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Abstract
To predict forest response to long-term climate change with confidence requires that land surface
models (LSMs) first be successfully tested ag ainst ecosystemresponse to short-termvariations in
environmental drivers, including regular seasonal patterns. Here, we use an integrated dataset from
four forests in the Brasil flux network, spanning arange of dry season intensities and lengths, to test
how well fourstate-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulate the seasonality of
carbon exchanges in Amazonian tropical forests. We found that most LSMs poorly represent the
annual cycle of gross primary productivity (GPP), photosynthetic capacity (Pc, a proxy for
phenology), and other fluxes and pools. Specifically, our analysis shows that models simulated
consistent dry season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and
Caxinana CAX); however, observed GPP increased. Model predicted GPP reductions are driven
by “soil water stress” and in some cases a constant or decreasing photosynthetic infrastructure (e.g.
Pc, and leaf area index (LAI)). Nevertheless, at this rainforests, observed dry-season increasing
incoming radiation, leaf-flush and abscission, and/or Pcresult in higheruptake. Similarly, we
report divergences between model-observed seasonal net ecosystemexchange (NEE) and
respiration (Re) at equatorial locations. By contrast, at the southern Amazon forest (Jari RJA)
observed declines in GPP and Re as the dry season progresses are well represented by most LSMs.
While the (1) water-limitation mechanism is described in models and the primary driver of seasonal
photosynthesis in southern Amazonia, we identify other biophysical processes: (2) light harvesting
adaptations (e.g. LAI and/or leaf-level assimilation rate increases related to leaf demography); and
(3) allocation schemes (e.g. lags between leaf and wood production) that are poor or absent in
current model formulations. All three mechanisms dominate equatorial Amazon carbon flux

dynamics and are critical for correctly simulating flux seasonality at tropical forests.
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1. Introduction
Land surface models (LSMs) are the most widely used and appropriate tool for predicting large-
scale responses of vegetation to future climate scenarios. However, to forecast the future of
Amazonia under climate change remains a challenge. The previous generation of LSMs produced
projections of Amazonia’s future that diverg ed widely, with outcomes ranging fromlarge-scale
forest die-back to forest resilience (Betts et al., 2004, 2004; Friedlingstein et al., 2006; Baker et al.,
2008). Morerecent LSMs simulations showed the large-scale die-off scenario to be unlikely (Cox
et al., 2013), given (1) an improved model understanding of forest response to the negative effects
of temperature -previously overestimated and now constrained (Coxet al., 2013); and (2) current
models being forced with updated climate projections (temperature and precipitation) bounded by
observations that no longer demonstrate drastic climate changes in response to rising CO> in the
tropics (Cox et al., 2013; Huntingford et al., 2013). Yet tropical forest response to climate change
remains uncertain as models produce varying outcomes (Shao et al., 2013) even without die-off.
Some cutting-edge LSMs projected forest degradation due to future deforestation and increasing
temperature, with catastrophic consequences for the global climate based on climate-carbon cycle
feedbacks (Wang et al., 2013, 2014; Friend et al., 2014), while other LSMs foresaw strong carbon
sinks in these forests due to CO; fertilization of photosynthesis (Rammig et al., 2010; Ahlstromet
al., 2012; Huntingford et al., 2013; Friend et al., 2014). Although the effects of temperature, water
limitation and CO; fertilization mechanisms remain uncertain, all LSMs continue to agree that
Amazonian forests play an importantrole in regulating the global carbon and water cycle (Eltahir &

Bras, 1994; Werth & Avissar, 2002; Wang et al., 2013, 2014; Ahlstrémet al., 2015).

Key to reducing uncertainty in LSMs is their systematic evaluation against observational datasets.
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This exercise enables the identification of model deficiencies through comparison with observed
patterns in ecosystemprocesses, as well as the mechanisms underpinning such processes (Baker et
al., 2008; Christoffersen et al., 2014). Recent model-data evaluations in tropical forests have
focused on the cascade of ecosystemresponses to long term droughts (Powell et al., 2013) and the
definition of spatial patterns in productivity and biomass (Delbart et al., 2010; Castanho et al.,
2013). However, one important context formodel assessment in tropical forests is in the
seasonality of ecosystemwater and carbon exchange, as observational datasets reveal axes of
variation in productivity, biomass and/or forest function across space (da Rocha et al., 2009;
Restrepo-Coupe et al., 2013) and/orthrough time (Saleska et al., 2003; von Randow et al., 2004;
Hutyra et al., 2007; Brando et al., 2010). The most consistent temporal variation in tropical forests
is the seasonality of water, energy, and carbon exchange, since all tropical ecosystems are seasonal
in terms of insolation and a majority experience recurrent changes in precipitation, temperature
and/orday length. Evaluation with respect to seasonality has typically focused on
evapotranspiration (ET) (Shuttleworth, 1988; Werth & Avissar, 2002; Christoffersen et al., 2014)
and on net carbon exchange (NEE) (Baker et al., 2008; von Randow et al., 2013; Melton et al.,
2015). Where models compensated misrepresentations of gross primary productivity (GPP) in the
NEE balance, by improving or adjusting the efflux term represented by heterotrophic (Melton et al.,
2015) or ecosystemrespiration (Baker et al., 2008) to available moisture among other strategies.
Only recently have the seasonal dynamics of GPP drawn the attention of different groups (De
Weirdt et al., 2012; Kim et al., 2012) and where Kim et al. (2012) demonstrated that a consequence
of its incorrect derivation was to overestimate the vulnerability of tropical forests to climate
extremes. Therefore, identifying discrepancies in observed versus modeled seasonality in carbon
flux even when seasonal amplitudes are not large -as can be the case for evergreen tropical forests

(see Albert et al. (in preparation) for cryptic phenology), can lead to important model developments
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with significant consequences -to obtain better projections of the fate of tropical ecosystems under

present and future climate scenarios.

