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1. INTRODUCTION

The use of fundamental and technical analysis by financigken@rofessionals is well doc-
umente(ﬂ. Empirical evidence suggests that investors and fund masage combinations of
fixed and switching strategies based on fundamental anaitadranalysis when making in-
vestment decisions. Recent laboratory experiments (eamrhkset al, 2005 and Anufriev
and Hommes, 2012) provide further evidence on that agestsiogle “rule of thumb” trading
strategies and are able to coordinate on a common prediatlenshowing that heterogene-
ity in expectations is crucial to describe individual fometing and aggregate price behavior.
Many heterogeneous agent models based on investors’ loeludvising fixed and, in particu-
lar, switching strategies can replicate volatility clustg and long range dependence in return
volatility. However, an empirical test of such switching debis still a challenging task and this
paper is aimed to address this challenge. In this paper wérieally test a simple asset pric-
ing model of heterogeneous agents using both fixed and sngistrategies and show that the
model is able to characterize the power-law behavior of tily dAX 30 index from 1975 to
2007. More explicitly, we show that the market is dominatgdhvestors who constantly switch
between fundamental and trend following strategies, aljhcsome investors never change their
strategies over the time. The results provide a strong stifppthe empirical evidence and lab-
oratory experiments. Consequently, we provide a diffenesight into the explanatory power
of heterogeneous agent models to financial markets.

This paper is largely motivated by the recent literature etierogeneity and bounded rational-
ity. Due to limited information and endogenous uncertawityhe state of the world, investors
are prevented from forming and solving life-time optimieatproblems in favor of more sim-
ple reasoning and rules of thumb (Shefrin, 2005). In genamaéstors are boundedly ratio-
nal by making optimal decisions based on their limited infation and expectations (Sargent,
1993). There is a growing evidence on investors’ heteratgeard bounded rationality, which
has profound consequences for the interpretation of eoagpievidence and the formulation of
economic policy (Heckman, 2001). Research into assetngriand financial market dynam-
ics resulting from bounded rationality and interaction déptively heterogeneous traders has
flourished over the last three decades and various hetexogeragent models (HAMs) have

1See, for example, Allen and Taylor (1990), Taylor and All&892), Menkhoff (1998) and Cheurag al, (2004)
for foreign exchange rate markets and Menkhoff (2010) fadfmanagers.
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been developeﬂi.‘l’o explore the role of agents’ heterogeneity in financialkats, the market
dominance of different trading strategies representedfterent types of traders plays a central
role in market price behavior. It has been modelled eith@liciily by examining their relative
activity impacts, such as Day and Huang (1990) and Chiaf&882) in early literature, or ex-
plicitly by examining their market fractions, such as Lu®9b), Brock and Hommes (1998),
and Dieci, Foroni, Gardini and He (2006). The HAMs have sasfidly explained market
booms, crashes, and deviations of the market price fromuh@aimental price. They are also
able to replicate various stylized facts (including excedatility, excess skewness, fat tails,
volatility clustering and power-law behavior in return a&blity) observed in financial markets.

The promising perspectives of the HAMs have motivated firémpirical studies. Focusing
on the model of Dieci et al. (2006), which allows for agenthei having fixed strategies or
switching their strategies based on past performance ower tve extend the model to include
noise traders to rationalize the market noise in the modeichvplays a very important role
in explaining the power-law behavior. Our main contribatis to systematically calibrate a
number of structural parameters of the model and subsdgysemform series of formal econo-
metric tests, showing that the calibrated model with botadignd switching strategies is well
able to replicate a large number of stylized facts. We tloeegprovide a different insight into
the explanatory power of rational switching behavior oféstors on the volatility clustering
and long range dependence in return volatility.

This paper is closely related to a growing literature on thiébcation and estimation of the
HAMs in which the heterogeneity has been modeled throughviileknown fundamentalists
and chartists approach. These models have been succgsstkd to empirically explain spec-
ulation and bubble-like behavior in financial marl&t@ecently, He and Li (2015) estimate a
simple market fraction asset pricing model with heterogesragents in which agents use fixed
2See, for example, Frankel and Froot (1990), Day and Huar@0(l Thiarella (1992), Lux (1995, 1998), Brock
and Hommes (1998), Lux and Marchesi (1999), Hommes (20019n@nd Yeh (2002), Farmer and Joshi (2002),
Chiarellaet al.(2002), Chiarella and He (2002, 2003), and De Grauwe and &udirn?006).

SWe refer the reader to Hommes (2006), LeBaron (2006), Claae¢ al. (2009), Lux (2008), and Cheret al.
(2012) for surveys of recent developments in this litemtur

4See, for instance, earlier works by Vigfusson (1997), B48#©9), Chavas (2000), and for stock markets (Boswijk
et al, 2007; Franke, 2009; Franke and Westerhoff, 2011, 2012ar€lé et al, 2012, 2014; He and Li, 2015),
foreign exchange markets (Westerhoff and Reitz, 2003; g 8bal, 2010; ter Elleret al, 2013), mutual funds
(Goldbaum and Mizrach, 2008), option markets (Frigisl, 2010), oil markets (ter Ellen and Zwinkels, 2010),
and sovereign European CDS markets (Chiaretlal, 2015). Also, HAMs have been estimated with contagious

