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ABSTRACT

Background. Chlamydia psittaci and Chlamydia pecorum are important veterinary
pathogens, with the former also being responsible for zoonoses, and the latter adversely
affecting koala populations in Australia and livestock globally. The rapid detection
of these organisms is still challenging, particularly at the point-of-care (POC). In the
present study, we developed and evaluated rapid, sensitive and robust C. psittaci-specific
and C. pecorum-specific Loop Mediated Isothermal Amplification (LAMP) assays for
detection of these pathogens.

Methods and Materials. The LAMP assays, performed in a Genie III real-time fluo-
rometer, targeted a 263 bp region of the C. psittaci-specific Cps_0607 gene or a 209
bp region of a C. pecorum-specific conserved gene CpecG_0573, and were evaluated
using a range of samples previously screened using species-specific quantitative PCRs
(qPCRs). Species-specificity for C. psittaci and C. pecorumn LAMP targets was tested
against DNA samples from related chlamydial species and a range of other bacteria. In
order to evaluate pathogen detection in clinical samples, C. psittaci LAMP was evaluated
using a total of 26 DNA extracts from clinical samples from equine and avian hosts,
while for C. pecorum LAMP, we tested a total of 63 DNA extracts from clinical samples
from koala, sheep and cattle hosts. A subset of 36 C. pecorum samples was also tested
in a thermal cycler (instead of a real-time fluorometer) using newly developed LAMP
and results were determined as an end point detection. We also evaluated rapid swab
processing (without DNA extraction) to assess the robustness of these assays.

Results. Both LAMP assays were demonstrated to species-specific, highly reproducible
and to be able to detect as little as 10 genome copy number/reaction, with a mean
amplification time of 14 and 24 min for C. psittaci and C. pecorum, respectively. When
testing clinical samples, the overall congruence between the newly developed LAMP
assays and qPCR was 92.3% for C. psittaci (91.7% sensitivity and 92.9% specificity);
and 84.1% for C. pecorum (90.6% sensitivity and 77.4% specificity). For a subset of
36 C. pecorum samples tested in a thermal cycler using newly developed LAMP, we
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observed 34/36 (94.4%) samples result being congruent between LAMP performed in
fluorometer and in thermal cycler. Rapid swab processing method evaluated in this
study also allows for chlamydial DNA detection using LAMP.

Discussion. In this study, we describe the development of novel, rapid and robust
C. psittaci-specific and C. pecorum-specific LAMP assays that are able to detect these
bacteria in clinical samples in either the laboratory or POC settings. With further
development and a focus on the preparation of these assays at the POC, it is anticipated
that both tests may fill an important niche in the repertoire of ancillary diagnostic tools
available to clinicians.

Subjects Microbiology, Veterinary Medicine, Public Health

Keywords Chlamydia psittaci, Chlamydia pecorum, LAMP, Diagnostics, Rapid tests, Clinical
samples

INTRODUCTION

The obligatory intracellular bacteria, Chlamydia psittaci and Chlamydia pecorum, are
globally widespread veterinary pathogens that cause disease in an astonishing range of hosts.
C. psittaci, the causative agent of psittacosis or wasting bird disease, is regarded as a major
economically relevant poultry and pet bird pathogen (Knittler ¢ Sachse, 2015; Szymanska-
Czerwinska & Niemczuk, 2016). Globally, C. psittaci infections are also sporadically reported
in other animal species such as pigs, cattle, sheep and horses, resulting in asymptomatic
shedding, acute respiratory disease and, in the case of horses, reproductive loss (Reinhold,
Sachse ¢ Kaltenboeck, 2011; Knittler ¢~ Sachse, 2015; Jelocnik et al., 2017). Importantly, this
pathogen continues to pose risks to public health through zoonotic transmission events
that may lead to severe pneumonia (Gaede et al., 2008; Laroucau et al., 2015; Branley et al.,
2016). This zoonotic risk is typically associated with direct contact with C. psittaci infected
birds, although indirect contact through exposure to environmental contamination has
been suggested (Branley et al., 2014; Branley et al., 2016).

C. pecorum is perhaps best known as the major pathogen of the iconic Australian
native species, the koala. These infections are most commonly asymptomatic but can
also result in serious inflammatory ocular and/or urogenital disease, affecting almost all
Australia’s mainland koala populations (Polkinghorne, Hanger ¢ Timms, 2013; Gonzalez-
Astudillo et al., 2017). C. pecorum is also an important livestock pathogen causing a
range of debilitating diseases such as sporadic bovine encephalomyelitis, polyarthritis,
pneumonia and conjunctivitis, with faecal shedding as a constant feature of these infections
(Lenzko et al., 2011; Reinhold, Sachse ¢ Kaltenboeck, 2011; Walker et al., 2015). In livestock,
chlamydial pathogens such as C. pecorum and C. psittaci may be found as co-infections,
raising the possibility of a synergistic pathogenic effect (Lenzko et al., 2011; Reinhold,
Sachse & Kaltenboeck, 2011; Knittler ¢~ Sachse, 2015). The reports of chlamydial infections
in novel hosts and their recognised pathogenic potential (Jelocnik et al., 2015b; Burnard
& Polkinghorne, 2016; Taylor-Brown ¢ Polkinghorne, 2017), further highlight the need for