Analysis of eddy covariance datasets have shown that in non-water limited forests of Amazonia, the
observed seasonality of GPP was not exclusively controlled by seasonal variations in light quantity
(as has been demonstrated for ET) or water availability. Instead GPP was driven by a combination
of incoming radiation and phenological rhythms influencing leaf quantity (measured as leaf area
index; LAI) and quality (leaf-level photosynthetic capacity as a function of time since leaf flush)
(Wu et al., submitted; Restrepo-Coupe et al., 2013). The lack of a direct correlation between GPP
and climate suggests that ecosystemmodels that are missing sufficient detail of canopy leaf
phenology will likely not capture seasonal productivity patterns. Accordingly, recent studies
showed model simulations (ED2 and ORCHIDEE) to be deficient in terms of predicted seasonality
in GPP and litterfall, if missing leaf-demography and turmover as in Kim et al. (2012) and in De
Weirdt et al. (2012), respectively. Between the two studies, only two sites (eastern (K67) and
northeastern (CAX)) were represented, both of which experience very similar precipitation and light
regimes. This furtherhighlights the need for expanded evaluation of modeled seasonality of GPP

across arange of sites spanning a broaderrange of climates and phenologies.

If the improved representation of the dynamics of leaves and other carbon pools, translates into
more accurate simulations of seasonal GPP, NEE and/or the long-termcarbon budget (De Weirdt
et al., 2012; Kim et al., 2012; Melton et al., 2015), then comparisons between observations and
model derived seasonality of carbon allocation, could provide insight into the mechanistic response
of vegetation to climate and strategies to incorporate theminto LSMs. Forexample, critically

evaluating the seasonality of net primary production of leaves (NPPjeqf) and wood (NPP\o04) in
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tandemwith GPP, will inform deficiencies in model allocation schemes and carbon pool residence
times. Modelnet primary production (NPP) typically arises from the allocation of photosynthate to
main organs, either as a constant fraction of GPP (Kucharik et al., 2006), or according to fixed
allometric rules (Sitch et al., 2003). However, such a view of supply-limited growth has come into
question recently (Wiirth et al., 2005; Fatichiet al., 2014). Thus as water, temperature, and
nutrients can all impact cell expansion, there may be a temporary imbalance between carbon used
for tissue growth and maintenance respiration versus carbon supplied by assimilation
(photosynthesis) (Fatichiet al., 2014). Patterns in seasonality of GPP, NPPeqfand NPP o4,
therefore, potentially reveal the degree of coupling (or lack thereof) of these two carbon sinks
(NPP\ood and NPP.qf) with photosynthetic activity (GPP). Indeed, Doughty et al. (2014) used
bottom-up estimates of the ecosystemcarbon-budget at a forest in southwest Amazonia and showed
that components of NPP varied independently of photosynthetic supply, which they interpreted in
terms of theories of optimal allocation patterns. While an alternative interpretation of such patterns
could simply refer to biophysical limitations on growth, which vary seasonally (Fatichi et al., 2014),
both studies suggest that modeling allocation as a function of GPP will likely fail to capture
observed seasonality. Ground-based bottom-up estimates of primary productivity at a temporal
resolution greater than a year (i.e., seasonal) are difficult if not impossible, principally because there
is no accepted method for estimating whole-tree non-structural carbon (NSC) and its variation with
seasons (Wiirth et al., 2005; Richardson et al., 2015). We proposed coupling co-located top-down
eddy flux estimates of GPP with bottom-up NPP estimates (NPPyood, NPPjeaf and NP Piitter-fail) to
circuamvent this problemand to obtain a better informed view of the mechanisms (e.g. allocation
schemes) models may incorporate or test against, to improve seasonal simulations of carbon fluxes

and pools.
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The focus of this study was to evaluate, for the first time, modeled seasonal cycles of different
carbon pools and fluxes, including leaf area index (LAI), GPP, leaf fall, leaf flush, and wood
production, with high resolution eddy flux estimates of GPP and ground-based surveys. We
centered our study on a comparison between forests located in the equatorial Amazon (radiation -
and phenology-driven) to a southern forest (driven by water availability) and explored the different
model strategies to incorporate and simulate physical and ecological drivers. Here, we assessed
four state-of-the art LSMs in active development foruse in coupled climate-carbon cycle
simulations in terms of whetherthey could simultaneously determine patterns of growth and
photosynthesis, thereby getting the ‘right answer fortheright reason’. We conclude by proposing
several approaches for improving model formulations and highlight the need for model-informed

field campaigns and future experimental designs.

2. M ethods

2.1.Site descriptions
We analyzed data from the Brazil flux network for four tropical forests represented by the southem
site of Reserva Jari (RJA), and three central Amazonia forests (~3°S) from west to east: the Reserva
Cuieiras near Manaus (K34), the Tapajés National forest, near Santarém (K67) , and the Caxiuana
National forest near Belém (CAX) (Fig. 1). For detailed site information see previous works by
Restrepo-Coupe et al. (2013), and de Goncalves et al. (2009; 2013) and individual site publications
(Araujo et al., 2002; Carswell et al., 2002; Malhi et al., 2002; Saleska et al., 2003; Kruijt et al.,

2004; von Randow et al., 2004; Hutyra et al., 2007; da Costa et al., 2010).
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Figure 1. Locations eddy covariance tower study sites at the Amazon Basin sensu-stricto (Eva &
Huber (eds), 2005). Monthly minimum precipitation fromthe Tropical Rainfall Measuring Mission

(TRMM) (NASA, 2014) based on an annual composite for the years 1998 to 2014.