interpersonal communication by Gilli and Winker (2003)fakanoet al. (2005), Lux (2008, 2012), and other
works reviewed in Liet al. (2010) and Cheeet al. (2012).
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strategies (without switching). For the estimated model sivow that the autocorrelations (of
returns, absolute returns and squared returns) of the mfaak&ion model share the same pat-
tern and the power-law behaviors as those of the DAX 30. Thelt® strongly support the
explanatory power of the heterogeneous agents models. \Howehether switching models
can be tested empirically to explain volatility clusteriagd power-law behavior is less clear.
For example, Amilon (2008) estimates two specificationsefdéxtended Brock and Hommes
switching models described in De Grauwe and Grimaldi (206 concludes that the simple
prototype models he estimated seems to have potential taiex@mpirical facts, however the
fit is generally not quite satisfactory. Intuitively, withtronal switching behavior of investors,
we would expect switching models to work better empiricalifne difficulties come from the
nonlinearity and complexity of the HAMs, together with mgmgrameters.In this paper, fol-
lowing Li et al. (2010) and He and Li (2015) we take the weak econometricprggaition of
Geweke (2006) based on the power-law decay patterns of tioeatelation of returns, the
squared returns and the absolute returns for the DAX 30 staeket daily closing price index.
We do this by choosing the interesting parameters in the evimadel class that minimize the
distance between particular actual data based autodioredeand HAMs based autocorrela-
tions. Different from He and Li (2015), we model the switapinehavior of some investors,
in addition to other investors who use fixed strategies. Bydoating econometric analysis via
Monte Carlo simulations of the model with estimated paramsgtwe show that the autocorre-
lation patterns, the estimates of the power-law decay @s]i(F)GARCH parameters, and tail
index of the model match closely to the corresponding esémior the DAX 30. Our results
therefore provide a strong support to the empirical evidemt the popularity of fundamen-
tal and technical analysis, boundedly rational and ademwitching behavior of investors in
financial markets.

The paper is structured as follows. Secfion 2 reformuldtesatiaptive asset pricing model
developed in Dieci et al. (2006) to include noise tradersctiBe[3 calibrates the model to
characterize the power-law behavior of the DAX 30. Sedtigrebents an explanation on the
generating mechanism of the power-law behavior of the mod also conduct formal tests
to see how well the calibrated model is able to describe theacteristics of the DAX 30 and

how the model fits compare to pure switching and no-switchiloglels. Sectionl5 concludes.

SWe refer to He and Li (2015) for a detailed discussion on tigsees.



2. THE MODEL

Empirical evidence (Allen and Taylor, 1990 and Taylor anteA) 1992) suggests that the
proportions of agents relying on particular strategiefhisasctechnical and fundamental analysis
may vary over time, although there are certaimfidentagents who do not change their strategy
over time. Recently, Menkhoff (2010) analyzes survey ewvigefrom 692 fund managers in
five countries. He finds that the share of fund managers thadtdaast some importance on
technical analysis is very large. Though technical analgsies not dominate the decision-
making of fund managers in general, at a forecasting horteveeks, Menkhoff (2010) finds
that technical analysis is the most important form of arialged is thus more important than
fundamental analysis, which is in line with findings fromdamn exchange in Menkhoff (1998)
and Cheunget al. (2004). Menkhoff (2010) strongly supports the view thatenhejeneous
agents have different sets of information or differentdfsliabout market processes. Also the
use of technical analysis seems to react to this view withdufellowing behavior (and also
by relying more strongly on momentum and contrarian investinstrategies), believing that
psychological factors are important and herding is berafidihis view has also been shared
by recent laboratory experiments in Homnegsal. (2005) and Anufriev and Hommes (2012).
They show that agents using simple “rule of thumb” tradimgtsgies are able to coordinate on
a common prediction rule. Therefore heterogeneity in etgtens and the adaptive behavior
are crucial to describe individual forecasting and aggeegece behavior.

Based on the empirical evidence, Dieci et al. (2006) extemty eHAMs of Brock and
Hommes (1998) by considering a more general setup that mfaak¢ions have both fixed and
adaptive switching components. In each trading period sgame assumed to be distributed
among two groups, relying upon different predictors (ocat&gies, or behavioral rules), funda-
mental traders (or fundamentalists) and trend followersf@artists). The market fractions in
a given period are partially determined by the past perfoceaf the strategies over time and
partially fixed. In other words, a switching component isaduced to characterizedaptively
rational behavioof agents who choose different strategies over time aaegridi their perfor-
mance. A constant component of agents is used to represemisagho are confident and stay
with their strategies over time. While the fixed fraction gument expresses tinearket mood

the switching fraction component captures the effece\adlutionary adaption The focus of
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Dieci et al. (2006) is to explore the complicated price dyieof the corresponding nonlinear
deterministic model, while the focus of this paper is on thekical testing of the model to
characterize the power-law behavior of the DAX 30. To calibrthe model, we find that the
additive market noise plays an important role. To ratiareathe additive market noise, apart
from the fundamentalists and trend followers in the moddieti et al. (2006), we also intro-
duce noise traders who play an important role in financiaketaisee, for example, Deloref
al. 1990). We show that the resulting model is actually the sasnt@ model of Dieci et al.
(2006) with a market noise.

Consider an asset pricing model with one risky asset andiskéree asset that is assumed
to be perfectly elastically supplied at gross retdtn= 1 + r/K, wherer is the constant
risk free rate per annum and is the frequency of trading period per year. ete the (ex
dividend) price per share of the risky asset &} the stochastic dividend process of the risky
asset at time. There are three types of traders (or investors/agentsjlaimental traders (or
fundamentalists), trend followers (or chartists) and edraders, denoted by tyge2 and3
traders respectively. L&D, .(i = 1,2, 3) be their market fractions at time respectively. We
assume that there is a fixed fraction of noise traders, ddigyte;. Among1 — ns3, the market
fractions of the fundamentalists and trend followers haxedfiand time varying components.
Denote byn; andn, the fixed proportions of fundamentalists and trend follawaenongl —ns,
respectively. Theril — n3)(n; + n9) represents the proportion of traders who stay with their
strategies over time, whil@ — n3)[1 — (n; + n2)] is the proportion of traders who may switch
between the two types. Among the “switching” traders, weaten, ; andny; = 1 — ny; the
proportions of fundamentalists and trend followers at timeespectively. It follows that the

market fractiong(Q); ;, Q2+, Q3 ) at timet are expressed by

Q1+ = (1—n3)[m+(1—n1—ng)n1 4, Q2+ = (1—n3)[na+(1—n1—ng)nayl, Q3 = ns.