faster detection and molecular discrimination of infecting strains.
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Whilst significant progress has been made in understanding the molecular epidemiology
of C. psittaci and C. pecorum infections (Jelocnik et al., 2015a; Branley et al., 2016), the
diagnosis and detection of these pathogens is still difficult, laborious and costly, challenging
efforts to manage and treat infected hosts. A variety of traditional (cell culture, antigen
detection, and serology) and molecular (conventional and real-time quantitative PCR
(qPCR)) diagnostic options are used to detect chlamydial infections and diagnose
chlamydiosis (Sachse et al., 2009). For both C. psittaci and C. pecorum, nucleic acid
amplification tests (NAATS) are presently considered the diagnostic “gold standard”
due to their specificity and sensitivity, however the use of these assays is mainly restricted
to research and/or diagnostic laboratories. In the absence of standardised gene target(s)
for these organisms, numerous single or nested species-specific QPCR assays have been
proposed and/or are used for C. psittaci (Madico et al., 2000; Geens et al., 20055 Menard et
al., 2006; Branley et al., 2008) and C. pecorum (Marsh et al., 2011; Higgins et al., 2012; Wan
et al., 2011; Walker et al., 2016) diagnosis.

The development and use of low-cost molecular diagnostic tools performed at the
point-of-care (POC) which fulfil the World Health Organization “ASSURED” criteria of
affordable, sensitive, specific, user-friendly, rapid, equipment-free, and deliverable to those
in need to be tested, are on the exponential rise (Maffert et al., 2017). While POC testing
is not necessarily required when considering most chlamydial infections of veterinary
concern, the ability to provide a rapid detection of infections becomes of increasing
significance when veterinarians and other animal workers may be at risk of being exposed
to C. psittaci infections in field or farm settings. POC testing is also particularly relevant
for Chlamydia screening in wild animals where laboratory testing is not accessible either
due to logistics associated with field sampling or that services are not routinely available
for testing of samples from wildlife. The latter problem is particularly acute for diagnosing
infections in koalas, with the recent decision to stop the production of a commercially
viable solid-phase ELISA leaving wildlife hospitals unable to diagnose and successfully treat
asymptomatic C. pecorum infections (Hanger et al., 2013).

While there are many options for molecular POC diagnostics, Loop Mediated Isothermal
Amplification (LAMP) assays developed for use in pathogen diagnostics are popular as they
offer significant advantages over PCR and/or serology testing (Maffert et al., 2017). Rapid,
simple, highly specific, easy to interpret, and carried out at a constant temperature, LAMP
assays can provide a diagnosis in 30 min, in either laboratory or field setting (Mansour et al.,
2015; Notomi et al., 2015). Rapid isothermal LAMP assays that could be performed at the
POC targeting human C. pneumoniae (Kawai et al., 2009) and C. trachomatis (Jevtusevskaja
et al., 2016; Choopara et al., 2017) infections have been proposed for use in chlamydial
diagnostics. Development of a C. pecorum LAMP, in particular, would meet immediate
demand for koala C. pecorum infections diagnostics, providing an alternative solution
for the current laboratory diagnostics. A recent outbreak of psittacosis in veterinary staff
and students in contact with a C. psittaci-infected and sick neonatal foal (Chan et al., 2017;
Jelocnik et al., 2017), further demonstrates the need for POC assays such as LAMP to rapidly
diagnose C. psittaci. In the present study, we describe the development and evaluation of

Jelocnik et al. (2017), PeerJ, DOI 10.7717/peerj.3799 3/20


https://peerj.com
http://dx.doi.org/10.7717/peerj.3799

Peer

rapid and robust C. psittaci-specific and C. pecorum-specific LAMP assays for detection of
these organisms in either laboratory or POC settings.

MATERIALS AND METHODS

Bacterial cultures and clinical samples used in this study

C. psittaci LAMP assay was evaluated using: (1) 12 DNA samples extracted from previously
characterised C. psittaci isolates (10 human, two parrot and one equine) (Table S1); (2)
DNA extracted from 21 placental, foetal, nasal, lung and rectal swabs, and 1 each placental
and foetal tissue sample taken from 20 equine hosts; and (3) three pigeon liver DNA extracts
(Table 52). All samples were collected and submitted as part of routine diagnostic testing
by field or district veterinarians to the State Veterinary Diagnostic Laboratory (SVDL),
Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia, and as
such do not require special animal ethics approval. DNA extracts from these samples were
kindly provided by Dr. Cheryl Jenkins, and Dr. James Branley. The use of these swabs was
considered by the University of The Sunshine Coast (USC) Animal Ethics Committee and
the need for further ethics consideration was waived under exemption AN/E/17/19.

C. pecorum LAMP was evaluated using a: (1) 18 DNA samples extracted from previously
characterised koala (n =7), sheep (n =4), cattle (n =4) and pig C. pecorum (n = 3) cultures
(Table S1); (2) 16 sheep and 13 cattle ocular, rectal, and tissue swab DNA samples; and
(3) 34 ocular and urogenital (UGT) koala swab DNA samples (Table S3), all available in
our collection. The use of these swabs, also collected by qualified veterinarians as a part of
routine diagnostic testing, was considered and approved for exemption by the University
of The Sunshine Coast (USC) Animal Ethics Committee (AN/E/14/01 and AN/E/14/31).

