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Abstract—For high power drives, switching frequency is usu-
ally restricted to several hundred hertz to minimize the switching
losses. To maintain the current distortions and torque ripples
at a reasonable level, synchronized pulse patterns with half-
wave and quarter-wave symmetries are employed. The analytic
compensation is derived by Fourier analysis to ensure the
proportionality between the voltage reference and the output
voltage of an inverter for PWM with low pulse ratio. A simple
yet very effective method with varying sampling rate is proposed
to maintain synchronization even for fast dynamic processes. The
fast and smooth transition between different PWM patterns is
achieved by compensating phase angle of the voltage reference
through the analysis of stator flux trajectories. The effectiveness
of the proposed method is validated on a down-scaled 2.2 kW
induction motor (IM) drives.

Index Terms—Field-oriented control (FOC), hybrid PWM,
high-power motor drives, synchronous PWM

NOMENCLATURE

Symbols
i Current Vector
u Voltage Vector
ψ Flux Vector
L, R Inductance and resistance
ω Angular frequency
T Time
j Imaginary part of a complex variable
s Laplace operator
z Discrete-time operator
k Gain
M Modulation index
P Pulse ratio
α, β Angle of the complex vector
p Derivative operator

Subscripts
s, m, r Stator, mutual, and rotor
d, q d and q axes
dc DC link
c Continuous-time domain
d Discrete-time domain

Superscripts
e Synchronous reference frame
ref Reference value
inv Output of the inverter

I. INTRODUCTION

For high-power drives, operating at low switching frequency
for inverters is mandatory to restrain switching losses. How-
ever, maintaining satisfactory performance at lower switching
frequency brings many challenges. The pulse ratio, namely
the pulse number during one fundamental cycle, is very low
in high-power applications. Thus, if the popular space vector
modulation (SVM) or carrier based sinusoidal PWM (SPWM)
is adopted, the unacceptable current distortion including large
low order harmonics and sub-harmonics can be seen in the
spectrum analysis [1]. This would lead to larger loss, higher
torque ripples, poorer current regulation bandwidth, etc. To
address these problems, various PWM schemes have been
proposed. Generally, the pulse ratio is kept constant over a
speed range to eliminate the sub-harmonics, namely that it
is synchronized with the output frequency of the inverter.
With the continuous efforts of many researchers, synchronized
SPWM, synchronized SVPWM, selective harmonic elimina-
tion PWM (SHEPWM) and current harmonic minimum PWM
(CHMPWM), have been applied in practical applications [1]–
[5].

To keep half-wave symmetry (HWS), quarter-wave symme-
try (QWS), and three phase symmetry (TPS) in synchronous
SPWM and SVPWM, the pulse ratio has to be odd integer
multiples of 3. Large variation of the switching frequency
can be observed for variable speed drives due to the limited
selection of the pulse ratio. The space vector based PWM
schemes can offer some flexibilities, such as division of zero
state duration and clamping one phase within a PWM interval.
Utilizing these flexibilities, some advanced PWM schemes can
be developed to improve the harmonic performance [6], reduce
the torque ripple [7], design the synchronized symmetric PWM
strategies for higher power drivers [3], [8], and so on. In [9],
different synchronized PWM schemes are studied, but only
the results of V/f operation are presented. In [2], the carrier
based synchronized PWM is incorporated with FOC, showing
good dynamic and steady state performance. However, the
extraction of current harmonics is based on a leakage model,
of which the machine parameters tend to vary depending on
the temperature and saturation [10]. Consequently, to ensure
the estimated current harmonic is in accordance with actual
value in practical application, online adaption algorithm may
be required.

SHEPWM and CHMPWM have also been widely studied
and applied owing to their superior harmonic performance
[4], [5], [11], [12]. For those PWM techniques, complex
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mathematical skills and calculating programs are usually re-
quired to obtain the optimal switching angles [12], [13]. To
meet the demands of accuracy and cover a wide speed range
operation, numerous results should be optimized offline and
stored for online implementation. As those PWM techniques
may introduce discontinuities in the switching angles and the
flux/current trajectory may not coincide with each other at
the same sampling point for different pulse patterns, high
dynamic closed-loop control systems based on SHEPWM and
CHMPWM are usually complicated.