Denoteny = ny + ng, mg = (ny — na2)/ne andm,; = ny; — na. Then the market fractions at

timet can be rewritten as



;
Let R, 1 := prr1 + Diy1 — Rp, be the excess return per shargint + 1). Forh = 1,2,
let £, andV},, be the conditional expectation and variance of typtaders. LetiV,, be
investor’s wealth at timeé and z;, ; the number of shares of the risky asset held by the investor
from ¢ tot + 1. Then the wealth of investor of typeatt + 1 is given byW,, ;11 = RW),, +
2nt(pee1 + Div1 — Rpy). Assume that traders maximize the expected utility of vieiibction
Un(W) = —exp(—ap,W), wherea, is the risk aversion coefficient of typetraders. Then,
under the standard conditional normality assumption, #reahdz;, , of a typeh trader on the
risky asset is given by, ; = Ej, 1 (Ri+1)/(an Vit (Res1))-
Assume the demand of the noise traders is givegy by N (0, ag), which is an i.i.d. random
variable. With zero supply of outside shares, the poputatieighted average excess demand
Z.+ attimet is given by

Zer = Q214 + Qoy 224 + 13

Following Chiarella and He (2003), the market price in eaeldihg period is determined by
a market maerwho adjusts the price as a function of the excess demand. ahieetrmaker

takes a long position whe#., < 0 and a short position whef.; > 0. The market price is

adjusted according to

Diy1 = Dt + Aey, (2.2)

where\ denotes the speed of price adjustment of the market makentBe = (1 — n3)A and

os = Ansoe. Then equatiori (212) becomes
Per1 = Pi + et + Oy, (2.3)

whereZ.; = q; 214 + qo¢ 224 @ndd; ~ N(0,02) with ¢;; = Q; /(1 — n3) fori = 1,2. The
price equation(2]3) is exactly the model developed in Déteil. (2006).

For completeness, we now describe briefly the heterogermaigfs of the fundamentalists
and trend followers and the adaptive switching mechanistrafer the readers to Dieci et al.
(2006) and He and Li (2008, 2015) for the details. Fundaneratders are assumed to have
some information on the fundamental valpie, of the risky asset at timEH They believe
SDifferent from the Walrasian equilibrium price mechanissed in Boswijket al. (2007), we use market maker
partial equilibrium mechanism for the convenience of qaliiton. The market maker mechanism has often been
used in HAMs for its simplicity and convenience.

There is a subtle difference on the information about thel&umental values among investors. For these investors

who have fixed strategies, only the fundamentalists, natréme followers, have the information about the funda-
mental value. This is the assumption in the market fractiodehof He and Li (2015). However, for those investors
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that the stock price may be driven away from the fundameniakpn the short run, but it
will eventually return to the fundamental value in the langr. Thus the conditional mean and

variance of the price for the fundamental traders are asguoi®llow

El,t (Pt+1) =P+ (1 - Oé)(P:H - Pt)> Vl,t (pt+1) = U%, (2.4)

wheres? is a constant variance on the price. The speed of adjustmwatds the fundamental
price is represented byl — a), where0 < « < 1. Anincrease inx may thus indicate less
confidence on the convergence to the fundamental pricenigémla slower adjustment.

Unlike the fundamental traders, trend followers are assiimextrapolate the latest observed
price deviation from a long run sample mean price. More gedgj their conditional mean and

variance are assumed to follow

Eoi (pry1) = pe + 7 (pr — we) Vor (pes1) = U% + by, (2.5)

wherey > 0 measures the extrapolation from the tremdandv, are sample mean and variance,

respectively, which follow
up = oug_q + (1 —9) py, vy =0v1+0(1—9)(p — ut_l)z ,

representing limiting processes of geometric decay psssewhen the memory lag tends to
infinity.H Hereb, > 0 measures the sensitivity to the sample variancedaad 0, 1) measures
the geometric decay rate. Note that a constant variancsusreei for the fundamentalists who
believe the mean reverting of the market price to the fundaahg@rice; while a time-varying
component of the variance for the trend followers refleatsetktra risk they take by chasing the
trend.

We now specify how traders compute the conditional variarfitiee dividendD, , ; and of the
excess returik,; over the trading period. For simplicity we assume that tragddare homo-
geneous belief about the dividend process and that thengygudiriod dividend), is i.i.d. and

normally distributed with mea and variance?. The common estimate of the variance of the

who are switching between the fundamentalists and tretalfets, the information about the fundamental value
is know for them. This is the assumption of the switching HAMs

8with a geometric decaying probability distributiofl — §){1,4§,62,62,---} over the historical prices
{pt,Pt—1,Pt—2,Pt—3, - , }, ux andv, are the corresponding sample mean and variance. See He) 2008
detailed discussion on the process.
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dividend ¢%) is assumed to be proportional to the variance of the fundgaherice, with no
correlation between price and dividend. It follows thatees’ conditional variances of the ex-
cess return can be estimatedV; ; (Ri1) = (1 +72) of andVa,; (Riy1) = 0% (1412 + byy),
whereb = b,/0?. Denote byp* = D/(R — 1) = (K/r)D the long-run fundamental price.
Using (2.4) and[(2]5), it turns out that traders’ optimal @ewhs are determined by

