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Abstract

This paper introduces the use of the vector
distance function (VDF) for representing en-
vironments, particularly for the use in locali-
sation algorithms. It is shown that VDF has
a continuous derivative at the object bound-
ary in contrast to unsigned distance transform,
and does not require an environment popu-
lated with closed object as in the case of the
signed distance transforms, the two most com-
mon strategies reported in the literature for
representing environments based on distances
to nearest occupied regions. As such VDF over-
comes the main disadvantages of the existing
distance transform based representations in the
context of robot localisation. The key proper-
ties of VDF are demonstrated and the use of
VDF in robot localisation using an optimiza-
tion based algorithm is illustrated using three
examples. It is shown that the proposed en-
vironment representation and the localisation
algorithm is effective in providing accurate lo-
cation estimates as well as the associated un-
certainties.

1 Introduction

Environment representation plays a key role in the effec-
tiveness of robot localisation algorithms. When the envi-
ronment is represented using a set of geometric features
such as points or lines, an extended Kalman filter (EKF)
can be formulated to estimate the robot pose using infor-
mation gathered by a sensor such as a laser range finder
mounted on the robot. Occupancy grid maps (OGM) are
a popular alternative, typically in indoor environments.
When an OGM is available, a particle filter [Thrun et
al., 2001] is the method of choice for robot localisation.
One of the key components of robot localisation algo-
rithms is the observation model that relates the sensor
observations to environment geometry. In case of a sen-
sor that observes the environment and returns a set of

range and/or bearing measurements, EKFs rely on be-
ing able to obtain analytic expressions relating features
in the environment and the robot pose. On the other
hand, particle filters use ray casting on the occupancy
grid to evaluate the likelihood of observations from a
hypothesized location.

During the past few years, ability of distance function
based methods for representing geometry have been rec-
ognized by the robotics community. Distance functions
at a given location is the shortest distance to the nearest
object. The measure used to represent this distance can
be selected based on the particular application. Typical
examples are the Euclidean, chessboard and city-block
distance [Paglieroni, 1992]. Once a distance metric is
defined, the misalignment between a template and an
observation can be computed using a variety of metrics,
the most widely used being Chamfer Distance [Barrow
et al., 1977] and Hausdroff Distance [Huttenlocher et al.,
1993].

Distance functions implicitly capture the geometry of
the environment and have found use in a number of
applications related to robotics. Truncated signed dis-
tance functions have been used for real-time dense sur-
face tracking and mapping in KinectFusion[Newcombe et
al., 2011]. Unsigned distance functions have been used
for ground robot localisation in an optimisation frame-
work in C-LOG [Dantanarayana et al., 2013].

The metric used to define the distance governs the
characteristics of the map representation. Unsigned dis-
tance transform has discontinuous derivatives at the ob-
ject boundary and the cut locus, the locus of points at
which the distances to multiple nearby boundaries are
the same. When used with a localisation algorithm,
many of the observations falls near the object bound-
ary as the location estimate approaches its true value.
As uncertainty estimates rely on the gradients of the
measurement equation, computing the uncertainty of the
location estimate requires heuristics to avoid these dis-
continuities. Signed distance transform has a continuous
derivative at the object boundary, and has found use in



3D point cloud registration as mentioned above [New-
combe et al., 2011]. Unicombe et. al. [Unicombe et al.,
2017] use a signed distance function based map repre-
sentation to estimate full 6-DOF pose of an Unmanned
Aerial Vehicle (UAV) in an EKF framework, where the
UAV flies above a flat ground with roadway marked as a
f́igure of 8́. However, these scenarios are confined to en-
vironments that consist of closed regions. Although it is
possible to represent environments such as 2D occupancy
grid maps with signed distance transforms, this requires
ray casting at each target location estimate to assign
the correct sign, leading to a high computational cost.
Furthermore, it has been demonstrated by Mullen et al.
(2010) and Chazal et al. (2011) that in 3D surface re-
construction, unsigned distance functions are much more
robust to noise and outliers than signed distance func-
tions.