To satisfy the demand over a wide speed range, a com-
bination of PWM schemes with different pulse patterns are
usually used. This imposes the requirement of smooth transi-
tion between different PWM methods. In [5], the transition is
enabled when the voltage angle falls into a fixed range. But
the selection of this range is not clearly addressed with theory
analysis. In [14], the transition is started when the harmonic
current is around zero. It is shown that the transition is smooth.
However, the gate pulses of three phases are shifted separately
at different points, increasing the complexity and duration of
PWM shifting process. To improve the overall performance,
SHEPWM is employed in [4] during steady state operation
while it is switched to SVPWM during dynamic process. The
smooth transition is achieved by optimizing the switching
state so that there is no more than one pulse jump during
transition. As the the pulse number is as high as 29 in quarter
fundamental cycle, the harmonic current is very small and
nearly zero. According to [14], the transition can be started at
any positions. Since operation with low switching frequency
presents abundant harmonic components, this method is not
applicable when the pulse number is low. In [1], [15], the
dynamic error caused by transition between different pulse
patterns is combined with the tracking error induced by load
change, reference variation, etc. All these disturbances are
compensated in the controller by directly manipulating original
switching instants according to the tracking error of stator
flux. As the problem of achieving smooth transition is solved
in the design of controller, it is applicable for various pulse
patterns. In this paper, the dynamic error induced by transition
between different pulse patterns will not be compensated in
the controller but solved in the modulation stage. In this way,
the controller design and modulation schemes are decoupled.
Namely, it is not necessary for inner current controller to
consider the effect of shifting between different pulse patterns.
Thus, the proposed method can be easily implemented with
existing current controllers.

The main contribution of this paper is to decouple the
inner current controller from various issues caused by im-
plementation of synchronized PWM schemes. On this basis,
the space vector and bus-clamping based synchronized PWM
are employed without the requirement of fundamental current
estimation. The linearity between the reference voltage and the
output voltage is guaranteed by analyzing the PWM sequence
through Fourier analysis. Methods to keep synchronization and
schemes for smooth transition between different pulse patterns
are proposed and elaborated in detail by analytic derivation.
The experimental results on a down-scaled IM drive platform
validate the effectiveness of the proposed methods.

TABLE I
SYNCHRONOUS PWM SCHEMES

P Position of samples in sector 1 Vector Sequences in sector 1
15 6◦, 18◦, 30◦, 42◦, 54◦ 0127, 7210, 0127, 7210, 0127
11 6◦, 18◦, 30◦, 42◦, 54◦ 012, 210, 0127, 721, 127
7 10◦, 30◦, 50◦ 127, 7210, 012
3 30◦ 0127

II. MODEL OF IM

Considering the discrete nature of the digital control system,
a discrete-time domain transfer function in the rotor flux
oriented synchronous frame is derived in [16] with time delay
Td as

ies(z)

ues(z)
=

(1− e−(Rσ/Lσ)Tsc)

Rσ · z · ejωeTd · (z · ejωeTsc − e−(Rσ/Lσ)Tsc)
(1)

Tσ =
σLs

Rs + (Lm/Lr)2Rr
(2)

σ =
LsLr − L2

m

LsLr
(3)

where Tsc is the sampling period, Lσ = σLs, Rσ = Rs +
(Lm/Lr)

2Rr.
Considering the compensation of time delay, the discrete

current controller can be developed as (4) based on (1) as
[16]

Gd(z) = kd
ejωeTsc − z−1 · e−(Rσ/Lσ)Tsc

(1− z−1)
ejωeTd (4)

III. HYBRID PWM SCHEMES

For a two-level inverter, there are two zero vectors and six
different active vectors, dividing the complex plane into six
sectors, as shown in Fig. 1. For satisfying the requirements
over the whole speed range, the hybrid PWM schemes with
different pulse ratios are usually employed. In this paper,
the following PWM schemes, synchronous SVPWM with
P = 15, 3 and basic bus clamping strategy-I (BBCS-I)
PWM with P = 11, 7 are selected according to [3], [8].
For simplicity, they are named as SVPWM 15, SVPWM 3,
BBCS 11 and BBCS 7 respectively in the following text.
The vector sequences of these PWM schemes during sector
1 are listed in Table I. More characteristics about these PWM
schemes can be found in [3], [8], [17]. An illustration of the re-
lationship between the modulation index, switching frequency
and the fundamental frequency is shown in Fig. 2. According
to Table I, two conditions should be satisfied to generate
desired pulse shapes. The first one is that the phase angle
of voltage vector must equal the sampling positions defined
in the second column. The second one is that the voltage
vector at these sampling positions should be synthesized by the
corresponding vector sequences as shown in the third column.
The modulation index here is defined as