(a—1) (p —piyy) — (R=1) (p — 1) o —w) = (R=1) (p—p")
ar (1+1r?)o? e A aso? (1 412 + buy) '

21
(2.6)
Denote by, .11 the realized profit, or excess return, betweemd¢ + 1 by traders of type
h, Thi+1 = 2nt(Pes1 + Dis1 — Rpr) = Wh1 — RW,,, for h = 1,2. Following Brock and
Hommes (1997, 1998), the proportion of “switching” tradat$imet + 1 is determined by

- _ exp [ﬂ (7Th,t+1>]
1 S exp [B(mi41)]

h=1,2,

where paramete? is theintensity of choiceneasuring the switching sensitivity of the popula-
tion of adaptively rational traders to the better profitaditategy. Together witlh (2.1) the market

fractions and asset price dynamics are determined by thenviolg random discrete-time dy-

namic syste
Pror = P+ 1(que 210+ Qo 200) + 0, 6~ N(0,03), (2.7)
up = oug_q + (1 —9) py, (2.8)
v = 601 + 6 (1—68) (pr — us1)?, (2.9)
m; = tanh {g (214-1 — 224-1) (0t + Dy — Rpt_l)} , (2.10)
D, =D+ opu, v, ~ N(0,1), (2.11)

% The long-run fundamental value is given by = (K D)/r, whereK D is the average annual dividend. Lt
be the annual volatility of the price, whereo represents the annual volatility afdollar invested in the risky
asset. Under independent price increments, the tradirigdoeariance of the price can be estimatedrgs=
(p*o—)2 /K. Denote byD 4 andcf,%A the annual dividend and its variance and assume an apprexigiationship
D4 = rp between annual dividend and price. Then one ggfs = r*(op*)* and thereforer, = o}, /K =
r?(op*)?/K = r?0?. Assuming zero correlation between price and dividencbalinig period frequency, one then
obtainVi ; (Re+1) = (1+72) of andVa; (Rey1) = 03 (1 +12) + bavy.

1%ere the hyperbolic functiotanh(z) is defined bytanh(z) = (e* — e=*)/(e® + e~%).
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wherez; ; andz,, are given by[(2J6). The fundamental price is assumed toviolaandom
walk, such th

Piy1 = D; exp(—%2 toe), a~N(0O1), 020,  pi=p >0, (212)
whereg, is independent of the noisy demand procgs3 he corresponding deterministic model
can exhibit complicated price dynamics, which help us toaustnd the underlying mechanism
of the power-law behavior of the stochastic model. Whenrglgeno trader who switch between
the two strategies, the model developed in this paper radcte no-switching model in He
and Li (2015). We refer the reader to Dieatial. (2006) for the complex price dynamics and
He and Li (2007, 2015) for a detailed discussion on the mdshan

3. ESTIMATION OF THE POWER-LAW BEHAVIOR IN THE DAX 30

For the no-switching model, by model estimating, He and Dil&) show that the autocor-
relations (of returns, absolute returns and squared r€twfithe market fraction model share
the same pattern as those of the DAX 30. By conducting ecotrama@alysis via Monte Carlo
simulations, He and Li (2015) characterize these powerdataviors and find that estimates
of the power-law decay indices, the (FI)\GARCH parametard,the tail index of the estimated
market fraction model closely match those of the DAX 30. Témuits strongly support the ex-
planatory power of the heterogeneous agents models. Fextarded model (2.7)-(2.112) with
both fixed and switching traders, we are interested in théaegpory power of the adaptive
behavior of investors in financial markets. We follow the sagstimation procedure as in He
and Li (2015) and show that the model with the switching is alsle to explain the power-law
behavior of the DAX 30. The finding provides a strong evidemeehe rational switching and
adaptive behavior in financial markets.

After a brief discussion of the stylized facts of the DAX 3@¢luding both fat tail and power-

law behavior, we introduce the calibration procedure toom#te autocorrelation patterns in the

IThe specification of the fundamental price proces$in (2i42p make sure that there is no significant ACs
in returns, absolute returns and squared returns in theafaaedtal price. Since the focus of the paper is on the
characteristics of returns, we also choose the fundamprita proces®; defined in equation (2.12) to have an
expected mean return of zero. In general, the fundameritad igcalculated from the dividend. For simplicity we
assumep; = KD, /r here. Therefore we can impose the same random prdcess ¢ 112¢ dividend, which is
equivalent to[(2.12) on the fundamental price. The longfamalamental valup* = (K D) /r defined in Footnote
only indicates a reference long-run fundamental valuéchvis chosen as the initial value of the fundamental
price process.
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returns, absolute and squared returns for the DAX 30, ptéisercalibration result and conduct
an out-of-sample test. Based on the calibrated parameteted model, we use Monte Carlo
simulations to examine the effectiveness of the calibnatfogenerating the autocorrelation
patterns and estimating the decay indices of the power-&vawior, comparing with those of
the DAX 30. We also use the calibration result to examine thegs-law tail behavior of the
model comparing with the DAX 30. We show that the calibrateatiei closely generates the
characterization of the power-law behavior of the DAX 30 lwe treturn autocorrelation and
tails.

