

IRNOP 2017

Fuzzy Earned Value Management model for uncertain and complex projects

Boston University Metropolitan College

Leila M. Naeni Amir Salehipour

Authors

Leila M. Naeni

- Project Management lecturer at University of Technology Sydney.
- Research on project performance evaluation and monitoring.
- Winner of the 2016 Project Management Research Award (PMAA), awarded by Australian Institute of Project Management (AIPM) – NSW.
- Hold Project Management Professional (PMP) certificate.

Amir Salehipour

- Australian Research Council DECRA Fellow
- Research on development and implementation of operations research and optimization approaches in solving real life problems.
- Member of editorial board of International Journal of Project Management (IJPM)
- Winner of the 2016 Project Management Research Award, awarded by AIPM – NSW.

AUSTRALIA

IRNOP 2017@

Metropolitan College

2

Introduction to Earned Value Management (EVM)

- EVM is a well-known technique to evaluate and control the project performance
- In order to measure the project health, and predict the completion cost and time, EVM relies on three key elements:
 - Planned Value (PV)
 - Earned Value (EV)
 - Actual Cost (AC)

IRNOP

EVM reliability

- Reliability of EVM analysis highly depends on the correctness of its elements: PV, AC and EV.
- Different methods are recommended for measuring the EV of different project activities
- Correct identification of the actual cost associated with the performed work requires to be differentiated from the cash outflow.

Fuzzy EVM

- Evaluating project performance when the key elements are uncertain.
 - Uncertainty in the value of performed work; e.g. see Naeni et al. 2011 for a method to represent EV by fuzzy numbers
 - Uncertainty in the cost spent in the performed work

Fuzzy numbers

Measure uncertain percent complete

- "What fraction/percent of the activity is completed?" → Uncertain value
- Linguistic terms can be used to evaluate the percent complete of an activity or a project.

Percent Complete

Linguistic term	Fuzzy number (\tilde{P})
Very low	[0, 0, 0.1, 0.2]
Low	[0.1, 0.2, 0.4, 0.5]
Almost half	[0.4, 0.5, 0.6]
High	[0.5, 0.6, 0.8, 1]
Very high	[0.8, 0.9, 1, 1]

Fuzzy Earned Value

$$\widetilde{EV}_i = \widetilde{P}_i \times BAC_i$$

$$BAC: \text{ budget of act}$$

 BAC_i : budget of activity *i* $\widetilde{EV} = \sum_{i=1}^{n} \widetilde{EV}_i$

E.g. EV of a work package with a total budget of \$1000, which is completed by almost half, is

EV = [0.4, 0.5, 0.6] x 1000 = [400, 500, 600]

Measure uncertain cost

- When the actual cost spent in an activity or work item cannot be measured precisely, linguistic terms can be used to show the level of uncertainty in the measured value.
- Linguistic terms can be used to model the "Possibility of Error" in the estimated Actual Cost; e.g. if the actual cost is "about \$1000"
 - a very high possibility of error: [800, 1000, 1200]
 - a **very low** possibility of error: [950, 1000, 1050]

Fuzzy Actual Cost

Possibility of error in AC

Linguistic term	Fuzzy number $\widetilde{\mathcal{E}}$
Very high	[-0.20, 0, 0.20]
High	[-0.15, 0, 0.15]
Moderate	[-0.10, 0, 0.10]
Low	[-0.05, 0, 0.05]
Very low	[-0.02, 0, 0.02]

 $AC_i: \text{ uncertain actual cost}$ $\widetilde{AC}_i = AC_i(1 + \widetilde{\varepsilon}_i)$ $\widetilde{AC} = \sum_{i=1}^n \widetilde{AC}_i$

Fuzzy Performance Index

- $\widetilde{EV} = [EV_1, EV_2, EV_3, EV_4]$
- $\widetilde{AC} = [AC_1, AC_2, AC_3]$

•
$$\widetilde{SPI} = \frac{\widetilde{EV}}{PV} = \left[\frac{EV_1}{PV}, \frac{EV_2}{PV}, \frac{EV_3}{PV}, \frac{EV_4}{PV}\right]$$

•
$$\widetilde{CPI} = \frac{\widetilde{EV}}{\widetilde{AC}} = \left[\frac{EV_1}{AC_3}, \frac{EV_2}{AC_2}, \frac{EV_3}{AC_2}, \frac{EV_4}{AC_1}\right]$$

Interpreting a fuzzy index

- Target value of SPI and CPI is 1.
 - Above 1: the project performs better than the plan
 - Below 1: the project performs worse than the plan

Estimating the completion

$$\widetilde{EAC} = \frac{BAC}{\widetilde{CPI}}$$

$$= \frac{BAC}{\left[\frac{EV_1}{AC_3}, \frac{EV_2}{AC_2}, \frac{EV_3}{AC_2}, \frac{EV_4}{AC_1}\right]}$$

$$= \left[\frac{BAC \times AC_1}{EV_4}, \frac{BAC \times AC_2}{EV_3}, \frac{BAC \times AC_2}{EV_2}, \frac{BAC \times AC_3}{EV_1}\right]$$

Having a fuzzy estimate at completion (time or cost), we can compute the possibility of exceeding the project budget at completion.

Example

Work item	BAC	PV	% Complete	AC	Possibility of error in AC
1	1000	700	High	~900	Moderate
2	800	300	Less than half	~400	Very high
3	1200	200	Very low	300	-
4	2000	300	20%	~400	High
Total	5000	1500		~2000	

Fuzzy EV

Work item	BAC	% Complete		ĒV
1	1000	High	[0.7, 0.8, 0.8, 0.9]	[700, 800, 800, 900]
2	800	Less than half	[0.2, 0.3, 0.4, 0.5]	[160, 240, 320, 400]
3	1200	Very low	[0, 0, 0.1, 0.2]	[0, 0, 120, 240]
4	2000		20%	400
Total	5000			[1260, 1440, 1640, 1940]

Work item	AC	Possibility of error	ĩ	ÃČ
1	~900	Moderate	[-0.1, 0 , 0.1]	[810, 900, 990]
2	~400	Very high	[-0.2, 0, 0.2]	[320, 400, 480]
3	300	-		300
4	~400	High	[0.15, 0 , 0.15]	[340, 400, 460]
Total	~2000			[1770, 2000, 2230]

Evaluating Project Performance

 $\begin{aligned} \mathsf{BAC} &= 5000 \;, \quad \mathsf{PV} = 1500 \\ \widetilde{EV} &= [1260, 1440, 1640, 1940] \\ \widetilde{AC} &= [1770, 2000, 2230] \end{aligned}$

$$\widetilde{CPI} = \frac{\widetilde{EV}}{\widetilde{AC}} = [0.56, 0.72, 0.82, 1.09]$$

Approximately over budget

 $\widetilde{SPI} = \frac{\widetilde{EV}}{PV} = [0.84, 0.96, 1.09, 1.29]$

IRNOP 2017@

Estimate at Completion

Without considering the uncertainty: EV = 1500, AC = 2000, PV = 1500CPI = 0.75 SPI = 1 EAC = 6667

IRNOP 2017@

Conclusions

- The new fuzzy EVM model is presented for complex projects, in which actual costs are inexact and uncertain.
- The developed model results in a more realistic and practical evaluation of the project performance.
- We are expanding the proposed model for more general cases.