Mref =

√
3urefs
Udc

(5)

Before these PWM methods are employed in closed-loop
control system, some issues must be solved. Firstly, the
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Fig. 1. Illustration of voltage vectors and 6 sectors
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Fig. 2. Diagram of the relationship between the modulation index, switching
frequency and the fundamental frequency

synchronization must be well kept in both steady and dynamic
process. Secondly, the smooth and fast transition between
different PWM schemes should be achieved to avoid cur-
rent/torque oscillations. Thirdly, the output fundamental volt-
age of the inverter must coincide with the reference voltage.
Because the reference voltage is usually used in the observer
to get the information of flux. Finally, stable and fast control
of stator current should be guaranteed under low switching
frequency operation. The following text will present some
methods to cope with these problems. It is assumed in this
paper that both the current sampling and PWM updating
instant are synchronized with the sampling position as shown
in the second column of Table I. This is based on the
consideration that there is no switching transition at these
sampling position and thus the current sampling would not be
polluted by switching noise. Additionally, the selected PWM
schemes are space vector based methods, the acquisition of
fundamental current is permitted at the end of each subcycle
[1]. This makes control of stator current without fundamental
component estimation possible. Another benefit is that, as the
current sampling is synchronized with PWM updating instant,
it is easier to analyze and handle the modulation delay based
on previous researches, such as [16], [18].

A. Synchronization Scheme

To maintain synchronization, two following steps are taken.
The first step is to set a proper PWM updating frequency fpwm
to keep the pulse ratio constant over a speed range, which
are 30fe, 30fe, 18fe and 6fe for SVPWM 15, BBCS 11,

BBCS 7 and SVPWM 3 respectively. The second step is to
match the PWM updating instant. During the steady state, the
voltage vector rotates in the complex plane smoothly. Thus, if
the first step is implemented, the increment of the angle of the
voltage vector will always be the same. Take the SVPWM 15
as an example, if the starting position of the voltage vector is
6◦, then the following phase angles of the voltage vector would
be 6◦ + k · 12◦ (k = 1, 2, 3...). However, in the closed-loop
system, the phase angle of the voltage vector θu may vary
sharply at any time, it is difficult to keep θu matching the
sampling position shown in Table I. To address this problem,
the PWM interval set in the first step is compensated in a
deadbeat fashion to correct the mismatch. Take SVPWM 15
as an example to clarify this point, the difference of the phase
angle between θu and the sampling position shown in Table I
is calculated at each starting instant of the PWM interval as

θerr = θref − θu (6)

Where θu = angle(us) (degree), θref = 12k + 6, k =
round ((θu − 6)/12). It is clear that to cancel θerr, the com-
pensation of the time required is

Tcom =
πθerr
180

· 1

2πfe
=

θerr
360fe

(7)

After obtaining Tcom, the PWM updating interval for
SVPWM 15 is

Tpwm =
1

30fe
+ Tcom (8)

For the synchronization of other PWM schemes, the same
method is applied. As the compensation is performed in a
deadbeat fashion, any mismatch will be corrected in one PWM
interval. Thus keeping synchronization during fast dynamic
process can be ensured.

B. Keeping Linearity between Reference and Output

With very low pulse ratio of 3, the relationship between
actual modulation index of the invert output voltage and urefs
may be not linear. In this paper, the compensation for linearity
and overmodulation is investigated directly by analyzing PWM
sequences. It is found that the gain compensation is required
for SVPWM 3 and analytic solution is derived in order to
avoid using lookup tables.

For space vector based PWM, the reference voltage vector in
each sector can be synthesized by two adjacent active vectors
ux and uy , and one or two zero vectors, with their respective
duty ratio calculated as

dx =Mref · sin(60◦ − α) (9)

dy =Mref · sinα (10)
d0 = 1− d1 − d2 (11)

where α is the angle between urefs and ux.
Fig. 3 shows the pole voltage of SVPWM 3 in the range

of 0◦ ∼ 90◦ of the stator flux trajectory depicted in Fig. 4d.
According to (9)-(11), the angle β can be obtained as

β = 30◦ ·
{
1−Mref

}
. (12)
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SVPWM 3

TABLE II
MODIFIED SCHEME OF SVPWM 3

P Position of samples in sector 1 Vector Sequences in sector 1
3 10◦, 30◦, 50◦ 01, 12, 27