As in He and Li (2015), the price index data for the DAX 30 corfresn Datastream, which
contains 8001 daily observations from 11 August, 1975 to@8,)2007. We usg; to de-
note the price index for the DAX 30 at time(t = 0, ..., 8000) with log returnsr, defined by
re =Inp, —Inp, 1 (t =1,--- ,8000). The summary statistics of for the DAX 30 show
high kurtosis and fat tails in;, suggesting that; is not normally distributed. The returns are
also showing volatility clusterings and time-varying metrkolatility. In addition, the returns
contain little serial correlation, but the absolute retji| and the squared returm$ do have
significantly positive and slow decaying serial correlatmver long lags. This indicates the

long-range dependence or the power-law behavior in vitlatdr the DAX 30

3.1. Model Calibration and Result. AsinHe and Li(2015), to calibrate the power-law behav-
ior of the DAX 30 to our model, we minimize the average distabetween the autocorrelations
of the log returns, the squared log returns, and the absklgteeturns of the DAX 30 and the
corresponding autocorrelations generated from the n‘@duls)re precisely, denot® the pa-
rameter space of the model. Le€ © be the vector of parameters in the model to be calibrated,
N be the number of independent simulations of the mcfﬂebe the estimated autocorrelations

of then-th run of the model, anEDAX be that of the DAX 30. In calibration, we solve

N

N ' 1 PN

6 € arg mingy Do, Dy := HN E A" — Bpax|® (3.1)
n=1

12\ ote that at daily frequency, the difference between Idgsres and simple returns is very small.

13ne refer He and Li (2015) for the detailed statistics, timeeseand autocorrelation plots.

14Note that we do not consider other moments such as scalesuofiseand absolute returns and others. By
exclusively focusing on the autocorrelations of returmiased return and absolute return, we provide a simple way
to gain insight into the generating mechanism of power-lahavior of volatility of the model.
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for the standard Euclidian norrh - ||, using an asynchronous parallel pattern search algo-
rithm The parameters in the model are chosen to lie in the followamges:d o € [0, 1],

v € [0.05,5.5], a, as € [0.001,9.0], € [0.1,5], my € [—1,1], ng € [0.05,0.995], § € [0,1],

b € [0.05,8.5], 8 € [0.5,1.5], 0. € [0.005,0.05], 0 = VKo. andos € [0.05,8.5]. However

ps = p* = 100, ¢ = r? andr = 0.05 are kept fixed. In the calibration and the subsequent
econometric analysis, we ran 1,000 independent simukatiwer 9,000 time periods and dis-
carded the first 1,000 time periods to wash out possiblaimbise effect. For each run of the
model we obtain 8,000 observations to match the sample sthe ®AX 30. It is not possible

to use autocorrelations at all lags, so we focus on all lagi$ 5™ and then each fifth lag up

to 10Qt1. This corresponds to 60 autocorrelations in total for mettine absolute return and
squared return, respectively. Essentially, with 60 autetations estimated for each of thg

r? and|r;|, the dimension oﬁ” and BDAX is 180 in total. The calibrated parameters of the

model are reported in Ta

TABLE 3.1. The calibrated parameters of the models

« ¥ ay as 1 o ™Mo ) b o o5 15}
0.488 1.978 7.298 0.320 1.866 0.313 -0.024 0.983 3.537 0.32D5 0.954

We now provide an economic intuition of the calibrated resBhsed on the calibrated pa-
rameters in Tablé 3.1, parametey = 0.313 implies that, among two strategies, there are
some (about 31%) traders who do not change their investrtrat¢gies and many (about 69%)

traders switch between two strategies with a switchingisitg measured by = 0.954. This

15The software implementing the algorithm is APPSPACK 5.@&,more details in Gray and Kolda (2006), Griffin
and Kolda (2006), and Kolda (2005). In the implementatiorguoid possible local minima we tried different set
of starting values, and for each set of starting value wecbdar the minimum and then we re-initialize and search
for the new minimum again. We repeat the procedure untikthero further improvements.

16The parameter ranges far, mg,n,,d are implied by the model specifications. The ranges for patar
~v,a1,as andp are selected to reflect reasonable behavior of the tradeseddban the analysis of the underly-
ing deterministic model in Dieci et al. (2006). The rangedprepresents the volatility of the fundamental price,
while the range for ;s indicates the daily market price volatility level.

TAne choose a large numbers of lags of ACs because our methatilwétion of the model is exclusively focused
on the ACs, and it works well to produce reasonable resyftsrted in Fig.[3.ll. In practice, much less lags may
contain the same information and too many lags would wastepotation time and even affect the accuracy of
estimation, see for instance, Franke and Westerhoff (2@t 2¢lated discussion.

Bt is likely that the estimated parameter values can be rdiffefor differ indices over different time periods. In
fact, in our earlier exploratory model (He and Li, 2007, 202815 and Liet al, 2010) using other indices or
different periods of an index, the estimated model pararsete different in each of the cases. Quantitatively the
stylized facts can vary over time, however, qualitativdlg tmain feature of the stylized facts remains the same
over long time periods and across different markets. Itis glalitative feature of the long memory pattern and
the generating mechanism provided in Section 4.1 that gg@pcontributes to the current literature. It is from
this perspective that the model estimation in this papesbsist.
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is consistent with the empirical evidence of using fundatalesind technical analysis and the
adaptive behavior of investors. With, = —0.024, it indicates that, among those traders who
do not change their investment strategies, there are alyual @umbers of trend followers
and fundamentalists. This result is different from thereation of the market fraction model
of He and Li (2015) and the dominance of the trend followerghaut switching. These re-
sults demonstrate that both fundamentalists and trendvielis are active in the market and
the market is populated with confident traders as well astadapaders. This is in line with
the findings from foreign exchange markets in Allen and Tayl®90) and Taylor and Allen
(1992) and fund managers in Menkhoff (2010). The relativeghera; thana, implies that
the fundamentalists are more risk averse than the tremn/\fer@ A value ofa = 0.488 indi-
cates that the speed of price adjustment of the fundamststatwards the fundamental value
is indicated byl /(1 — «), which is about two trading periods. This may explain thejfent
deviations of the market price from the fundamental valudgéshort-run but not in the long-
run. A value ofy = 1.978 indicates that trend followers extrapolate the price trendasured
by the difference between the current price and the geotnetoving average of the history
prices, actively. Also note that= 1.978 > 1 does not lead to explosive expectations by trend
followers because of the quadratic volatility function etdenominator of the demand func-
tion. The geometric decay rate= 0.983 indicates a slow decaying weight. The parameter
by = bo? measures the influence of the sample variancén addition to the common belief
on the price volatilitys?, to the estimated price volatility for trend followers. Thalue of