All study sites had mean annual precipitation (MAP) above 2000 mm year‘1 (Supplement Fig. 1),
based on the satellite-derived precipitation fromthe Tropical Rainfall Measuring Mission (TRMM)
(Huffman et al., 2007; NASA, 2014) 1998-2013 (Table 1). CAX and K34 have MAP over 2500
mm year’1 (2572 and 2674mm year'l, respectively). By contrast, at the southern forest of RJA and
the equatorial forest of K67 MAP was ~2030 mm year'l. Moreover, RJA has a 5-month dry season
length (DSL) analogous to two of the central Amazon sites of CAX and K67 (4-month); however,
longerthan K34 site (2-months). Where the dry season was defined as those periods where
precipitation is less than ~100 mm month'l, this threshold corresponded to 80% of the average
monthly ET observed at tropical forests (Sombroek, 2001; da Rocha et al., 2004; Restrepo-Coupe et
al., 2013). RJA and K67 showed similar mean dry-season precipitation (47 mm month™ at RJA and
54 mm month™ at K67). However, the annual minimum averaged across the years 1998-2014
(MiAP) at RJA was 14 mm month™ compared to amore benign dry season minimum of 37 mm

month™ at K67 (Fig. 1 and Table 1). Despite being located at a latitude further from the equator
8



186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

(10°S) incoming photosynthetic active radiation (PAR) at the southern forest of Jard, was less

seasonal (low amplitude) if compared to the central Amazon forests (latitude ~3°S) (Fig. 2). At

RJA, peak top of the atmosphere radiation (TOA) was synchronous to the wet season —where we

expected higherreflectance by clouds decreasing the surface available PAR (Fig. 2). All equatorial

sites sat on highly weathered deep clay soils (>= 10 m), whereas RJA sat on a lower water storage

capacity loamy sandy soil and a more shallow and variable profile, with depth to bedrock as

shallow as 2-3 m (Hodnett et al., 1996; Christoffersen et al., 2014).

Mean annual | Dry season | Dry season |Minimum annual
Ste | Latitude |Longinde | PRCPIE00N | precpi@ion | lengh | - precifation
[mm/month] | [mm/month] | [months] [mm/month]
K34 -2.61 -60.21 2674 105 2% 103
CAX -1.72 -51.53 2572 78 4 60
K67 -2.86 -54.96 2035 54 4 37
RJIA -10.08 | -61.93 2031 47 5 14

** Defined as Rain<110 mm/month, 100 mm/month at other sites

F
=}
=]

W
=3
=]

Precipitation (mm month™)
N
=]
=]

0

K67

Table 1. Precipitation at Amazon basin study sites. Based on the Tropical Rainfall Measuring

Mission (TRMM) (NASA, 2014) for the years 1998 to 2014.

At the above-mentioned forests, climate, carbon, energy, water and momentum fluxes were

2.2.Eddy covariance methods

measured by the eddy covariance (EC) method. Starting with half-hourly CO,-fluxdata provided

from each site's operator, we calculated net ecosystemexchange (NEE in pmol CO, m? s™), with

fluxes to the atmosphere defined as positive. NEE was then filtered it for low turbulence periods

(U™ thresh). Fora detailed description of instrumentation, applied corrections, quality control

procedures, and methods for data processing refer to Restrepo-Coupe et al. (2013). Gross

ecosystemexchange (GEE) was derived from tower measurements of daytime NEE by subtracting
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estimates of ecosystemrespiration (Reco), which in turn we derived fromthe nighttime NEE. We
assumed daytime Reco was the same as nighttime Reco. GEE is a negative value (GEE = NEE - Reco)
as generally NEE is negative in the daytime, and Rec, is positive (meteorological convention). We
expressed ecosystem-scale photosynthesis, or gross ecosystemproductivity (GEP), as negative GEE
and assumed negligible re-assimilation of metabolic respiration CO» within the leaf and
insignificant CO; recirculation below the EC system (Stoy et al., 2006). For comparison with
model output, we assumed negligible seasonal changes in photorespiration and used GEP

interchang eably with gross primary productivity (GPP).

We defined ecosystemphotosynthetic capacity (Pc, gC m° d'l) as the 16-day average GPP at a
fixed photosynthetically active radiation (PAR)range (site specific daytime mean PAR, PARayg +
100 pmol m?> s'l) (Supplement Table 1); thus, to remove the effect of day-to-day changes in
available light (e.g. cloudy versus clear days), photoperiod, and any other effect of non-optimum
PARlevels. Similarly we used vapor pressure deficit (VPD), air temperature (T,) to remove GPP
measures obtained during non-optimum conditions by restricting Pc calculations to mean daytime
VPD (VPDayvg) and Tq (Taavg)  one standard deviation fromtheirrespective time series. Pc
represents the veg etation built capacity to do photosynthesis (Pc as biophysical driver of GPP).
Where at the four study sites, it has been shown that the seasonal pattern of Pc was independent of

and other climatic variables (Restrepo-Coupe et al., 2013).

We looked at evapotranspiration (ET, mm d'l) calculated as the latent heat flux (LE, W m )
measured at the tower multiplied by the latent heat of vaporization (A, kJ kg'l). We developed a
Typell linear model between surface incident short wave radiation (SWaown, W m2) and the

dependent variable, ET.

10
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Figure 2. Fromtop to bottomannual cycle of daily average observed climatic variables: incoming
photosynthetic active radiation (PAR; pmol m?> s'l, black line right y-axis) and precipitation (Precip;
mm month'l, dark gray bars left y-axis), top of the atmosphere incoming radiation (TOA; W m'z,
blueline right y-axis) (not a driver). From left to right study sites (fromwet to dry forest) near
Manaus forest (K34), Caxiuana forest (CAX), Santarém forest (K67), and Reserva Jard southern
forest (RJA). Gray shaded area is dry season as defined using satellite derived measures of
precipitation (TRMM: 1998-2014). Second row LSM drivers: near surface specific humidity (Qqir;
kg kg'l, black line left y-axis) and temperature (T,ir; °C, blue line right y-axis). Lower panel depicts
model ecosystem-scale of model soil moisture “stress” (FSW, where 1=no stress). Simulations

from ED2 (blue), IBIS (red), CLM3.5 (green), and JULES (purple).

From the standard suite of climatic variables available for periods between 1999 and 2006 measured

11
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at each EC tower, meteorological drivers for the models were generated. Variables included:
SWiaown; air temp erature (Tqir, °K); near surface specific humidity (Qqir, g kg’l); rainfall (Precip, mm
month‘l); magnitude of near surface wind (WS, m s‘l), surface atmospheric pressure (Pa, hPa);
surface incident longwave radiation (L Wgown, W rn'z); and a fixed CO; concentration (COZ2.;r at 375
ppm) (de Goncalves et al., 2009) (Fig. 2). Drivers were created for consecutive years where gaps
were no greater than two months. The data was subject to quality control and filled using other
tower measurements (e.g. from a temperature profile), near-by sites and the variables mean monthly
diurnal cycle. We analyzed data for 2000-2005 for K34, 2002-2004 for K67, 2000-2002 for RJA
and 1999-2003 for CAX. Werestricted flux and meteorological observations and the calculation of

seasonality to the above-mentioned dates in order to match model drivers and output.