Another distance function that has been used in com-
puter vision domain is the vector distance function
(VDF)[Faugeras and Gomes, 2000; Abdelmunim et al.,
2013]. This paper explores the use of VDF for environ-
ment representation and examines how an optimization
based technique can be used to localise the robot in the
map. It is demonstrated that VDF representation leads
to well behaved observation models.A new measure of
similarity between the robot sensor measurement and
the map that can be used in an optimisation framework
for robot pose estimation is proposed. A method for
computing the uncertainty of the estimated pose is also
described.

This paper is organised as follows. Section 2 illus-
trates the characteristics of the vector distance functions
through an example. Robot localisation is formulated as
an optimisation problem and a method for computing
the uncertainty of the solution this problem is also pro-
posed in Section 2. Results of experiments conducted us-
ing multiple datasets are presented in Section 3 demon-
strating the effectiveness of the proposed distance func-
tion and the localisation algorithm. Section 4 reviews
the contributions of this paper and presents concluding
remarks.

2 METHODOLOGY

2.1 Environment Representation

This section presents a study of the vector distance func-
tion for environmental representation.

Given an occupancy grid map, the unsigned distance
function implicitly represents the distance to the clos-
est occupied cell. The signed distance function produces
the same, with a sign assigned to the resulting distance
based on whether the grid cell is inside or outside an area
enclosed by occupied grid cells. However, both these
functions do not make use of an additional piece of in-
formation that can be obtained; the direction towards

the closet occupied cell. For each grid cell, the vector
distance function produces the distances to the closest
occupied cell along the axes of the coordinate system,
implicitly capturing both the magnitude and direction
of the vector from the grid cell to the closest occupied
cell. The vector distance function can be formulated as
follows.

Let M be an occupancy grid map and DTv denote the
vector distance function of M . If V = {vi} ⊆ M is the
set of occupied cells, then for any cell in U = {ui} ⊆M ,
function DTv : U → R2 can be defined as

DTv(u) = (iu − iv∗ , ju − jv∗) (1)

where (iu, ju) and (iv∗ , jv∗) are the Cartesian coordi-
nates of the cells u and its closest occupied cell v∗.

In order to derive DTv in linear time, we use a com-
putationally efficient algorithm proposed in [Maurer et
al., 2003]. The resulting two orthogonal Distance Trans-
form matrices, denoted by DTx and DTy, can be stored
separately to represent the map of the environments. It
is possible to approximate DTx, DTy and their first and
second derivatives using cubic splines, to obtain a rep-
resentation that is amenable to be used with either an
optimisation or extended Kalman filter based location
estimation algorithm. While these are potentially ex-
pensive calculations, for a given map these can be pre-
computed and stored for later use.

Fig. 1 shows a part of the map used in simulation ex-
periments detailed in Section 3 together with its repre-
sentation using the unsigned distance transform matrix
(DT ) and the two distance transform matrices (DTx and
DTy) of its vector distance function. While DT , DTx
and DTy are continuous functions, it should be noted
that the derivative of DT is not continuous both at the
cut loci and at the edge points of the map while DTx and
DTy as well as their derivatives are discontinuous only
at the cut loci. Fig. 2 shows how the variation of DT ,
DTx, DTy and DT 2

x +DT 2
y along the lines parallel to X

and Y axes of the grid map to further illustrate this.The
key property that is exploited in the algorithm proposed
in this paper is the fact that the vector distance function
and its derivatives are unlikely to be required at cut loci
during a localisation task.

2.2 Robot Localisation

The goal of the 2D robot localisation problem is to esti-
mate the robot pose xr = (xr, yr, φr)

> with respect to
an a-priory map M using a collection of measurements
S obtained by the sensors mounted on the robot such as
laser range finders and cameras. Given an estimate for
the robot pose xr, if the difference between the sensor
measurement and the map can be quantified by some
function F (S,M), then the localisation problem can be
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Figure 1: (a) Map (b) Unsigned DT (c) DTx and (d)
DTy for a part of map in simulation

formulated as an optimization problem [Dantanarayana
et al., 2013].

x̂r = argmin
xr,yr,φr

F (S,M) (2)

The disparity between the sensor measurement formu-
lated as a template image and the query image map can
be calculated using some metric as discussed in Section
1. In this work, we propose to use a dissimilarity measure
inspired by Chamfer Distance, denoted as (V CD). For a
template image U = {ui} and a query image V = {vj},
V CD is defined as (3).