b = 3.537 implies that trend followers are cautious when estimativeggrice volatility, though
they are less risk averse. The annual return volatility ef 23.1% is close to the annual return
volatility of 19.67%(= /250 x 0.01244) for the DAX 30. A value ofy = 1.866 indicates
that the market maker actively adjusts the market pricea@eitess demand of the traders. A
positiveo; indicates that the noise traders are active in the marketudmmary, the calibrated
parameters show that the market is dominated by traders witchsbetween the two strategies

based on their performance over the time, although thersare traders who do not change

9Note that for simplicity, we assume that agents’ risk preffiees switch when their strategies switch. Comparing
to the trend followers who invest in short-run and are lesis aiverse, the fundamentalists invest in long-run and
are more risk averse in general. We see from Foofrote 9 #vad followers have a systematically higher variance
estimate relative to the fundamentalists flyo?). When the additional term is much larger thdant- »2)o?, the
trend followers have much higher risk perception which gustifies the relative lower risk aversion of the trend
followers than the fundamentalists.
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their strategies over the time. Due to the switching, theketdnecomes more volatile, which

supports the theoretical predication in Brock and Hommesg§L

(@) (b)

FIGURE 3.1. (a) Autocorrelations of;, r? and|r,| for the model. (b) The ACs
of the returns, the squared returns and the absolute refoirrtbe calibrated
model and the DAX 30. The smooth lines refer to the model wihike 95%
confidence intervals are those for the DAX 30.

3.2. The Autocorrelation Patterns of the Calibrated Model and Out-of-Sample Test. As
in He and Li (2015), we want to verify if the calibrated modelable to replicate the power-
law behavior of the DAX 30. Using the parameters in Tdbleé @é,run 1,000 independent
simulations for the model and report the average ACs formstisquared returns and absolute
returns in FigL.31(a). It shows insignificant ACs for theures, but significantly positive and
slowly decaying ACs over long lags fef and|r;|, very similar AC patterns to the DAX 30.
Further, the sample autocorrelations for the absolutenstare greater than that for the squared
returns at all lags up to at least 100 lags. 3.1(b) pleACs of returns, the squared returns
and the absolute returns for the model together with the DBXe3pectively. For comparison,
we use the Newey-West corrected standard error and plotatmesponding 95% confidence
intervals of the ACs of the DAX 30, showing that all of the ACktloe model lie inside the
confidence intervals of the DAX 30.

As a robustness test, different from He and Li (2015), wegrerfan out-of-sample test for
performance of the model. Recall that we calibrate the madilg the DAX 30 daily price

index from 11 August 1975 to 29 June 2007, we now use data fidduly 2007 to 02 April
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2015 and plot ACs for returns, squared returns and absaties of the DAX 30 together with
their 95% confidence intervals in Fig._B.2. It shows that ti@sAf returns and squared returns
of the calibrated model fit in the 95% confidence intervaldhefDAX 30 reasonably well, but
the ACs of absolute returns of the calibrated model lie detsif the corresponding confidence
intervals of the DAX 30 after lag 30, which indicates that thersistence in volatility of the
DAX 30 is not as strong as before since the global financialisriOverall, the out-of-sample
result indicates that the model performs reasonably welbbthe sample and the calibration

method effectively captures the ACs patterns of the DAX 30.

FIGURE 3.2. The ACs of the returns, the squared returns and thewbsa-
turns for the calibrated model and the DAX 30. The smoothslirefer to the
model while the 95% confidence intervals are those for the [3@4¢rom 02
July 2007 to 02 April 2015.

Based on the calibrated parameters for the model, we useeMiarto simulations to further
examine the effectiveness of the calibration in estimatiregdecay indices of the power-law
behavior of ACs and in volatility clustering, comparing wvthose of the DAX 30. We also use
the calibration result to examine the power-law tail bebaeif the model comparing with the
DAX 30. The results show that the calibrated model closelyegates the characterization of
the wer-law behavior of the DAX 30 in the return autocatiein, volatility clustering and

2(

tails

20since the results are consistent with the findings in He ar{@@15), we do not report them in details.
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4. EXPLANATION AND COMPARISON OF THECALIBRATION RESULTS

We have shown that the calibrated model closely matchesythieesl facts of the DAX 30. In
this section, we provide an explanation on the generatinchar@sm of the power-law behavior
of the model. In addition, we conduct formal tests to see h@l the calibrated model is able
to describe the characteristics of the DAX 30 comparing éqailre switching and no-switching

models.

90 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
t

FIGURE 4.1. The price of the deterministic model with the calibdgparameters.

4.1. Mechanism Analysis of the Power-Law Behavior. There are several explanatory mech-
anisms on volatility clustering based on the underlyingedetnistic dynamics in HAM litera-
ture The first one is based on the local stability and Hopf bifuosgtexplored in He and Li
(2007). Essentially, on the parameter space of the detesticimodel, near the Hopf bifurca-
tion boundary, the fundamental price can be locally stabteglobally unstable, depending on
the initial values. Due to the nature of Hopf bifurcation¢isunstability leads to periodic oscil-
lations around the fundamental price. Then triggered bgdnmental noise and market noise,
He and Li (2007) find that the interaction of fundamentajigtk-adjusted trend chasing from
the trend followers and the interplay of the noises and thaetdying deterministic dynamics
can be the source of power-law behavior.