Hourly fluxes (GPP, NEE, Reco,and ET) and meteorology were aggregated to 16-day time periods,
assuming that at least 4 days were available with at least 21 hours of observations each. Gaps were

not filled further and mean annual cycles were then calculated.

2.3.Field measurements
The following vegetation infrastructure descriptors and carbon pools were included on the analysis:
Leaf Area Index (LAI): model output was compared to LAI observations for Caxiuana, CAX as
reported by Metcalfe et al. (2007)), and for Santarem, K67 as by Brando et al. (2010). LAI was
normalized from 0 to 1 (LALnormalized) for purposes of presentation. Thus, in order to visualize any
changes in LAI independent of the observed or modeled absolute value, using Equation 1, where at
time i, LAI; was adjusted by LAlyin and LAIn . that corresponded to the minimnmm and maximum

seasonal LAI respectively:

12
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LAI:—LAIL,,;
LAInormalized(i) = ﬁ

max min i
Equation 1

Leaf litter-fall or net primary productivity allocated to litter-fall (NPPijier-fait, 8C m? d™): values
corresponded to monthly litter-bed measurements at Manaus, K34 (here presented for the first time),

and to those reported by Rice et al. (2004) for K67 and by Fisheret al. (2007) for CAX.

Modeled NPP.qffollowed a basic leaf balance model proposed by Restrepo-Coupe et al. (2013).
Assuming the change in ecosystem Pc (dPc/dt) to be driven by 1) the loss or gain ofleaves,
NPPliitter-fa and NPPeqf, respectively (quantity); and 2) the changes in leaf-level carbon assimilation
at saturating light (SLA x Anax) related to age (quality). Therefore, solving for leaf production we

obtained:

1 dPc
NPPleaf = NPPlitter—fa” + Amaxxsme Equation 2

where specific leaf area (SLA) values were set to 0.0140 for K67 and CAX (Domingues et al., 2005),
0.0164 m?/ gC for K34 (Carswell et al., 2002). The Amax was reduced to reach 40% of the mean
value at the time when leaf-fall reached its maximum (2-month linear gradient). Maxinmum Apmax
was setto 8.66 gC m? d* at K67 (Domingues et al., 2005), and to 7.36 gC m? d!at K34 (Carswell

et al., 2000) and CAX.

Woodnet primary productivity (NPPy.0q) was based on stemwood increment measurements
(diameter at breast height, DBH) as reported by Rice et al. (2004) at K67, Chambers et al. (2013) at

K34, and da Costaet al. (2010) at CAX. No data was available for RJA.
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2.4.Land system models (LSMs)
We presented output from four state-of-the-art terrestrial biosphere models. All LSMs were process
based (e.g. photosynthesis, respiration, and evapotranspiration) and able to simulate the fluxes of
carbon, water, and energy between the atmosphere and the land surface. The model simulations
were run as part of the Interactions between Climate, Forests, and Land Use in the Amazon Basin:

Modeling and Mitigating Larg e Scale Savannization project (Powell et al., 2013).

The EcosystemDemography model version 2 (ED2): The model explicitly tracked the dynamics of
fine-scale ecosystemstructure and function, including net ecosystem productivity (NEP), carbon
partitioning, and growth and mortality dynamics (Medvigy et al., 2009). It used four PFTs forthe
tropics, 10-minute time step forthe dynamic global vegetation model (DGVM) and LAIon a daily
basis. The number of canopy layers varied pernumber of plant cohorts and had three different soil
carbon pools for each layer (fast, slow and structural), water extraction depth varies according to

plant functional types (PFTs); however, the model did notincluded hydraulic redistribution.

The Integrated Biosphere Simulator (IBIS): The model simulated hourly carbon fluxes. LAI was
allocated annually and biomass was integrated over the year (Foley et al., 1996). IBIS required 76
parameters to be specified, of those 14 were related to soil, 12 were specific to each of the nine

PFTs, and 50 were related to morphological and biophysical characteristics of vegetation.

The Community Land Model-Dynamic Global Vegetation Model version 3.5 (CLM3.5): Is the
predecessorto the current CLM4-CNDV model (Gotangco Castillo et al., 2012), which is the land
component of the Community Earth SystemModel (CESM). CLM3.5 runs were set using a

prognostic phenology, which incorporated recent improvements to its canopy interception scheme,
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new parameterizations for canopy integration, a TOPMODEL-based model for runoff, canopy
interception, soil water availability, soil evaporation, water table depth determination by the
inclusion of a groundwater model, and nitrogen constraints on plant productivity (without explicit
nitrogen cycling) (Oleson et al., 2008). The model treated the canopy as a weighted average (by
theirrespective LAIs) of sun and shaded leaves. The leaf phenology subroutine of this model for
tropical forests applied only to the Broadleaf Deciduous Tree (BDT) PFT fraction (“raingreen”
PFT), but all CLM 3.5 simulations reported here were >95% tropical Broadleaf Evergreen Tree
(BET) fractional PFT cover. The allocation scheme forthis model dictated that leaf turnover for the
tropical BET (at a rate of 0.5 yr'l) bereplaced instantaneously with new leaf production to maintain
fixed allometric relationships (Sitch et al., 2003); therefore, seasonality of LAI was not possible for

these simulations.

The Joint UK Land Environment Simulator (JULES): Included a multi-layer canopy scheme for
light interception (built-in a sun fleck penetration scheme), a coupled scheme of leaf photosynthesis
and stomatal conductance, and the representation of the effects of ozone on leaf physiology. The
version of JULES shown here represented the carbon allocation, growth and population dynamics

of five plant functional types. The turnover of carbon fromliving plant tissues was fed into a four-

poolsoil carbon model (Clark et al., 2011).

Model output followed the LBA-Data Model Intercomparison Project (LBA-DMIP) protocol (de
Goncalves et al., 2009); however, it includes some additional variables related to water limitation
(e.g. soil water availability factor or soil water “stress™), land use change (e.g. additional carbon

pools), and disturbance (e.g. mortality) (Powell et al., 2013). Here, we present soil water “stress”

(FSW) values, calculated following Ju et al. (2006). By definition FSWranging from0 to 1is a
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measure of the water available to roots, where FSW=1, is no stress.