Then, the output fundamental voltage can be expressed as [12]

U =
2Udc
π

[1− 2 sinβ]

Thus, the actual output modulation index of the inverter
voltage for SVPWM 3 is

M inv
3 =

2
√
3

π
[1− 2 sinβ] . (13)

Based on (13), to make the M inv
3 equal to Mref , the original

Mref in (12) should be modified as

Mref
mod =

30◦ − arcsin(0.5−
√
3πMref/12)

30◦
. (14)

After the modulation index Mref is obtained from the output
of the current controller using (5), a modified virtual modula-
tion index Mref

mod should be calculated based on (14). Then, the
duty ratio of each voltage vector can be calculated according
to (9)-(11) using Mref

mod instead of Mref . It should be noted
that as the deduction of (14) is directly based on mathematical
analysis, it is precise for the whole range of Mref , including
over modulation.

Additionally, the original vector sequence in SVPWM 3 is
modified and the sampling rate is increased to 18 times of the
fundamental frequency to reduce time delay. Take the sector 1
as an example, the original vector sequence 0127 accounts for
60◦ as shown in Table I will be modified as 01, 12, 27 with
each sequence accounts for 20◦. After this modification, the
whole vector sequence for every 60◦ is still the same as the
original. But the sampling frequency can be improved to 18fe.
This would bring some benefits to the current closed-loop
control, such as lower sampling delay and higher controller
bandwidth. The modified vector sequences are listed in Table
II. It should be noted that the duration of each voltage vector
should be kept the same as the original to produce the same
output. According to (11), the duration of zero vector can be
calculated as

T0 =
1−Mref

mod

6fe
. (15)

(a) (b)

(c) (d)

Fig. 4. Flux trajectories for (a) SVPWM 15, (b) BBCS 11, (c) BBCS 7 and
SVPWM 3

Considering that T0 is divided equally for u0 and u7, the
duration of the active vector u1 can be calculated as (16) when
the sampling position of 10◦ is considered in this example.

T1 =
1

18fe
− 0.5T0 =

3Mref
mod − 1

36fe
(16)

The duration of an active vector combining with a zero vector
at other sampling positions can be calculated in the same way.
When the sampling position is 30◦, 90◦...330◦, both active
voltage vectors account for 1/(36fe).

C. Transition Strategy

As the current/flux trajectory of the PWM pattern is differ-
ent from each other, the transition strategy should be carefully
designed to avoid dynamic error which may cause torque
oscillation and over-current event. In this paper, the transition
strategy is designed based on the analysis of flux trajectories
of different PWM schemes. To achieve smooth transition, the
original voltage reference will be compensated by a complex
gain so that the end point of flux trajectory will be located on
the new flux trajectory after the transition. As discontinuities
of stator flux trajectory due to the transition between different
PWM patterns is compensated using this method, there would
be no dynamic error and thus the transition would be smooth
and fast [19].

The flux trajectory can be obtained according to the vector
sequence listed in Table I by integration, and they are shown
in Fig. 4. The small circles in the figures indicating that there
is a zero vector and the flux vector ψs is stationary at those
positions until an active vector is applied.
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Fig. 5. Illustration of flux trajectories of BBCS 11 and BBCS 7 during one
subcycle

1) Transition between conventional SVPWM and
SVPWM 15: Transition between asynchronous SVPWM
and SVPWM 15 is relatively easy. As both PWM schemes
are traditional SVPWM, harmonic current is zero at the end
of each subcycle. Thus, the transition can be started at the
beginning of each PWM interval [14]. It should be noted
that, though the phase angle of the voltage vector at the
transition instant may be not the same as those listed in the
Table I when transferring to SVPWM 15, the synchronization
scheme described in Section III-A will help to setup the
match with these positions and thus the symmetry of the
output voltage can be well maintained.

2) Transition between SVPWM 15 and BBCS 11: It can be
seen from Table I that the sampling position of BBCS 11 is
the same as SVPWM 15, and there is only difference in the
use of zero vectors for generating vector sequences. As the
zero vector does not alter the flux vector, the flux trajectory
of BBCS 11 should be the same as that of SVPWM 15. This
can be clearly seen in Fig. 4. It is obvious that there are more
zero vectors in SVWPM 15 and the shapes of flux trajectory
of SVPWM 15 and BBCS 11 are same. This indicates that the
transition between SVPWM 15 and BBCS 11 can be started
at any sampling position, because the flux trajectory coincides
with each other. Hence, there is no dynamic error when the
transition between SVPWM 15 and BBCS 11 happens.