We also evaluated the specificity of the assays against DNA samples extracted from
previously characterised (i) chlamydial isolates (koala C. pneumoniae LPColN, C. abortus
S26/3, C. suis S$45, C. trachomatis serovar D, C. murridarum Nigg, C. caviae GPIC) and
uncultured Chlamydiales (Fritschea spp.); (i) Gram negative Escherichia coli and Prevotella
bivia; Gram positive Fusobacterium nucleatum, Staphylococcus epidermidis, S. aureus,
Streptococcus spp., and Enterococcus faecalis; and (iii) commercially available human
gDNA (Promega, Alexandria, NSW 2015), all available in our laboratory (Table S1).

In order to evaluate rapid swab processing, 18 ocular, cloacal and UGT (14 dry and four
RNA-Later) clinical swabs taken from 14 koalas with presumptive chlamydiosis were used
for testing without DNA extraction. Briefly, RNA-Later and dry swabs with added 500 nL
TE buffer were vortexed vigorously for 5 min. 300 L aliquots were then heated to 98 °C for
15 min to lyse DNA, following LAMP testing. The use of these swabs, collected as a part of
routine diagnostic testing, is also under Animal Ethics approval exemption (AN/E/14/01).
An aliquot of 50 pL of the swab suspension was used for LAMP and qPCR assays, while
from the remaining volume of the swab suspension was used for DNA extraction, in order
to compare swab suspension and its paired extracted DNA as a template in the assays.

LAMP assays design
For the C. psittaci-specific LAMP gene target, we targeted a previously described conserved
single-copy C. psittaci-specific CDS, encoding for hypothetical protein and denoted
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Cpsit_0607 in the representative C. psittaci 6BC strain (Genbank accession number
NC_015470.1) (Voigt, Schofl & Saluz, 2012). This gene was also previously proposed as
a target for molecular diagnosis of C. psittaci infections (Opota et al., 2015).

The C. pecorum-specific candidate LAMP gene target, encoding for a single-copy
conserved hypothetical protein and denoted CpecG_0573 in the C. pecorum MC/Marsbar
koala type strain (GenBank accession number NZ_ CM002310.1), was selected based on
a comparative genomics analysis of published koala and livestock C. pecorum genomes
(Jelocnik et al., 2015a). For the purposes of this study, we will refer to it as Cpec_HP. Both
candidate gene sequences were aligned to the corresponding allele from other publicly
available C. psittaci or C. pecorum strains using Clustal X (as implemented in Geneious 9
(Kearse et al., 2012)), and analysed in blastn against the nucleotide collection nr/nt database
to assess intra-species sequence identity, and inter-species specificity.

For C. ps_0607 alignment, besides 6BC, we used the gene alleles from strains 84/55
(CP003790.1), 02DC15 (CP002806.1), 01DC11 (CP002805.1), WC (CP003796.1), 01DC12
(HF545614.1), NJ1 (CP003798.1), CR009 (LZRX01000000), Ho Re upper (LZRE01000000)
and PoAn (LZRG01000000). For C. pec _HP alignment, besides MC/Marsbar, we used
the gene alleles from E58 (CP002608.1), P787 (CP004035.1), W73 (CP004034.1), IPA
(NZ_CM002311.1), NSW/Bov/SBE (NZ JWHE00000000.1), L71 (LERL0O1000000),

L17 (LFRK01000001), L1 (LFRH00000000), DBDeUG (NZ_CM002308.1), SA/K2/UGT
(SRR1693792), Nar/S22/Rec (SRR1693794) and Mer/Ovil/Jnt (SRR1693791).

Species-specific LAMP primers were designed using the target sequences with the
open-source Primer Explorer v5 software (Eiken Chemical Co., Tokyo, Japan) and licensed
LAMP Designer 1.15 software (Premier Biosoft, Palo Alto, CA, USA). For both C. pecorum
and C. psittaci, Primer Explorer v5 yielded five sets of four LAMP primers including two
outer (forward F3 and backward B3) primers and two inner (forward inner FIP and
backward inner BIP) primers targeting different regions of the target gene, while LAMP
Designer yielded single best set of six LAMP primers including two outer primers (forward
F3 and backward B3), two inner primers (forward inner FIP and backward inner BIP)
and two loop primers (forward loop LF and backwards loop LB). All primers (as single
or paired) were tested in silico, including analysing primer sequences in blast for species
specificity and OligoAnalyser 3.1 (available from http://sg.idtdna.com/calc/analyzer) for
primer dimerization, hairpins and melting temperatures.

After in silico and in LAMP reaction testing, a set of four primers designed by
PrimerExplorer v5 and targeting a 209 bp region of the C. pec_HP gene (spanning from
position 22 to 230) was selected for C. pecorum LAMP assays performed in this study.
Additional loop primers (LF/LB) were also designed to accelerate amplification time and
increase sensitivity. For C. psittaci, a set of six primers designed with LAMP Designer and
targeting a 263 bp region of the C. ps_0607 gene (spanning from position 286 to 548) was
selected for LAMP assays performed in this study. The specificity of primer sequences was
assessed in silico using discontiquousBLAST analyses. Amplicons generated by conventional
PCR using outer F3 and B3 primers for both C. psittaci and C. pecorum were gel excised,
purified using Roche High Pure purification kit, and sent to Australian Genome Research
Facility (AGRF) for Sanger sequencing for sequence identity confirmation.
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LAMP assay optimisation