V CD(U, V ) =
∑
ui∈U

min
vj∈V

|ui − vj |2 (3)

The euclidean distance between a pixel u and its near-
est edge pixel v∗ in an edge map V can be defined as (4).

min
v∈V
|u − v| =

√
(iu − iv∗)2 + (ju − jv∗)2 (4)

Since V is represented by a vector distance function,
V CD can be easily calculated using its two orthogonal
distance transform matrices as (5).

V CD(U,DTv) =
∑
ui∈U

(DTx(ui)
2 +DTy(ui)

2) (5)

Given a robot pose estimate xr = (xr, yr, φr) and a
2D laser scan measurement Srθ = {(ri, θi)} of n range-
bearing readings, the template edge image U = {Xoi}
can be formulated as (6).

(a)

(b)

Figure 2: The unsigned DT , DTx, DTy and DT 2
x +DT 2

y

along (a) X = 12.5m and along (b) Y = 12.5m for the
map in Fig.1. Boundaries and one cut loci are marked
in each figure to highlight the salient characteristics of
these distance functions.



Xoi =

{
xoi
yoi

}
=

{
xr + ri sin(θ − φ)
yr + ri cos(θ − φ)

}
(6)

V CD for a given pose estimate xr = (xr, yr, φr) can
now be calculated using the vector distance function rep-
resentation of the map DTv(M), and the observation
vector Xo as (7).

V CD(Xo, DTv) =

n∑
i=1

(DTx(Xoi)
2 +DTy(Xoi)

2) (7)

Therefore, V CD can be used as the function F in (2)
to estimate robot pose by solving the unconstrained non-
linear optimization problem (8).

x̂r = argmin
xr,yr,φr

V CD(Xo, DTx, DTy) (8)

Algorithm 1 Localise Robot

Require: DTx, DTy, ∂DTx

∂xoi
, ∂DTx

∂yoi
,
∂DTy

∂xoi
,
∂DTy

∂yoi
, ∂

2DTx

∂x2
oi

,

∂2DTy

∂y2oi
, Initial guess for pose X1 = (x1 y1 φ1)T

loop for each input sensor reading = Srθ

function Optimise(X1)
return X∗ = (x y φ)T at minV CD
end function
function UpadteGuess(X∗)
return Return X∗ updated using odometry
end function

end loop

2.3 Uncertainty of the Pose Estimate

Since the estimate for the robot pose x̂r is obtained via
an optimization process, an explicit function that maps
the sensor measurements to a pose estimate is not avail-
able. Therefore, the uncertainty of the pose estimate
cov(x̂r) due to the noise in sensor readings cov(S) can
be estimated with the aid of the implicit function the-
orem as (9)[Clarke, 1998]. The Jacobian matrix J and
the Hessian matrix H can be calculated by (10) and
(11) respectively. When the environment is represented
by an unsigned distance function, this approach cannot
be directly used to calculate the uncertainty of the pose
estimation. As the derivatives of the distance function
cannot be evaluated at boundaries because of the discon-
tinuities, and therefore some heuristics to approximate
derivatives are required.

cov(x̂r) = J ∗ cov(S) ∗ JT (9)

J = −H−1 ∗


∂2V CD
∂xr∂r
∂2V CD
∂yr∂r
∂2V CD
∂φr∂r

 (10)

H =


∂2V CD
∂x2

r

∂2V CD
∂xr∂yr

∂2V CD
∂xr∂φr

∂2V CD
∂xr∂yr

∂2V CD
∂y2r

∂2V CD
∂yr∂φr

∂2V CD
∂xr∂φr

∂2V CD
∂yr∂φr

∂2V CD
∂φ2

r

 (11)

Each element in the two matrices can be expressed

by DTx, DTy, ∂DTx

∂xoi
, ∂DTx

∂yoi
,
∂DTy

∂xoi
,
∂DTy

∂yoi
, ∂2DTx

∂x2
oi

,
∂2DTy

∂y2oi
and the first and second order derivatives of (6). As
previously mentioned, the matrices DTx, DTy and their
first and second order derivatives are precomputed and
stored in memory. Therefore computing J consists of
mainly table lookups.