3) Transition between BBCS 11 and BBCS 7: The stator
flux vector rotates 12◦ and 20◦ for BBCS 11 and BBCS 7
during their respective subcycle. The Fig. 5 shows the flux
trajectory in the subcycle of 270◦ ∼ 282◦ and 270◦ ∼ 290◦

for BBCS 11 and BBCS 7 respectively. The corresponding
sampling positions of voltage are 6◦ and 10◦ respectively.
Then, ψ11 in Fig. 5 can be simply calculated according to
the law of sines as follows.

ψ11

sin(84◦)
=

dψ11

sin(12◦)
(17)

The time of every subcyle of BBCS 11 is 1/(30fe), thus dψ11

is

dψ11 =

∣∣urefs ∣∣
30fe

. (18)

where |•| represents the magnitude of the complex vector.
Based on above two equations, ψ11 is obtained as

ψ11 =
sin(84◦)

sin(12◦)
·
∣∣urefs ∣∣
30fe

. (19)

Similarly, ψ7 can be deduced as

ψ7 =
sin(80◦)

sin(20◦)
·
∣∣urefs ∣∣
18fe

(20)

When a transition from BBCS 11 to BBCS 7 occurs, the
original reference vector urefs should be multiplied by a
complex compensation gain k11 7 to make the flux vector
rotates from ψ11 · ej·270

◦
to ψ7 · ej·290

◦
at the end of the

transition. Thus, k11 7 can be calculated as follows

k11 7 · urefs =
(
ψ7 · ej·290

◦
− ψ11 · ej·270

◦
)
· 18fe (21)

As urefs =
∣∣urefs ∣∣ ej·6◦ in this subcyle for BBCS 11, k11 7

can be obtained from (21) as

k11 7 =

{
sin(80◦) cos(70◦)

sin(20◦)
− j ·A

}
e−j·6

◦
(22)

A =
0.6 sin(84◦)

sin(12◦)
− sin(80◦) sin(70◦)

sin(20◦)
(23)

It can be found that the expression of k11 7 is somewhat
complicated. Fortunately, it is a fixed value independent of any
parameters. Thus an approximate numerical solution of k11 7

can be calculated offline and used in practical application,
which is

k11 7 ≈ ej·3.47
◦

(24)

It turns out that the phase angle of urefs should be compen-
sated by 3.47◦ when transferring from BBCS 11 to BBCS 7
at the voltage vector sampling position of 6◦. The conclusion is
valid for all transitions beginning at 60◦ ·k−54◦ (k = 1, 2...6).
Thus, there are 6 points where the transition from BBCS 11
to BBCS 7 can be started with the proposed method.

Similarly, the transition from BBCS 7 to BBCS 11 can be
started at sampling position 60◦ · k − 50◦ (k = 1, 2...6) and
the complex gain k7 11 can be obtained as

k7 11 =

{
sin(84◦) cos(78◦)

sin(12◦)
− j ·B

}
e−j·10

◦
, (25)

B =
sin(80◦)

0.6 · sin(20◦)
− sin(84◦) sin(78◦)

sin(12◦)
. (26)

The approximate numerical solution of k7 11 is calculated as
follow.

k7 11 ≈ e−j·3.11
◦

(27)

From (27), 3.11◦ should be subtracted from the phase angle
of urefs when transferring from BBCS 7 to BBCS 11.

4) Transition between BBCS 7 and SVPWM 3: Fig. 6
shows the trajectories of flux vector in the range of 270◦ ∼
330◦ for BBCS 7 and SVPWM 3, covering the sampling
positions of 10◦, 30◦ and 50◦ as listed in Table II. The θ in the
figure represents the rotating angle of the flux vector within
first subcyle. For SVPWM 3, it takes a time of 1/(6fe) for
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Fig. 6. Flux trajectories of BBCS 7 and SVPWM 3 during 270◦ ∼ 330◦

stator flux rotates from 270◦ to 330◦. According to (5) and
(14), the dψ3 in Fig. 6 can be calculated as follows.

dψ3 =
∣∣∣ψ3e

j330◦ − ψ3e
j270◦

∣∣∣
=
Mref
mod · Udc√

3
· 1

6fe

=
Mref
mod

Mref
·
∣∣urefs ∣∣
6fe

(28)

