. From Fig. 4(d)
and (e), z-score normalization maps the data into the
same range and keeps the distributions unchanged. This
is the main reason why data samples are widely spread
along the row median.
AvgDiff works better than z-score. From MA plot

(Fig. 4(i)), we can see that AvgDiff minimizes red and
blue lines in the initial part but the gap between them
increases sharply. Fig. 4(g) and (h) are the distributions
after AvgDiff normalization; the data are more evenly
distributed compared with Figs. 4(a) and (b). This is why
samples stay close in the MA plot. However, the distri-
butions after AvgDiff normalization are still different,
resulting in the gap between red and blue lines
increasing.
Intuitively, both Quantile and DBNorm normalization

can minimize the gap between the red and blue lines
(Figs. 4(l) and (o)) in the MA plot. DBNorm works bet-
ter than Quantile normalization. First, DBNorm achieves
better values in Median and Interquartile Range (IQR), 0
and 0.138 respectively. Secondly, DBNorm compress
Affymetrix microarray features into a smaller range,
from −2.216 to 1.275.
The distributions of normalized data from DBNorm

are more similar than those from Quantile
normalization. The KL divergence of the distributions
normalized by DBNorm is 2.283 × 10−6, while the diver-
gence of the distributions normalized by Quantile
normalization is 5.788 × 10−5.

Spike-in dataset
We further compare the performance of normalization
on a dataset with 5184 common Affymetrix microarray
features from platforms HGU133 and HGU95 to deter-
mine the ability of DBNorm on an atypical dataset that
represents an extreme example of data distributions.
The results of normalization are illustrated in Fig. 5.
From Fig. 5(c), we can see that the microarray data

from these two selected experiments with the Spike-in
dataset show clear artefacts from the spiked in genes,
despite the data being generally well normalised based
on the fact that the data sits along the blue axis. Also,
Figs. 5(a) and (b) show that the data from these two
experiments have different ranges and distributions.
During normalization by Z-score, AvgDiff and

Quantile, the spiked in gene populations are resistant to

their normalization effect as shown in Figs. 5(f ), (i) and
(l). DBNorm has the strongest effect among the four
normalization methods, showing a powerful influence
on disproportionate and extremely skewed data. In this
extreme case, the power of the normalisation is evident.
The spiked in peak is still seen in Fig. 5(n) despite a
balancing of the overall distribution (see Fig. 5(m)) and
the high level of compression observed in the MA plot
(Fig. 5(o)). This level of change is not seen in the other
examples. The normalized data sources show very simi-
lar distributions (Fig. 5(m) and (n)) leading to a good
result in the MA plot in Fig. 5(o). The red and blue lines
are very close. DBNorm compresses data into a very
narrow range so that dots are overlapped dramatically.

Acute lymphoblastic leukemia (ALL) dataset
Finally, we compare the performance of normalization
on a public MLL dataset generated from Affymetrix
platforms HG-U133A and HG-U133B. The results of
normalization are illustrated in Fig. 6. With this artifi-
cially configured data we expect a widely dispersed
distribution of M values, which is what we see in
Fig. 6(c). It also shows a shifting M ratio relative to
spot intensity. We expect good normalization to
remove this skew whilst maintaining the overall
widely dispersed distribution. Z-score (Fig. 6(f )) and
AvgDiff (Fig. 6(i)) normalization failed to do this.
Quantile normalization and DBNorm (Figs. 6(l) and
(o)) achieve better results because they focus on
distributions. Quantile normalized data shows similar
distributions in Fig. 6(j) and (k) but a wider disper-
sion in ratio. DBNorm is closer to the original with
regards to the range dispersal (Fig. 6(m) and (n)).

Conclusion
Microarray data from heterogeneous sources is
common, but has been underexploited because of the
difficulty of matching data from different platforms at
different times. Normalization is the key to data integra-
tion and enables consistent downstream analysis.
DBNorm outperforms the other three methods investi-
gated, based on statistical properties, KL divergence, and
classification.

Endnotes
1http://www.affymetrix.com
2https://www.schn.health.nsw.gov.au
3http://bioconductor.org/packages/2.0/data/experiment/

html/affydata.html
4http://bioconductor.org/packages/2.0/data/experiment/

html/SpikeIn.html
5http://master.bioconductor.org/packages/2.0/data/

experiment/html/ALLMLL.html
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