3. Results
3.1. Gross primary productivity (GPP) and ecosystem photosynthetic capacity (Pc)
The observed annual cycle of ecosystem-scale GPP showed two divergent patterns: (1) increasing
levels of photosynthetic activity (GPP) as the dry season progresses in the equatorial Amazon (K34,
K67 and CAX) where MIiAP was 60 and 36 mm month'l, respectively, and maximum radiation was
synchronous with low precipitation; and (2) declining productivity as the dry -season advanced in
the southem forests (RJA) where radiation was somewhat aseasonal and MiAP was less than half its
central Amazon counterparts (14 mm Inonth'l) (Fig. 1). By contrast, at all sites, model simulations
showed peak GPP seasonality at the end of wet season with declining GPP during the dry season
(Fig. 3). Thereduced dry season GPP observed at the southern Amazon forest of Jari (RJA) was
consistent with increasing degrees of water limitation. At the sites in the equatorial Amazon (K34,
K67 and CAX), modeled soil water “stress” (FSW; Fig. 2) (where FSW=1, no stress) acted to
reduce model GPP during the dry season, even as observed Pc increased following higherlevels of
incoming solarradiation (PAR; Fig. 2 and Pc; Fig. 4). Similar to GPP, models tended to achieve
good Pcrepresentation at RJA. However, simulated Pc at the equatorial Amazon forest sites
remained unchanged (IBIS and JULES) or decreasing gradually from the middle of the wet season

to the end of the dry period at K67 (ED2 and CLM3.5) (Fig. 4).
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Figure 3: Annual cycle of daily average ecosystem-scale photosynthesis (GPP; gC m* d'l),
ecosystemrespiration (Re; gC m?> d’l) net ecosystemexchange (NEE; gC m?> d'l) and
evapotranspiration (ET; mm d'l) near Manaus forest (K34), Caxiuana forest (CAX), Santarém forest
(K67), and Reserva Jarii southern forest (RJA). Observed (black + dark gray uncertainty) and
simulated by models (colors). Dashed blackline at ET panels corresponds to a linear model where
the independent variable is incoming radiation (SWgown). Gray shaded areais dry season as defined
using satellite derived measures of precipitation (TRMM: 1998-2014). Simulations from ED2

(blue), IBIS (red), CLM 3.5 (green), and JULES (puiple). Observations from the Brasil flu xnetwork.

FSW reached an all-site minimum at RJA by the end of the dry season (Fig. 2) and corresponded

with a decrease in model ET not seen on the EC measurements (Fig. 3). With the exception of CAX,
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seasonal observations of ET at all of the sites showed very little seasonality and remained close to
120 mm month™ (4mm d'l). In general, models were able to capture the seasonality of ET;
however, they overestimated the dry-period reduction in water exchange at RJA and in the case of
K34 and CAX overestimated ET absolute values. By contrast, a very simple linear regression

driven by SWgown was able to represent ~83% of the seasonality of ET (Fig. 3).

3.2 Carbon allocation

We explored different model approaches to simulate the phenology of carbon allocation, in
particular measures of plant metabolism (ecosystemphotosynthetic capacity, Pc as proxy), standing
biomass (wood increment, leaf-production and the balance of gain and loss of leaves), and additions

to soil organic matter (leaf-fall), in an attempt to understand the model-data discrepancies on the

estimates of GPP and NEE.

Our results indicated thatnone of the models was able to capture orreplicate the observed dry-
season LAI changes at our equatorial Amazon forests EC locations (Fig. 4). In addition, with the
exception of ED2, the annual mean LAI values were unrealistically high (Baldocchi et al., 1988;
Gower et al., 1999; Asneretal., 2003; Sakaguchietal., 2011). In contrast, with some model
phenology schemes that assumed LAI and T,irto be positively correlated, we observed anegative o

no correlation (non-statistically significant; p-value >0.1) (Supplement Fig. 6).

In the field, leaf litter-fall plays an important role in determining the seasonality of LAI, Pc (as per
Equation 2), heterotrophic respiration and soil carbon pools. Data for the central Amazon forests
showed a highly seasonal leaf-fall cycle (Chave et al., 2010), with an LAl maximum at the

beginning of the dry season at CAX and in the middle of the dry period at K67 (Fig. 4). At
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equatorial sites, peaklitter-fall corresponded to a maximum in SW4own, where we observed a
statistically significantlinear regression between SWyown and NPPjjxer-fann With a coefficient of
determination, R? equalto 0.34 at K34, 0.21 at K67, and 0.6 at CAX (p<0.01) (Supplement Fig. 2).
With the exception of ED2, which included a drought-deciduous phenology and consequentially
seasonal variations in leaf abscission, seasonality in NPPijiter-fan1 was not resolved in most LSMs (Fig.

4).

Estimates of leaf-production (increase in the amount of young-high photosynthetic capacity leaves)
from the observations at K67 forest showed peak NPPeqf in the dry season in contrast to most
simulations. In general, NPPqfwas: (1) constant in most models; (2) allocated at the end of the
year, similar to NPPjier-fai; 0T (3) declining, in particular during the strong K67 dry season (Fig. 2).
Even if counterintuitive, at some of the equatorial Amazon sites key leaf-demography processes

(e.g.leaf-fall and leaf-flush) and/or LAI, increased in tandemduring the dry season.