It can be found from Fig. 6 that ψ3 is equal to dψ3. Hence,
ψ3 can be obtained as

ψ3 =
Mref
mod

Mref
·
∣∣urefs ∣∣
6fe

. (29)

Based on (16), the dψ3 1 in Fig. 6 can be deduced as

dψ3 1 =
2

3
Udc · T1 =

√
3
(
3Mref

mod − 1
)

Mref

∣∣urefs ∣∣
54fe

. (30)

After obtaining ψ3 and dψ3 1, ψ
′

3 can be calculated as

ψ
′

3 =
√
(ψ3)2 + (dψ3 1)2 (31)

And θ can be obtained as

θ = arctan(
dψ3 1

ψ3
) (32)

In this paper, SVPWM 3 is employed when Mref > 1.
Namely that, the transition between BBCS 7 and SVPWM 3
would begin at Mref = 1. As shown in Table II, the sampling
positions of the SVPWM 3 are the same as those of BBCS 7
after modification. Thus, if there is a position where the flux
trajectories of two PWM schemes coincide with each other,
the transition can be started and then the stator flux vector will
follow the new one without error. To achieve this, the reference
of voltage vector is first compensated by k7 3 for BBCS 7 to
cancel the error of flux vector and then the transition is started
at the next sampling position. For example, if the transition
begins at sampling position of 50◦, the compensation stage
should be performed at 30◦ . And, k7 3 can be calculated as
follows.

k7 3

∣∣urefs ∣∣ ej30◦
18fe

= ψ
′

3e
j(330◦−θ) − ψ7e

j310◦ (33)

Start
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Fig. 7. Flowchart of the proposed method

Based on (20), (31) and (33), k7 3 is obtained when Mref = 1
as

k7 3 ≈ e−j1.82
◦
. (34)

It is shown that only the phase angle of urefs should be
compensated by −1.82◦. Then, the smooth transition from
BBCS 7 to SVPWM 3 can be triggered at the next PWM
interval. Due to the symmetry, the conclusion is valid for all
transition at sampling position of 60◦k − 10◦ (k = 1, 2...6).
In summary, the phase angle of urefs is first compensated by
−1.82◦ at the sampling position 60◦k − 30◦, then the output
vector sequence is shifted from BBCS 7 to SVPWM 3 at the
sampling position of 60◦k − 10◦.

Similarly, the compensation gain of k3 7 can be obtained
as (35) when transferring from SVPWM 3 to BBCS 7 at the
sampling position of 60◦k − 10◦.

k3 7 ≈ ej1.7
◦

(35)

Unlike other transition schemes, there are two steps for
transferring from BBCS 7 to SVPWM 3, because the desired
voltage vector can not be synthesized by the individual vector
sequence shown in Table II. As a result, the compensation has
to be implemented in BBCS 7 before entering SVPWM 3.

It should be noted that the concept of flux trajectory here
is only used for analysis, but not used in the control system.
The flowchart of the proposed method is shown in Fig. 7.

IV. SIMULATION AND EXPERIMENTAL TESTS

A. Simulation Results

In this section, the proposed method is simulated in the
environment of MATLAB/Simulink based on a 180 kW IM
with parameters listed in Table III. In simulation studies,
results are obtained based on the control diagram shown in Fig.
8. To show the effectiveness of the proposed method, transition
from BBCS 11 to BBCS 7 is simulated as an example. The
results of closed-loop operation with current controller (4) are
recorded in Fig. 9. The variable flag in the figure represents
different PWM schemes used in the control system. The value
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TABLE III
PARAMETERS OF TESTED IMS

Rated power PN 2.2 kW 180 kW
DC-bus voltage Udc 540 V 1500 V
Rated voltage UN 380 V 1100 V
Rated frequency fN 50 Hz 60 Hz
Number of pole pairs Np 2 2
Stator resistance Rs 1.76 Ω 0.09 Ω
Rotor resistance Rr 1.29 Ω 0.065 Ω
Mutual inductance Lm 0.158 H 0.038 H
Stator inductance Ls 0.170 H 0.0394 H
Rotor inductance Lr 0.170 H 0.0397 H
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Fig. 8. Control diagram of the proposed scheme

of flag is one of 5, 4, 3, 2, 1, which represents conventional
SVPWM, SVPWM 15, BBCS 11, BBCS 7 and SVPWM 3
respectively. It is clear that smooth transition can be achieved
without any oscillation and distortion when the proposed
method is applied. While without the proposed method, there
is an obvious torque excursion.