The second mechanism proposed in Gaunersdetfat. (2008) is characterized by the co-

existence of two locally stable attractors. The interactibthe coexistence of the deterministic

2Ipifferent from the mechanisms based on the deterministi@dyics, there are also other mechanisms on volatil-
ity clustering based on stochastic herding or stochastitaghel (Alfarancet al. (2005) and Franke and Westerhoff
(2011).
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dynamics and noise processes can then endogenously geneliatlity clustering. Recently,
He, Li and Wang (2015) consider the model?fand verify this endogenous mechanism on
volatility clustering. Economically, they show that valdy clustering occurs when neither the
fundamental nor trend following traders dominate the miagkel when traders switch more
often between the two strategies.

In fact, the model developed in this paper can display suebx@stence of locally stable
fundamental price and periodic cycle, which has been detraied in Fig 3 in Dieci et al.
(2006). Whether the model developed in this paper is abledaigle a supporting evidence on
the mechanism of Gaunersdortral. (2008) would be an interesting issue for future research.
We would like to thank Cars Hommes to bring our attention te ploint.

The fundamental price becomes unstable through a so-dadiptibifurcation.

With the help of the underlying deterministic dynamics, vesvrprovide some insights into
the mechanism of generating the power-law behavior. Forctreesponding deterministic
model with the calibrated parameters, the constant fundahequilibrium becomes unsta-
ble, leading to (a)periodical oscillation of the marketpraround the fundamental equilibrium,
illustrated in Fig.[4.l. Such periodical deviations of thee from the fundamental value in
the deterministic model are inherited in the stochastic @hoBig.[4.2(a) plots the time series
of typical market price and fundamental price of the stotbasodel. It shows that the price
deviates from the fundamental price from time to time, bugeneral, follows the fundamental
price. In addition, the returns of the stochastic model ldigphe stylized facts of volatility
clustering in Fig[42(b) and non-normality of return distition in Fig.[4.2(c).

The calibrated result provides a strong support on the ptaveibehavior mechanism re-
ported in He and Li (2007). In He and Li (2007), a constant raafkaction model is used
to examine the potential source of agent-based models witrdgeneous belief in generat-
ing power-law behavior in return autocorrelation patterBg examining the dynamics of the
underlying deterministic model and simulating the impddhe fundamental noise and noise
traders on the deterministic dynamics,

The calibrated model in this paper shares the same spirieadrdl Li (2007). In fact, with
the two noise processes, Fig. 14.2(d) demonstrates ingigntfACs for the returns, while Figs
4.2(e) and (f) show significant and decaying ACs in the alisand squared returns, respec-

tively. We also plot the times series of price, fundamenddlig, returns, return distribution, the
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of (d) the returns; (e) the absolute returns, and (f) the isgligeturns.

ACs of return, absolute and squared returns with one natberéhe fundamental noise in Fig.
B.1 or market noise in Fid. Bl.2, respectively, in AppendixTBey clearly demonstrate that, for
the calibrated model, noise traders play an important rotee generation of insignificant ACs
on the returns, while the significant decaying AC patternthefabsolute returns and squared
returns are more influenced by the noisy fundamental procelss shows that the potential
source of power-law generating mechanism obtained hereskize same spirit as He and Li

(2007) and Chiarella, He and Hommes (2006).
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4.2. A Comparison Test. To see how well the model is able to describe the charadteyist

the DAX 30, we construct confidence intervals for the estesdétased upon the DAX 30 to see

if the estimates based upon the calibrated model lie in tésevals or not. In the following,

we focus on the average estimates of the model rather tharatiwairacy since, by running the
model independently many times, the estimates convergé faster than those of the DAX 30.
Apart from checking the confidence intervals, we also caiestihe Wald test for this purpose.
For instance, for the decay indéxof the returns, the squared returns or the absolute returns,
we test whether the values of the parameétestimated from both the DAX 30 and the model

are the same. In other words, we test hypothesis
HQ : dDAX =d.

Using the Wald test, this null hypothesis can be tested byrasg) that both the number of
simulations and the number of time periods for each simarago to infinity. In the construction

of the Wald test, the test statistic is given by

W = (dpax — d)*/%,

where} is simply the variance crfDA. The resulting test statistics are summarized in Table
[4.1. In the column?,’, the first sub-row reports the test statistics correspmgldﬁ)c?@pH, and
the second sub-row correspondingc&,%and so on. Notice that the critical values of the
Wald test at 5% and 1% significant levels are 3.842 and 6.@&pectively. For the returns,
we see that the estimatddf the DAX 30 and the model are significantly different. Howgv
for the squared returns and the absolute returns, the eliites between the estimatédf the
DAX 30 and the model are not statistically significant. Thasult shows that the calibrated
model is able to describe the ACs of the absolute and squatedhs in the DAX 30.

Another comparison test is to see if the model (denoted S8gution 2 performs better than
the pure switching model (denoted PSM) with = 0 in line of Brock and Hommes (1998).
Intuitively, the calibration conducted for the SM shouldtfie data better than the PSM. In

Appendix A, we provide the calibrated parameters in Tab., &é& ACs patterns in Fig. A.1,

2ANe emphasize that the parameter uncertaintytias not been taken into account because the simulations of th
model are dependent on calibrated structural parameters.