3 EXPERIMENTAL RESULTS

The objective of this section is to evaluate VDF based
localisation in different scenarios using simulation and
real world data with ground and aerial robots. We use
three datasets.

A) Dataset collected from Player/Stage Simulator:
Ground Robot

B) Dataset of Intel Research Lab in Seattle: Ground
robot

C) Dataset collected from a hexarotor UAV in Kent-
land farm, Blacksburg, Virginia, USA: Aerial robot

Experiments on the data were conducted in Matlab R©

R2017a environment on an Intel R© Core i7-7700,
3.60GHz computer. Robot Operating System (ROS) Ki-
netic Kame distribution release was used as the middle-
ware for data collection with the UAV.

The readers are referred to the work of Dantanarayana
et al. (2013) and Unicomb et al. (2017) on evaluating
unsigned and signed distance function based localisation
with similar datasets.

3.1 Dataset collected from Player/Stage
simulator

A dataset was collected from a mobile robot in
Player/Stage simulator[Gerkey et al., 2003] equipped
with a Hokuyo laser range finder with a 30m range
and a 270◦ field of view, and an odometer. Zero mean
Gaussian noise was added to the laser range readings
(σr = 0.3m) and the linear (σv = 0.04ms−1) and the
angular (σω = 0.01rads−1) velocities, to simulate noisy
measurements expected in practice. The mobile robot
was navigated manually through an environment named
’Hospital’ available with the simulator by default. A
perfect map of the environment was available with the
simulator.



Figure 3: Ground Truth vs VCD Pose estimate for the simulation data set

Figure 4: VCD Pose Error and associated ±2σ Bounds

Fig. 3 shows the true path of the robot and the path
generated from the VCD pose estimates. Fig. 4 shows
the x, y and yaw errors and the corresponding uncer-
tainties through the entire trajectory.

3.2 Intel Research Lab Date Set

The second dataset contains the odometry and 2D Li-
Dar data collected by a mobile ground robot moving
3 loops inside the Intel Research Laboratory in Seattle
[Hähnel, 2000]. First, for the data in loop 3 a map was
built using GMapping[Grisetti et al., 2007]. To protect
the integrity of the localisation experiments, they were
conducted using the data from the first 2 loops. Fig. 5
shows the GMapping pose estimation alongside the VCD
pose estimation for the first 2 loops of the mobile robot’s
journey.

As ground truth is not available for this dataset, the
accuracy of the computed uncertainties can not be rig-
orously evaluated.

3.3 Dataset collected from a hexarotor
UAV in Kentland Farm

The third datasets was used to evaluate the proposed lo-
calisation approach on a hexarotor UAV. It was collected
in Kentland Farm, Blacksburg, VA, USA where the team
from Virginia Tech (Team VICTOR) conducted flight
tests in preparation for Mohamed Bin Zayed Interna-
tional Robotics Challenge (MBZIRC) 2017, an interna-
tional robotics competition involving unmanned ground
and aerial vehicles. In tandem with the competition
specification, a roadway in the shape of a figure of 8
was taped on the runaway.



Figure 5: GMapping Pose vs VCD Pose in Intel Lab
Dataset

The hexarotor UAV setup shown in Fig. 6 was custom
built for the purpose of the competition. It is equipped
with a perspective camera, a fisheye camera and a laser
range finder which are rigidly fixed to the UAV body
pointing downwards, a Real-time Kinematics Global Po-
sitioning System (RTK-GPS) module and a Pixhawk R©

flight controller with an internal inertial measurement
unit (IMU). In this environment, the RTK-GPS module
provides highly accurate location estimates, which can
be used as the ground truth of the UAV pose.

The state estimator in the Pixhawk R© flight controller
uses its internal IMU to estimate its roll and pitch angles.
These estimates are adequately accurate for high fre-
quency UAV control and are available for high level nav-
igation tasks such as path planning and way point follow-
ing. Furthermore, the high precision laser range finder
fixed to the UAV body pointing downwards can then
be used to estimate the operating altitude of the UAV.
Given these conditions, we can reduce the localisation
problem from estimating xr = (xr, yr, zr, φr, θr, ψr)

> to
estimating xr = (xr, yr, φr)

>.