Both C. psittaci and C. pecorum LAMP assays were carried out in a 25 pL reaction volume.
The reaction mixture consisted of 15 pL Isothermal Master Mix ISO001 (Optigene,
Horsham, UK), 5 pL six primers mix (at 0.2 wM F3 and B3, 0.8 uM FIP and BIP, and
0.4 uM LF and LB) and 5 pL template, following LAMP assay run at 65 °C in the Genie
III real-time fluorometer (Optigene, Horsham, UK), as per manufacturer instructions.
Following determination of the most optimal conditions (fastest amplification time,
fluorescence and annealing temperature), C. psittaci LAMP assays were run at 65 °C for
30 min followed by annealing step of 98-80 °C at a rate of 0.05 °C/s, while C. pecorum
LAMP assays were run using the same temperature and annealing conditions, however for
45 min. A negative control (LAMP mix only) was included in each run. Both C. psittaci
and C. pecorum LAMP assays were performed on a thermal cycle heating block at 65 °C for
30 min, following detection of amplicons by electrophoresis on a 1.5% ethidium bromide
agarose gel and visualisation under UV. In addition, several C. pecorum LAMP assays were
conducted using the four primer set, two outer (F3 and B3) and two inner (FIP and BIP)
primers, on a heating block at 65 °C for 45 min.

After the assay optimisation, LAMP testing was evaluated using previously tested
clinical samples, previously characterised isolates and untested new samples. C. pecorum-
presumptive samples were simultaneously tested using our in-house C. pecorum—specific
qPCR assay (Marsh et al., 2011), while C. psittaci-presumptive samples were tested using a
pan-Chlamydiales qPCR assay with primers 16SIGF and 16SIGR targeting the 298 bp 165
rRNA fragment (Everett, Bush & Andersen, 1999). Amplicon sequencing was used for the
latter assay to confirm species identity. The qPCR assays were carried out in a 20 wL total
volume, consisting of 10 wL SYBR™ Green PCR Master Mix (Life Technologies Australia
Pty Ltd., Scoresby, Victoria, Australia), 1 L of each 10 pM forward and reverse primer,
3 wL miligH20, and 5 pL DNA template. The qPCR assays were run for 35 cycles (Ct), and
in each qPCR assay a positive (cultured C. pecorum and/or C. psittaci DNA) and negative
(miligH20) controls were included. Based on the qPCR standard curve and the number
of running cycles, samples amplifying at >30 Ct (and/or equivalent detected genome copy
number) were considered negative. The 23 C. psittaci-presumptive equine samples were
also tested with a C. psittaci-specific qQPCR assay targeting the 16S rRNA gene/16S-23S
rRNA spacer gene (Madico et al., 2000) at the State Veterinary Diagnostic Laboratory
(SVDL), Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia.
Samples amplifying at >39 Ct were considered negative. LAMP testing was performed in a
blind fashion, by two different operators, unaware of qPCR results.

Statistical analyses

For each assay, we compared the performance of two tests evaluated in the same population
by calculating Kappa and overall agreement, as well as estimated sensitivity and specificity
(with specified Clopper—Pearson (exact) confidence limits) of LAMP compared to the
known reference (gold standard) qPCR test using EpiTools online (Sergeant, 2017). It is
suggested the Kappa value be interpreted as follows: values <0 as indicating no agreement
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and 0.01-0.20 as none to slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as
substantial, and 0.81-1.00 as almost perfect agreement.

RESULTS AND DISCUSSION

With the emergence of new spill-over threats posed by C. psittaci (Laroucau et al., 2015;
Jelocnik et al., 2017), there is an increasing need for rapid diagnostic tools for this pathogen,
particularly for those that may have practical application in the field or clinical setting.
There are specific needs for C. pecorum POC tests as well in both the veterinary care
and treatment of infected domesticated and native animals, particularly in settings where
veterinary diagnostic testing is logistically challenging. In the present study, to the best of our
knowledge, we describe the first development of novel, rapid and robust C. psittaci-specific
and C. pecorum-specific LAMP assays that are able to detect these bacteria in clinical
samples in either the laboratory or POC settings.

C. psittaci and C. pecorum LAMP development

A C. psittaci-specific gene (C.ps_0607) was previously characterised as a conserved gene
sequence present only in C. psittaci genomes, and absent from all other related chlamydial
species (Voigt, Schofl ¢ Saluz, 2012). BLAST analyses and alignment of the C.ps_0607 gene
sequences, including those from recently described human, bird and equine Australian
isolates, confirmed species specificity and sequence conservation. Between 0 and 13 single
nucleotide polymorphisms (SNPs) were observed amongst strains (100-95.1% sequence
identity) based on a 263 bp alignment of C.ps_0607 gene sequences, including that from
the most distant C. psittaci NJ1 taxon (Fig. S1A). Similarly, the C. pecorum HP gene
(denoted CpecG_0573 locus in Marsbar strain) was determined as a highly conserved
species-specific sequence following BLAST analysis against publicly available sequences.
Using an alignment of HP gene sequences from 14 publicly available C. pecorum genomes,
there were only two SNPs in the 209 bp region to be targeted by LAMP (Fig. S1B).