In contrast to NPPjeqf, NPP allocation to wood growth (NPPy,004) was aseasonal at K34; however at
K67 peaked during the wet season, displaying opposite seasonality and being out-of-phase with
NPPeqr. This pattern seemed to be different at CAX, with both NPPjeqrand NPP\yp0q maximum
during the dry season, at this site precipitation was significantly seasonal (wet season was the
rainiest of all equatorial sites) and the amplitude of the seasonal cycle of SWgown was the highest of
all Brasil flux central Amazon locations. By contrast, models simulated a peak in NPP,,004 at CAX
and K67 that corresponded to the beginning of the dry season. The seasonality of model NPP,,004
was absent at the three equatorial forests and only significant differences between the wet and dry
periods were observed at RJA, where all simulations showed mininmim NPP,,04 at the end of the

dry season.
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Figure 4. Fromtop to bottomannual cycle of daily average ecosystem photosynthetic capacity (Pc,
GPP at a fixed PARrange 725-875 pmol m* s'l, Leaf Area Index (LAI; m m'l), normalized LAI (its
value constrained between O and 1 in order to better track its changes), net primary productivity
(NPP; m™ d1)allocated to leaves -leaf flush (NPPiegf; m?d™), NPP allocated to litter-fall (NPPjiger-
fall; 8C m? d™). Gray shaded areais dry season as defined using satellite derived measures of
precipitation (TRMM: 1998-2014). Lower row NPP allocated to wood (NPPyood; gCm> d ™).
From left to right study sites (fromwet to dry forest) near Manaus forest (K34), Caxiuana forest
(CAX), Santarém forest (K67), and Reserva Jari southern forest (RJA). Observed (black) versus
simulated by models (colors). Simulations from ED2 (blue), IBIS (red), CLM3.5 (green), and
JULES (purple). Dashed green lines (CLM3.5) at NPPiiter-fai and NPPjeqf, indicate average values

for comparison purposes (models allocated at the end of the year as indicated by continuous line).
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Figure 5. From left to right study sites (fromwet to dry forest) near Manaus forest (K34), Caxiuana
forest (CAX), Santarém forest (K67), and Reserva Jarti southern forest (RJA). From top to bottom,
annual cycle observed (black) and model simulations from JULES (purple), CLM3.5 (green), IBIS
(red), and ED2 (blue). Normalized (by its seasonal maximum) annual cycle of daily average
ecosystem-scale photosynthesis (GPP/GPP ) (continuous line), net primary productivity (NPP)
allocated to leaves -leaf flush (NPPjeaf/NPPeafmax), NPP allocated to litter-fall (NPPliitter-fait /NP Plitter-

falimax), and NPP allocated to wood (NPP\0d/NPP\ood max). Gray shaded area is dry season as
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defined using satellite derived measures of precipitation (TRMM: 1998-2014).
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Our analysis shows a statistically significant negative linear regression between SWaown and NP P04
with a coefficient of determination, R? equal to 0.45 at K67 and 0.62 at CAX (p<0.01) (Supplement
Fig. 3). Non-significant correlation was found between SWyown and NPP,004 OT precipitation and

NPP,vod at K34 -the wettest and least seasonal of the four studied forests.

Seasonal observations of the different NPP components and GPP showed a lack of temporal
synchrony between them, neither a shared allocation pattern among forests —each exhibiting
different phenology (Fig. 5). Atsome sites (CAX and K67), there was a statistically significant
correlation (~1 to 2-month lag, NPPj.qfahead) between GPP and NPPeqf (Supplement Fig. 5).
However, there was no temporal correspondence between GPP and NPP,,y04. By comparison,

model allocation (NPPeqf, NPPiitter-fanand NPP\,04) and GPP was coupled at most models (Fig. 5).

3.2 Ecosystem respiration (R.) and net ecosystemexchange (NEE)
Similar to GPP, the timing and amplitude of ecosystemrespiration (R.) seasonality at RJA was well
captured by most models; however, all simulations at equatorial Amazon sites overestimated Re. In
particular, during the months for which R, reached a minimum -the wet season at CAX and the dry
season at K67, model R, showed opposite seasonality to observations. The imbalance between
predicted R. and GPP translated into an underestimation of the observed net ecosystemuptake
(negative NEE), with the models predicting a positive NEE (strong carbon source), in particular, at
K34 and CAX. More importantly, the seasonality of NEE in the equatorial forests (K34, K67 and
CAX) was missed, with the LSMss foreseeing a greater carbon loss during the dry season, as

opposed to those observed during the September-December losses (Fig. 3).
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4, Discussion
In this study, we found thatland surface models poorly represented the annual cycle of carbon flux
dynamics forthe Amazon evergreen tropical forest sites with eddy covariance towers. In particular,
at equatorial Amazonia, observations showed an increase in GPP, Pc, and/or LAl during the dry
season. In contrast, models simmlated constant or declining GPP and Pc, and in general, assumed
no seasonal cycling in LAI (Fig. 4). The disparity between model and in situ measurements of GPP
indicated that there is a bias in the modeled ecosystemresponse to climate and a lack of
understanding of which drivers, meteorological (e.g. light or water) or phenological (e.g. leaf
demography) or a combination thereof, control ecosystemcarbon flux Moreover, a mismatch
between seasonal observations of carbon pools and allocation strategies (NPPjeqf, NPPyood, NPPliitter-
fair) and model results, highlights the importance of phenology as an essential tool for understanding

productivity within the tropical forest of the Amazon.

4.1 Seasonality of gross primary productivity (GPP), and other carbon fluxes

We observed the greatest discrepancies between measured and model predicted GPP, R., and NEE
at central Amazon sites, where productivity is hy pothesized to be primarily controlled by a
combination of light availability and phenology (Wu et al., submitted; Restrepo-Coupe et al., 2013).
By contrast, models were able to capture the “correct” seasonality at the southern forest of RJA, a
site that shows significant signs of water limitation. However, at RJA the amplitude of the annual
cycle were overestimated by most models, which assume lower than expected GPP during the dry
season. QOurresults suggest that, while models have improved their ability to simulate water stress;

their ability to simulate light-based growth strategies is still an issue.