B. Experimental Results

The proposed method is implemented on a 32-bit floating
point DSP TMS320F28335 and tested on a 2.2 kw IM plat-
form. Motor parameters are listed in Table III. The control
diagram of the proposed scheme is shown in Fig. 8. During
the following tests, steady state and dynamic behavior of the
current loop is the main performance of concern, and some
other aspects such as the implementation of field weakening
[20] are not demonstrated here.

Fig. 10 shows the responses during transition between dif-
ferent PWM schemes. Current and gate pulses plotted in these
figures are directly measured by probe while the information of
other variables are obtained via on-board DA converter. From
top to bottom in each figure, the curves are a-phase gate pulses,
iq , a-phase current and variable flag representing different
PWM schemes. From results it can be seen that the symmetry
of the gate pulse is well maintained for each synchronous
PWM method and the transition is fast and smooth without
inducing any obvious dynamic error.

Fig. 11 shows line voltages and corresponding weighted to-
tal harmonic distortion (WTHD) for different PWM strategies.
WTHD is calculated as

UWTHD =

√∑
(Un/n)2

U1
, n 6= 1. (36)
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Fig. 9. Simulated responses during transition from BBCS 11 to BBCS 7 (a)
with proposed transition scheme and (b) without proposed method

where, U1 and Un are the root mean square values of the
fundamental and nth harmonic voltages, respectively. It can
be seen that the waveforms of line voltage are symmetry.
There are no obvious sub-harmonics in line voltage and dis-
crete nontriplen-odd-order harmonic components are distinctly
identifiable, indicating that the pulse ratio is well synchronized
with the operating speed.

As current deviation may be corrected by the closed-loop
controller, the open loop test were also carried out, in order
to clearly justify that the smooth transition can be achieved
with only transition schemes. Fig. 12 shows the results during
transition from BBCS 11 to BBCS 7. It is clear that there
is a large current excursion during transition if the proposed
method is not applied. This test confirms the effectiveness of
the proposed method for achieving smooth transition.

Fig. 13 shows the dynamic performance when speed ref-
erence steps from 15 rpm to 1500 rpm. During the whole
dynamic process, id is constant regardless of the variation of
iq , justifying that decoupling control of flux and torque is well
achieved. It is also clear that the transitions between different
PWM strategies are smooth without introducing any oscillation
in id or iq .

To verify the current control quality when the pulse ratio
is low, the dynamic performance of iq step response is tested
and plotted in Fig. 14 when P = 7 and P = 3. It is seen
that the shape of gate pulse is symmetry during both steady
state and dynamic process, validating the effectiveness of the
proposed synchronization strategy. The actual current can track
the reference quickly and the settling time are about 12 ms
and 15 ms for BBCS 7 and SVPWM 3 respectively. These
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Fig. 10. Closed-loop test results of transition between different PWM schemes

dynamic tests show that the whole regulation loop works well
even when the pulse ratio is as low as 3. For achieving fast
dynamic response, controller is one of the key factor. It is
well known that the dynamic response of PI controller is not
as good as that of direct torque control and predictive control
[21]. To achieve faster dynamic response, other controllers,
such as deadbeat predictive controller, can be investigated in

future work.

V. CONCLUSION

This paper introduces an implementation of closed-loop
current control based on hybrid synchronous PWM schemes
for high power drives. A method by compensating phase
angle of the voltage reference is deduced in detail to achieve
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Fig. 11. Line voltage and corresponding WTHD for (a) SVPWM 15, (b)
BBCS 11, (c) BBCS 7 and (d) SVPWM 3
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Fig. 12. Open loop test results of transition from BBCS 11 to BBCS 7 (a)
with proposed method and (b) without proposed method
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Fig. 13. Dynamic behavior of the machine in step speed command from 5
rpm to 1500 rpm

fast and smooth transition between different PWM schemes.
The varying sampling rate with online correction is proposed
to maintain symmetry of output voltage from the inverter
during both dynamic and steady state operation. The whole
scheme is experimentally verified on an induction motor drive
platform. Both steady state and dynamic responses validate
the effectiveness of proposed methods. As the modulation and
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Fig. 14. iq step responses for (a) BBCS 7 and (b) SVPWM 3

transition strategies are independent of machine model during
both dynamic and steady process. The proposed method should
be applicable to other types of machine with a well designed
current controller.
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