Although multiple LAMP primer sets were predicted, LAMP primer sets denoted in
Fig. 1 were chosen for further assay development. For C. psittaci assays, a set designed
using LAMP Explorer was utilised while, for C. pecorum, we used a set designed with
PrimerExplorer (Table 1). After initial testing, some of the predicted primer sets were
discarded due to (i) potential cross-amplification associated with a lack of specificity of
the target primer; (ii) not achieving an amplification signal in the fluorometer; and (iii)
amplifying non-specific targets, including positive amplification in negative controls (data
not shown). While we achieved initial amplification of a C. psittaci single copy dilution in
a 30 min assay using the designed LAMP primer set, initial reaction times for a C. pecorum
single copy amplification averaged 50 min. In order to accelerate amplification times for
C. pecorum, we additionally designed a pair of Loop primers for the C. pecorum set which
decreased the amplification of a single copy to 30 min.

Species-specificity for C. psittaci and C. pecorumn LAMP targets was tested in the
developed LAMP assays using DNA extracts from 12 C. psittaci and 18 C. pecorum
cultured isolates, DNA extracts from other chlamydial species and a range of DNA extracts
from other bacteria. Positive amplification as assessed by the presence of an observable
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Figure 1 LAMP primer sequences and positions in the target gene regions. (A) C. psittaci LAMP primer
set; and (B) C. pecorum LAMP primer set. Outer F3 and B3 primers are indicated in green, inner FIP and
BIP in blue, and loop LF and BL in pink colour.

amplification curve characterised by a specific melt was observed only for the target species
in their respective assays (Table S1). No amplification curves were observed for any of
the non-targeted chlamydial species or other bacteria included in our specificity assays
(Table S1). The C. pecorum and C. psittaci LAMP assays did not amplify either the related
chlamydial species or other bacteria included in our specificity assays. In this study, in
contrast, a previously described “C. pecorum-specific” qPCR assay (Marsh et al., 2011;
Wan et al., 2011) showed positive amplification and melt for C. psittaci and C. pneumoniae
DNA samples.

The choice to use the C. ps_0607 gene as a LAMP target was straight forward since it had
been suggested for such a purpose in previous studies (Voigt, Schifl & Saluz, 2012; Opota
et al., 2015), For C. pecorum, however, we utilised our ongoing comparative genomics to
select C. pecorum-specific and conserved C.pec_HP gene described in this study for the first
time. In silico analyses and assay development confirmed species-specificity of this gene and
its suitability for use in diagnostic assays. Previously published C. pecorum diagnostic assays
targeted highly polymorphic genes such as ompA (Higgins et al., 20125 Yang et al., 2014),
which may require the use of probes due to sequence variation, prolonging the detection
time and increasing diagnostic costs. Our routinely used in house C. pecorum-specific
assay which targets a 204 bp 16S rRNA fragment (Marsh et al., 2011; Wan et al., 2011)
was simpler to use, however we have shown that this assay may cross-react with other
related chlamydial species due to a lack of sufficient sequence variation in the region of the
16S rRNA gene targeted (Bachmann, Polkinghorne ¢ Timms, 2014). For koala diagnostics
where C. pecorum is the most abundant and prevalent chlamydial organism (Polkinghorne,
Hanger & Timms, 2013), this cross-reactivity may not be of a big concern. For the veterinary
diagnosis of infections in livestock where co-infections with several chlamydial species are
common (Lenzko et al., 2011; Reinhold, Sachse ¢» Kaltenboeck, 2011), this assay may be less
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Table 1 LAMP primers set used in this study.

Name Sequence 5'-3' Position Length
C. psittaci LAMP primers
F3 AGAACCGGATTAGGAGTCTT 286 20
B3 GCTGCTAAAGCGAGTATTGA 548 20
FIP(Flc + F2) TCCGCAGTTTGTTCCATCACCCAA 43
GGGTTATTCGACAACTACT
BIP(Blc + B2) ACTATGGATCGGCCACACATGGG 41
TATGTTGCTTTGAATGGG
LoopF TTCAGGTAATCACGCACTTGA 350 21
LoopB TTCCCCACACTATTAAACAGCA 431 22
F2 CAAGGGTTATTCGACAACTACT 307 22
Flc TCCGCAGTTTGTTCCATCACC 387 21
B2 GGTATGTTGCTTTGAATGGG 472 20
Blc ACTATGGATCGGCCACACATG 410 21
C. pecorum LAMP primers
F3 ATCGGGACCTTCTCATCG 22 18
B3 GCTGTTGTAAGGAAGACTCC 230 20
FIP(Flc + F2) GACTAACAGTATAAGCAGTGCTG 44
TTAGTCTGCTGTCCAACTACA
BIP(Blc + B2) TTATCTCTCGTTGCAATGATAGGAG 46
CCAACAGGATCAAACCAACTT
LoopF CTGAATTCGTTGAC 93 14
LoopB TACTGTCTTCACC 165 12
F2 AGTCTGCTGTCCAACTACA 47 19
Flc GACTAACAGTATAAGCAGTGCTGTT 129 25
B2 CAACAGGATCAAACCAACTT 210 20
Blc TTATCTCTCGTTGCAATGATAGGAGC 130 26

suitable. Using the C. pecorum-specific HP gene as a target in different diagnostic assays

would hence seem promising.