Satellite phenology studies have shown annual precipitation values and the length of the dry season
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489 to beimportant factors when determining ecosystemresponse (Guan et al., 2015). Nevertheless,
490 K67 and RJA share similar rainfall values, with MAP of 2030 mm year'l, dry season precipitation
491 (DSP) of 50 mm rnonth‘l, and a4 to 5 month dry period, only the minimmm annual precipitation
492  differs, having RJA MiAP of 14 compared to 37 mm month ™' measured at K67. Moreover,

493 increasing levels of incoming light at K67 and other equatorial sites during the dry season provided
494 an opportunity for vegetation to increase productivity under the existent precipitation regime, as

495 rainfall delivered more than 50% of ecosystemwater needs assuming a monthly ~120 mm

496 requirement. For central Amazon tropical forests, observed increases in GPP, vegetation

497 photosynthetic potential (Pc as a proxy), and allocation pattems, linked to light harvesting strategies,
498 were concurrent with the reported incoming in solarradiation increase (Huete et al., 2006; Brando
499 et al., 2010; Restrepo-Coupe et al., 2013). By comparison, at RJA, there was no tradeoff between
500 light, precipitation and atmospheric demand, as solarradiation was somewhat aseasonal (with a

501 maximum at thebeginning of the wet season) and dry season rainfall values (MiAP) reached less
502 than 10% of mean tropical forest ET.

503

504 4.2 Carbon allocation strategies

505 Models include LAIin the vegetation dynamics module using a variety of strategies: (1) prescribed
506 LAIvalues fromremote sensing sources; (2) dynamic calculation of daily LAI; and (3) LAI is fixed
507 and the model later allocating any changes at the end of the year, thus only to calculate changes in
508 thecarbon balance and next year LAI values. This last approach may need to be re-evaluated given
509 theimportance of phenology as an ecosystemproductivity driver. Models that dynamically

510 calculate LAI generally rely in defining LAIrange values foreach PFT (Clark et al., 2011), where
511 theactual value will depend mostly on the phenological status of the vegetation type —a function of

512 temperature. Although some evergreen ecosystems do respond to temperature thresholds (e.g.
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positive correlation between T,;- and LAI and a threshold at T,;>0has been identified for conifer
forests at temperate areas (Khomik et al., 2010)), LAI and Pc at tropical ecosystems do exhibited a
negative orno correlation with Tqir. Moreover, model LAI values were unreasonably 2+ units above
observed values (Baldocchi et al., 1988; Gower et al., 1999; Asneret al., 2003; Sakaguchietal.,
2011). Some models assumed LAIvalue above six, the theoretical limit of LAI (assuming no
clumping and planar leaf angle distribution) according to Beer’s law. Similar to previous findings
by Christoffersen et al. (2014) regarding model performance when simulating water fluxes, some of
the model deficiencies could be resolved by changing the parameterization of each PFT, such as the
case of maximum and minimmm LAI values. However, a true improvement will only come if we
increase the frequency and coverage of our measurements, and a better understanding of the carbon
allocation, mechanisms that control the change in LAI and the balance between loss due to

abscission, leaf production, and other ecosystem processes.

In the observations, Pc values increased during the dry season at all central Amazon sites. Elevated
Pc can be achieved through leaf flush, as younger leaves have higherleaf carbon assimilation at
saturating light (Amqex) compared to old leaves (Wu et al., submitted; Sobrado, 1994), or by changes
in leaf herbivory, epiphyllous growth, and stress, among other factors. Altematively, Pc can be
increased through a surge in canopy infrastructure (quantity of leaves) measured as leaf area index
(LAI) (Doughty & Goulden, 2008). Our observations suggested a combination of these two
processes or Pc mostly driven by the presence of younger leaves, as we observed a small increase in
LAI at K67 during the dry season (0.7 m’/m’ ~10% of annual mean) and a gradual decline at CAX,
respectively. In orderto address the relationship between leaf demography (leaf age distribution)
and carbon fluxes, we presented the seasonality of in situ observations of NPPjeqfand compared it to

model estimates. We have shown that, at the equatorial Amazon estimated NPPeqf was
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synchronous with the seasonality of SWgown. Thus, increasing light may trig ger new leaf production
as part of a light-based growth strategy missed by the models evaluated here. Some vegetation
schemes have introduced a time-dynamic carbon allocation: to leaves, generic roots, coarse and fine
roots, etc. However, even if models assign NPPj.qf varying turnover time from 243 days toa
maximum of2.7 years, the timing of leaf production seems to be missed. The counterintuitive
mechanism observed at some central Amazon forests where all or most of the leaf-demography
processes (leaf-fall, leaf-flush and LAI) increase during the dry season, constitutes an important
challenge formodelers and plant physiologists. An appropriate model representation and further
studies are required of: (1) theleaf lifespan, (2) the seasonality of leaf age distribution (e.g. sun and
shade leaf cohorts: young, mature, old), (3) the effect ofleaf-fall on increasing light levels at lower
layers of the canopy, and (4) the relationship between leaf age and physiology (Albert et al., in
preparation), to properly characterize Amazon basin leaf phenology and associated changes in
productivity. Thus, as a homogeneous age cohort where all leaves have similar ability to assimilate
carbon can contribute to the model simmlated aseasonal Pc and GEP seasonality driven only by

water availability.

Previous studies have linked the robustmess of models predictions of the terrestrial ecosystem
carbon response to climate change projections to the uncertainty of the different carbon pools within
the models (Ahlstromet al., 2012). Observations show that the seasonality of allocation (e.g.
NPPliitter-fair) and leaf-demography (e.g. NPPjeq) are closely related to the fast and slow soil carbon
pools (input) and ecosystemrespiration. Decomposition of NPPjjqer-fan initiates the transfer of
carbon to the soil microbial and the slow and passive pools in many models and determines
heterotrophic respiration. Similarly, autotrophic respiration (maintenance and growth) also will be

driven by live tissue allocation (NPPyood, NPPjeaf, and NPPyoors). Therefore, Reco will depend ona
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561 well-characterized phenological response of litter and woody debris, wood and leaf accumulation,
562 and the soil carbon pools. Still, in some models and according to aset of prescribed allometric

563 relationships for each PFT where leaves, fine roots and stems NPP are allocated at the end of each
564 simulated year. Thus, toimprove simulation-data agreement and to generate reliable projections for
565 ecosystemresponse to climate perturbations, the next generation of models must include abasic

566 mechanistic understanding of the environmental controls on ecosystemmetabolism that goes

567 beyond correlations (e.g. NPPjeqf versus SWaown, NPPlicer fai1 versus Precip) and addresses the long
568 time adaptation to climate and their seasonality. We highlight the need for extended EC

569 measurements accompanied by seasonal based biophysical inventories, as both datasets

570 complement and inform each other.