23] py anddpy are two estimators of the power-law decay index of autotatioms, see He and Li (2015) for
detailed discussions.
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TABLE 4.1. The Wald test of with m = 50, 100, 150, 200, 250

m | 50 100 150 200 250
. 19.41 45.62 61.94 65.86 76.35
© 135.41 92.24 126.0 117.5 129.4
2 0.071 1.309 0.282 0.036 0.023
t 10.037 1.246 0.050 0.767 0.276
0.116 1.165 1.672 0.413 0.195
i 0.020 0.350 0.067 0.031 0.015

and the Wald test for the PSM. Apart from sharing similar hssand implications to the SM,
we calculate the distances of ACs, thgin Eq. (3.1), between the DAX 30 and the SM and
PSM and obtain 4.56 and 4.59 respectively. The test stfisti3pax — 5)'Q(Bpax — ),
whereB is estimated from the simulation model afid’ is the generalized inverse (see, for
example, Cameron and Trivedi, 2005) of corresponding ¢anee matrix, for ACs up to 50
lags for the return, the squared return and the absolutenrefuhe SM and PSM are 106 and
108 respectively. Both results confirm that the SM performttdn than the PSM in terms of
minimizing the distance in Eq[_(3.1) and the weighted averdigtance by taking into account
the. Itis also of interest to compare the performance of SM an/ R&h the non-switching
Market Fraction (MF) model in He and Li (2015) which has thenimial distance 4.63 and the
weighted average distance 112. Again, this confirms thét that SM and PSM perform better
than the MF mod

5. CONCLUSION

Theoretically oriented HAMs have provided many insights imarket behavior such as mar-
ket booming and crashing, multiple market equilibrium, rsftan deviation of market price
from the fundamental price and long-run convergence of thekat price to the fundamental
price. Combined with numerical simulations, the HAMs aré&db reproduce some stylized
fact, such as non-normality in return and volatility clustg. More recent developments in

24The test statistics follows a Chi-square distribution veithical value 180 at th&% significant level.

25\Ve emphasize that the comparison is based upon the magmitfidistances we use. In other words, this is
not to say that 4.56 (106) is significantly lower than 4.598)10A formal procedure such as that suggested by
Hnatkovskeet al, (2012) might be explored further.

2 |tis possible to develop measures of goodness of fit. Whédertbasures of goodness of fit are very useful when
comparing the performance of different HAMs (see, for exempranke and Westerhoff, 2012), the comparison
results on various econometric characterizations betw#eév and the actual data seem to imply that it might be
difficult to get meaningful test statistics. In our appro#tth sampling error from the actual data is dealt with the
confidence intervals of the estimates and that from the sitioul data is eliminated by running many independent
simulation. For a more general discussion on the compagétime simulation models with the real world data,
see Liet al. (2006, 2010).
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HAMs have stimulated many interests in the generation nreéshaof those stylized facts and
in particular, power-law behavior. However, estimatiod @alibration of HAMs, in particular
the switching models, to the power-law behavior of finandeth, together with some mecha-
nism explanation and economic intuition, are still a diffi@and challenging task.

This paper calibrates an extended switching HAM to chareetéhe power-law behavior in
the DAX 30. The model considers a market populated by heésregus traders who use either
fundamental or chartist strategies. The market fractidriisaders who use the two strategies
have both fixed and switching components. The calibratiothatkis based on minimization
of the average distance between the autocorrelations (8fakg returns, the squared returns
and the absolute returns of the DAX 30 and the correspond@g denerated from the model.
With the parameter values of the calibrated model, we shaithe calibrated model matches
closely to the corresponding estimates for the DAX 30 anckgas most of the stylized facts
observed in the DAX 30.

The calibration results support the empirical evidencenarfcial markets that investors and
fund managers use combinations of fixed and switching sfiegdased on various fundamen-
tal and technical analysis when making complicated investrdecisions. By calibrating the
model to the daily DAX 30 index from 1975 to 2007, we show thed market is dominated
by the adaptive investors who constantly switch betweeriuhdamental and trend following
strategies, though there are some investors who never elihag strategies over the time. In
addition, the calibrated model also provides a consistguibeation on the generating mecha-
nism of the power-law behavior in the literature. In conmus the calibration results provide
strong support to the explanatory power of heterogeneoaistagodels and the empirical evi-

dence of heterogeneity and bounded rationality.
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APPENDIXA. ECONOMETRIC ANALYSIS OF THEPURE SWITCHING MODEL

This Appendix provides calibration results of the pure shihg model [(2.7)E(2.12) with
n, = 0 to characterize the power-law behavior of the DAX 30.

TABLE A.1. The calibrated parameters of the SW models

o v a as 1L J b o 5 B
0.513 0.764 7.972 0.231 2.004 0.983 3.692 0.231 3.268 0.745

035 04 T T T T T T T T T
, | 12 %
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() (b)

FIGURE A.1. (a) Autocorrelations of;, r? and|r;| for the SW model. (b) The
ACs of the returns, the squared returns and the absolutmsgtr the calibrated
SW model and the DAX 30. The smooth lines refer to the SW modidievihe
95% confidence intervals are those for the DAX 30.

TABLE A.2. The Wald test ofl with m = 50, 100, 150, 200, 250

m ] 50 100 150 200 250
18.92 44.73 61.61 66.17 77.30
" 134.99 91.16 1257 118.6 132.0
2 | 0068 1247 0.263 0.034 0.026
t 10.035 1.272 0.038 0.694 0.234
0.105 1.085 1.603 0.413 0.198
"l 0.024 0.331 0.064 0.031 0.016
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APPENDIX B. THE EFFECT OFONE NOISE

This appendix demonstrates the impact of single noise imtheel [2.7){(Z2.12) on the AC
patterns of the return, absolute returns and squared seturn
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FIGURE B.1. The time series of (a) the price (red solid line) and tinedb-
mental price (blue dot line) and (b) the return; (c) the digrdistribution of the
returns; the ACs of (d) the returns; (e) the absolute retuand (f) the squared
returns, with the fundamental noise ondy; = 0).
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