Performance of the C. psittaci and C. pecorum LAMP assays

The sensitivity of the LAMP assays was evaluated using 5 wL cultured C. psittaci and

C. pecorum gDNA in 10-fold serial dilutions as a template in assays performed in triplicate

in separate runs. The limits of detection of the LAMP assays were conservatively 10 copies

for C. psittaci, with 3/3 (100%) positive amplification for 10 copy dilutions for C. psittaci,

and one copy for C. pecorum, with 3/3 (100%) positive amplifications for a single copy
dilution of C. pecorum DNA (Tables 2 and 3). In the final and optimised LAMP assays,
the mean amplification time detecting the lower limit (a single copy) for C. psittaci was

14.23 min with an average 84.45 °C melt (Table 2) while, for C. pecorum, it was 24 min

with an average 83.42 °C melt (Table 3). Comparing the two newly developed assays,

C. psittaci LAMP had the faster run time than that of C. pecorurn LAMP. This difference
in assays kinetics could be attributed to the improved C. psittaci LAMP primers design, as
they were predicted by the LAMP Designer software (Nagamine, Hase ¢ Notomi, 2002). As
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Table2 C. psittaci LAMP assay” sensitivity.

Dilution? Time to amplify (min) Melt (°C) Time (Mean + SD) Melt (Mean + SD)

10° 5.15 84.43

10° 5.00 84.46 5.10, 0.09 84.49, 0.08
10° 5.15 84.58

10° 6.30 84.34

10° 6.45 84.33 6.30, 0.15 84.37,0.06
10° 6.15 84.43

104 7.15 84.59

10* 7.30 84.58 7.25, 0.09 84.56, 0.04
10* 7.30 84.51

10° 8.45 84.46

10° 8.15 84.43 8.25,0.173 84.44,0.01
10° 8.15 84.44

100 9.15 84.48

100 9.30 84.39 9.30, 0.15 84.46, 0.06
100 9.45 84.51

10 12.00 84.41

10 11.00 84.35 11.33, 0.58 84.38,0.03
10 11.00 84.39

1 16.00 84.44

1 0.00 0 14.23,2.51 84.34,0.14
1 12.45 84.24

0.1 25.25 84.20

0.1 = = = 84.20

0.1 — 84.20°

Notes.

2The assay was performed in Genie III Real-time fluorometer, with the amplification times and annealing temperatures

recorded at the end of each run. The samples were tested in three different runs.

®No amplification detected.

“No amplification, but melt and annealing curve recorded.

dTemplate was serially diluted C. psittaci CR009 gDNA which genome copy number was determined by qPCR.
we additionally designed Loop primers for C. pecorum, we can anticipate an improvement
in the C. pecorum assay kinetics by re-designing the loop primers (e.g., extending the
sequence to 20-22 bp), as well as testing LAMP mixes in different ratios and with improved
polymerases.

In order to test the reproducibility of our LAMP assays, we tested a subset of C. pecorum
and C. psittaci PCR positive samples (Table 4). All ssmples were run in a “blind fashion”, in
triplicate and in separate runs by two different operators. For both assays, the amplification
times and melts of each sample between the runs were very similar, with 0 to 1.5 min (SDs
ranging from 0-0.98) difference in amplification times for each sample, and 0.03 to 0.83 °C
(SDs ranging from 0.02—-0.26) difference in melt for each sample. Congruence between the
runs performed by different operators indicates that both LAMP assays described in this
study are highly reproducible, and can detect the target organism in less than 30 min even
when in low infectious loads of <10 copies.
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Table3 C. pecorum LAMP assay” sensitivity.

Dilution’ Time to amplify (min) Melt (°C) Time (Mean + SD) Melt (Mean + SD)
107k 10.00 83.23 10.23, 0.32 83.30, 0.1
10’k 10.45 83.37
10°k 13.15 83.57
10°s” 13.15 83.33 12.92, 0.40 83.51, 0.16
10°¢° 12.45 83.62
10°k 14.00 83.52
10°s 14.00 83.35 14.10, 0.17 83.48,0.11
10°c 14.30 83.57
10%k 15.45 83.56
10*s 16.45 83.33 16.30, 0.78 83.44,0.11
10%c 17.00 83.42
10°k 19.00 83.50
10%s 17.45 83.39 18.87, 1.35 83.45, 0.06
10%c 20.15 83.47
100k 20.15 83.47
100s 18.45 83.09 20.35, 2.00 83.33,0.21
100c 22.45 83.42
10k 22.30 83.52
10s 21.00 83.42 22.43,1.50 83.42,0.1
10c 24.00 83.33
1k 23.15 83.52
1s 22.30 83.42 23.92,2.11 83.41, 0.12
1c 26.30 83.28
0.1k 36.00 83.41
0.1s = 83.43 34.65,1.91 83.39, 0.06
0.1c 33.30 83.33

Notes.

2Koala Marsbar isolate.
bSheep IPA isolate.
CCattle E58 isolate.
4No amplification, but melt and annealing curve recorded.

¢The assay was performed in Genie III Real-time fluorometer, with the amplification times and annealing temperatures

recorded at the end of each run. The samples were tested in different runs.
fTemplate was serially diluted C. pecorum gDNA which genome copy number was determined by qPCR.

Pathogen detection in clinical samples using newly developed LAMP
For C. psittaci, a total of 26 DNA extracts from clinical samples were tested with both
C. psittaci LAMP and qPCR assays (Table S2). For these analyses, samples with >20 min

amplification time were considered negative for LAMP, while for qPCR, samples with

<20 genome copy/reaction and/or >30 Ct (quantification cycle) were considered negative,

based on the qPCR standard curve and the number of running cycles used for this testing.