571

572 Theseasonal patterns in seasonal GPP and NPP (leaf and wood); showto be (1) aseasonal at K34;
573 (2) synchronous at CAX; and (3) out-of-phase at K67. The GPP, NPPjeqfand NPP\,,04 dry-season
574 maxima at CAX may be interpreted in terms of a combination of mechanisms: (1) optimal

575 allocation pattemns (Doughty et al., 2014) -- in sync photosynthetic activity and carbon allocation
576 driven by dry-season light increases; and (2) reflect biophysical limitations (Fatichiet al., 2014) - -
577 wet season anoxia, drive both leaves and wood to be produced during the dry season. Similar to

578 CAX, observations of a simultaneous increase in NPPjeqfand NPP\o0q during the dry season have
579 been reported at seasonally inundated floodplain tropical forests, where anoxia limits respiratory
580 requirements of NPP,0q4 and show peak NPP,,.4 shifted into the dry season (Dezzeo et al., 2003).
581 Consistently, seasonal observations at flooded forests showed reduced production of new leaves and
582 lower photosynthetic assimilation during the inundation period (Parolin, 2000). By comparison, the
583 NPP,oqpatterns observed at K67 where dry-season MiAP is ~50% of mean annual ET may reflect

584 biophysical limitations on the sink tissue (e.g. cell turgor and cell division in cambial tissues) - -
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water availability as a driver (Wagner et al., 2012; Rowland et al., 2013), or/and an allocation
strategy that favors NPPjeqr to NPPyooa. At K67 and K34 forests, the timing of GPP versus NPPyood

highlights the importance of NSC (Fatichi et al., 2014) and difficulties faced by more mechanistic

LSMs.
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Figure 6. Ecosystemresponse to climate seasonality [selection of biological adaptive mechanisms:
lisht harvest adaptations (green tones), allocation strategies (orange tones), and water limitation
(blue tones). Mechanisms classified when possible into resource optimization (Opt) and biophysical

limitations (Lim).

4.3 Final considerations for model improvement
This study identified three main tropical forest responses to climatic drivers that if understood could
reduce the model — observation GPP discrepancies. These are (1) light harvest adaptation schemes;

(2) response to water availability; and (3) other allocation strategies (Fig. 6). We propose thorough
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(1) optimization patterns and (2) thresholds (limitation) to obtain the seasonality of the different
carbon pools. Forexample, models could incorporate some of the recent findings: (1) leaf
demography as a function of light environment as in Wu et al. (submitted), and (2) leaf phenology
(greenness) seasonal patterns driven by soil moisture availability as a function of MAP threshold as
in Guan et al. (2015). However, less has been reported about other processes and reservoirs
different than NPPj.qs. In particular, our study lacks belowground information, as data that explores
the seasonality of root allocation at tropical sites is scarce and difficult to interpret. Future work
should address this important carbon-pool and the correspondent model ability to simulate the

seasonality of belowground processes.

Climate models have come a long way, fromthe 1970 when the first land surface scheme was
introduced in order to represent the atmosphere-biosphere interaction by partitioning ocean from
dry land (Manabe & Bryan, 1969). Simulations of water, energy and carbon fluxes based on the
response of different plant functional types to climate drivers and disturbance signifies a great step
forward on weather prediction and the study of future climates under the effect of land cover
changes and atmospheric CO» enrichment (Pitman, 2003; Niu & Zeng, 2012). Models are
constrained in their development given the high computational needs and the multiple processes
that need to be accounted for on athree dimensional grid from LAI seasonality, to ground water flux,
to leaf level parameterization, thereis a tradeoff and a “priority list”. This study highlights some of
the advances in tropical forest simulations of carbon and water fluxes and aims to identify future
opportunities, as the inclusion of light harvesting and allocation strategies in an attempt to improve

GPP and NPP predictions.
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5. Conclusions
At central Amazon tropical forests, fourland surface models (LSMs) simulated gross primary
productivity (GPP) peaks at the end of wet season, and then declines along with the progress of the
dry season, thus in contrast to eddy covariance observations, which reach a mininmm GPP at end of
wet season and then increase in the dry season. Similarly, the modeled annual cycle of daily
average ecosystem-scale respiration (R.) and net exchange (NEE) was out-of-phase and their
absolute values were overestimated for R, and underestimated for NEE. The above-mentioned
discrepancies between predicted and observed carbon fluxes indicate that some models may be
missing important processes. Ourwork highlights phenology, allocation strategies, and plant
physiological responses to seasonal climatic constraints (i.e. low light and water availability) as
important descriptors of ecosystemphotosynthetic capacity (Pc), and thus, key drivers of ecosystem
productivity and other metabolic processes (e.g. heterotrophic respiration). Interestingly, water
limitation issues previously reported seemto be resolved by most models, as seen by improvements

on the simulation of ecosystem ET.

Weexplore different ESM approaches to trackthe phenology of carbon allocation, in particular
measures of plant metabolism (Pc as proxy), standing biomass (wood increment and leaf-flush) and
additions to soil organic matter (leaf-fall) in an attempt to understand the model-data discrepancies
on the estimates of GPP and NEE. We are able to identify the seasonality of net primary
productivity allocated to litter-fall (NPPiitter-fair) and leaf production (NPPeqf) and the total balance
(leaf area index, LAI) as key biological drivers, which if understood (mechanisms and vegetation
response) and properly implemented, could improve model predictions. In particular, in situ
observations show that at the central Amazon estimated NPPieqfis synchronous with the seasonality

of incoming solarradiation, alight-based growth strategy missed by most of models. Similarly, the
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seasonality of LAI at tropical forests seems underestimated and the mechanisms that control the
change in LAl and the balance between loss of capacity due to NPPjirer-fan and increase of capacity
from NPPjeqf, not well understood. The counterintuitive leaf-demography process observed at some
equatorial Amazon sites (NPPliiter-fal1 versus NPPjeqr) where Pc and/or LAl increased during the dry
season, and the here reported lags between GPP and NPP,,04, challenge Amazon basin model
phenology representations. As fluxes are not exclusively driven by meteorology, incorporating this
key biological adaptive mechanisms into ESMs is an important taskin order to advance our

understanding of tropical veg etation-climate feedbacks.
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