To build a map of the environment, the UAV followed
a set of waypoints over the area and images were cap-
tured using the perspective camera. The captured im-
ages were corrected for lens distortion stitched together.
The stitched image was converted to a binary image by
extracting the edges. The vector distance function for
these binary edge images were then calculated.

For localisation, we use the perspective camera. Im-
ages were captured in synchronization with the current
UAV pose estimation xr = (xr, yr, φr)

>, the pitch and

Figure 6: Bogey5 : One of the UAVs custom built by
Team VICTOR for MBZIRC 2017

yaw angles from the IMU and the height information
from the laser range finder. The images were corrected
for lens distortion and the edges were extracted from it.
The set of edge points (λi, µi) were then transformed
from the image plane to the ground plane using the as-
sumption that the ground is a flat terrain using (12).
R is the rotation matrix explaining the attitude of the
UAV and f is the focal length of the camera obtained
via calibration.

Fig. 7 shows a comparison between the poses pro-
duced by the RTK-GPS and VCD localiser. It can be
seen that the localiser fails when the UAV is not on top
of the runway. This is to be expected because the sys-
tem fails to detect and extract features that can be used
for localisation. The trajectory of the UAV estimated by
the VCD localiser when it detects a sufficient number of
features is drawn for visual comparison with the UAV
trajectory obtained by RTK-GPS measurements. Fig.
8 shows shows the x, y and yaw errors and the corre-
sponding uncertainties at each step when the localiser is
fed with sufficient number of features.

xoi =

{
xoi
yoi

}
=

{
xr + z

λiR1,1+µiR1,2−fR1,3

λiR3,1−µiR3,2+fR3,3

yr + z
λiR2,1+µiR2,2−fR2,3

λiR3,1−µiR3,2+fR3,3

}
(12)

4 DISCUSSION & CONCLUSIONS

The main contribution of this work is the use of vec-
tor distance functions to represent the environment for
robot localisation. The vector distance function rep-
resentation holds advantages over signed and unsigned
variations of the distance functions where the ability to
represent open curves and the continuity of derivatives
at the map boundaries allow it to represent any envi-
ronment and to calculate the uncertainty of the pose



Figure 7: RTK GPS pose vs VCD pose in Dataset C

Figure 8: VCD Pose Error and ±2σ Error Boundaries
at each successful localiser step.

estimate. The robot localisation problem is formulated
as a minimization of a metric that describes the differ-
ence between the sensor measurement and the map. It is
demonstrated through simulation and field experiments
that the proposed approach can be used to estimate pose
and associated uncertainty of ground robots equipped
with laser range finders and an aerial robot equipped
with a monocular camera.

Even in the single threaded MATLAB implementa-
tion, the optimization in average takes less than 25ms.
The calculation of uncertainty of pose estimation takes
135ms. However, as all matrix lookups and multiplica-
tions can be heavily parallelized and optimized, it is ex-
pected that an optimized implementation in C or C++
will be capable of real-time performance on ground and
aerial robots.

Future work will involve further experiments on addi-
tional datasets particularly including 3D sensors such as
RGB-D cameras, evaluating the effectiveness of a con-
tinuous representation such as a Gaussian Process to
directly capture the VDF in order to enhance the lo-
calisation accuracy and the feasibility of extending this
work to implement a localisation algorithm based on an
extended Kalman filter to further reduce the computa-
tional complexity.

ACKNOWLEDGEMENT

This work was funded by the Centre for Autonomous
Systems, University of Technology Sydney, Australia
and Khalifa University, UAE. The authors would like to
acknowledge the members of Team VICTOR who partic-
ipated in MBZIRC 2017 for their contributions in hard-
ware and software development, and data collection.

References
[Abdelmunim et al., 2013] H. Abdelmunim, A. Farag,

and A. A. Farag. Shape representation and registra-
tion in vector implicit spaces: Adopting a closed-form
solution in the optimization process. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
35(3):763–768, March 2013.

[Barrow et al., 1977] Harry G Barrow, Jay M Tenen-
baum, Robert C Bolles, and Helen C Wolf. Para-
metric correspondence and chamfer matching: Two
new techniques for image matching. Technical report,
DTIC Document, 1977.

[Chazal et al., 2011] Frdric Chazal, David Cohen-
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