As observed in Table S2 and based on above cut-off values, 24/26 (92.3%) samples were

congruent between the two tests, with 11 samples positive and 13 samples negative by both

(Table 5). For 2/26 (7.7%) where there was disagreement, one sample was LAMP positive

but qPCR negative, and another was qPCR positive but C. psittaci LAMP negative. Based
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Table 4 Reproducibility of the LAMP testing using clinical and cultured samples.

Samples Run’ Time to Melt (°C) Time Melt
amplify (min) (Mean + SD) (Mean + SD)

C. pecorumn positive samples
1 20.15 83.44

Koala rectal swab 2 20.30 83.37 20.53, 0.54 83.32,0.16
3 21.15 83.14
1 13.50 83.50

Marsbar DNA 2 13.15 83.52 13.27,0.20 83.55, 0.06
3 13.15 83.62
1 12.00 83.35

Koala A2 DNA 2 11.00 83.45 11.43,0.51 83.41, 0.05
3 11.30 83.43
1 17.00 83.34

RI koala UGT swab 2 18.00 83.21 17.72, 0.62 83.21, 0.12
3 18.15 83.09
1 13.15 83.53

L14 DNA 2 13.15 83.50 13.15,0 83.50, 0.02
3 13.15 83.48
1 13.45 83.49

HsLuRz DNA 2 13.45 83.36 13.63, 0.32 83.40, 0.08
3 14.00 83.34
1 22.00 82.83

K20 cloaca swab 2 22.15 83.00 22.2,0.23 83.01, 0.19
3 22.45 83.20

C. psittaci positive samples
1 6.45 84.30

Cr009 DNA 2 6.45 84.36 6.40, 0.09 84.33,0.03
3 6.30 84.34
1 5.00 84.46

HoRE DNA 2 5.15 84.58 5.10, 0.08 84.45,0.14
3 5.15 84.30
1 10.30 84.08

B2 DNA 2 10.00 84.20 10.10, 0.17 84.17, 0.08
3 10.00 84.24
1 11.15 82.90

Horse placental swab 2 10.30 83.42 10.58, 0.49 83.19, 0.26
3 10.30 83.24
1 10.30 84.53

Horse_pl DNA 2 12.00 84.21 10.87, 0.98 84.41,0.18
3 10.30 84.50

Notes.

2The assay was performed in Genie III Real-time fluorometer, with the amplification times and annealing temperatures

recorded at the end of each run. The samples were tested in three different runs by two different operators.
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Table5 Comparison of the C. psittaci LAMP and qPCR methods for the organism detection in clinical

samples.

Test qPCR +ve qPCR —ve qPCR Total
LAMP +ve 11 1 12

LAMP —ve 1 13 14

LAMP Total 12 14 26

Table 6 Comparison of the C. pecorum LAMP and qPCR methods for the organism detection in clini-

cal samples.
Test 16s +ve 16s —ve 16s Total
LAMP +ve 29 7 36
LAMP —ve 3 24 27
LAMP Total 32 31 63

on these results, the Kappa value was calculated at 0.85 (95% CI [0.64-1.05]) indicating an
almost perfect agreement between the tests. The overall sensitivity of the C. psittaci LAMP
was 91.7% (Clopper—Pearson 95% CI [0.62-0.99]) and with 92.9% (Clopper—Pearson 95%
CI [0.66-0.99]) specificity, compared to the QPCR used in this study. In addition, a subset
of 23 samples was also tested independently by a third party. Using a cut off of >Ct 39
as negative, 19/23 (82.60 %) of these test results were in congruence with our C. psittaci
LAMP results (Table S2).

For C. pecorum, we tested a total of 63 DNA extracts from clinical samples from several
animal hosts by both LAMP and qPCR (Table S3). For these analyses, samples with >30 min
amplification time were considered negative for LAMP, while for qPCR, samples with <35
genome copy /reaction and/or >30 Ct were considered negative based on the standard
curve and number of run cycles used for this testing. For the 63 clinical samples, the
overall congruence was 84.1% with a Kappa value of 0.68 (95% CI [0.50-0.86]), indicating
substantial agreement between the tests. Congruent results between tests were obtained for
53 samples, while there were 10 discrepant samples using the above cut off for C. pecorum
(Table 6). The overall sensitivity of C. pecorum LAMP was 90.6 % (Clopper—Pearson 95%
CI [0.75-0.98]), while specificity was 77.4 % (Clopper—Pearson 95% CI [0.59-0.90]) in
comparison to the qPCR assay. A subset of 36 C. pecorum samples was also tested in a
thermal cycler using the newly developed LAMP and results were determined as an end
point detection. For this experiment, 34/36 (94.4%) samples were congruent between
LAMP performed in fluorometer and in a thermal cycler (Table S3), demonstrating the
robustness of the C. pecorum LAMP (Fig. 52).

Considering that the qPCR assay used in this study to quantify and detect C. psittaci is
chlamydial genus rather species specific (Everett, Bush & Andersen, 1999), high congruence
observed for C. psittaci assays could be attributed to testing a limited set of samples
taken from hosts with presumptive C. psittaci chlamydiosis. Lower congruence between
the C. pecorum-specific assays could be due to technical and experimental aspects and
characteristics (such as the assay efficiency, analytical sensitivity, template preparation)
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Table 7 Comparison of C. pecorum LAMP and qPCR for organism detection using rapidly processed swab samples and their DNA extracts.

Sample LAMP? result for qPCR" result for LAMP resultfor qPCR result for LAMP result LAMP result qPCR result qPCR result

swab suspension swab suspension DNA extract DNA extract for “spiked” for “spiked” for “spiked” for “spiked”
swab suspension DNA extract swab suspension DNA extract

K1 ocular® NEG NEG 0.00/83.49 NEG NEG - NEG -

K6 ocular® NEG NEG 21.00/83.23 3x10% (Ct20) NEG - NEG -

K9 ocular® NEG NEG 25.45/83.39 287 (Ct 24) NEG - NEG -

K2 ocular® NEG NEG NEG NEG NEG - NEG -

R1 eye 25.45/83.39 222 (Ct 25) 20.15/83.27 750 (Ct 24) - - - -

R1 cloaca 30.00/83.34 NEG NEG NEG 11.15/83.47 12.15/83.42 5% 10° (Ct 17) 1.5x 10 (Ct 18)

Keye 27.00/83.15 NEG 0.00/83.35 NEG - - - -

Koala 2 eye NEG NEG NEG NEG 11.00/83.51 11.00/83.40  1.2x10° (Ct19) 1.1x10*(Ct15)

Koala 2 cloaca  27.30/83.77 116 (Ct 26) 21.30/83.49 375 (Ct 25) - - - -

Will Cloaca 0.00/83.77 NEG NEG NEG 12.00/83.45 11.00/83.34  1.5x10° (Ct19) 8x10° (Ct 17)

23117 Eye 21.30/83.20 NEG 23.15/83.23 150 (Ct 25) = = = =

23117 Cloaca  22.00/83.29 NEG 24.00/83.15 90 (Ct 27) - - - =

Flyn eye NEG NEG NEG NEG 12.30/83.50 11.00/83.35 1.9x10°(Ct18) 8.3 x 103 (Ct 16)

Tyke eye NEG NEG NEG NEG 12.00/83.44 10.45/83.40  1.3x10%(Ct19) 9x 10° (Ct 16)

Bill eye NEG NEG NEG NEG 12.15/83.49 10.45/83.34  1.2x10° (Ct19) 1x10* (Ct 15)

Ray eye NEG NEG NEG NEG 12.45/83.49 11.00/83.40  4.7x10° (Ct17) 1x 10* (Ct 15)

Ray cloaca NEG NEG NEG NEG 12.15/83.43 11.00/83.30 700 (Ct 20) 9x 10° (Ct 16)

Koala F Eye NEG NEG NEG NEG 11.45/83.45 11.00/83.35 1.3x10°(Ct19) 1.1x10*(Ct15)

Notes.

*LAMP results are expressed as time to amplify (min) and melt (°C).

PqPCR results are expressed as copies/reaction and Ct value.
“RNA Later swabs.
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(Bustin et al., 2010) of the C. pecorum 16S qPCR assay used in this study. As a sidenote,
we also evaluated the use of C. psittaci and C. pecorum LAMP targets (263 bp of the

C. ps_0607 and 209 bp C. pec_HP genes, respectively) using outer F3 and B3 primers in a
fluorescence-based (SybrGreen) qPCR assays, if needed to estimate infectious loads of the
pathogen. In this preliminary analyses, both targets seem suitable for use in qPCR assays
as well, as we were able to detect low infectious load up to 10 copies/reaction in a sample.

Rapid swab processing
Rapid swab processing and using the swab suspension directly in LAMP assays
were previously successfully evaluated for testing for respiratory syncytial virus from
nasopharyngeal swabs (Mahony et al., 2013) and rapid detection of Streptococcus
agalactiae in vaginal swabs (McKenna et al., 2017). A recent study also demonstrated
that C. trachomatis can be detected directly from urine samples using the LAMP method
(Jevtusevskaja et al., 2016). In this study, we also evaluated rapid swab processing without
DNA extraction in order to begin to assess the POC potential of these assays. A total
of 18 swabs taken from conjunctival and urogenital sites from koalas with presumptive
chlamydiosis, of which four were stored in RNA Later and 14 were dry, were used for
this experiment (Table 7). Vigorously vortexed and heated swab suspension samples were
directly used as a template in both C. pecorum LAMP reaction performed in fluorometer
and qPCR assay. We also performed DNA extraction from the swabs to be used as a
comparison to rapid swab processing. We did not detect C. pecorum DNA in any of the
RNA Later suspensions either by LAMP nor qPCR assay (Table 7), in contrast to detecting
C. pecorum in 50% (2/4) of the DNA extracts from the swabs by both methods. Using the
rapidly processed swab suspension as a template, C. pecorum was detected in 6/14 by LAMP,
and only 2/14 by qPCR (Table 7). The swab suspension LAMP results were 92.8% (13/14)
congruent to the LAMP results and 85.7% congruent (12/14) to the qPCR results using the
swab’s paired DNA sample. In order to evaluate the potential presence of inhibitors in our
samples, we “spiked” negative swab suspensions and its paired DNA samples with known
amounts of C. pecorum (1 x 10* copies/reaction). As observed in Table 7, we detected
C. pecorum by both LAMP and qPCR in “spiked” negative samples derived from dry
swabs. No C. pecorum was detected in “spiked” RNA Later swab suspension, indicating
the potential presence of inhibitors in these reactions. Our results suggest that the LAMP
assays are capable of amplifying specific amplification products from crude DNA extracts.
Further work is additionally required to enhance the POC capabilities of these new
chlamydial LAMP assays to meet the clinical need including (i) the evaluation of rapid swab
processing methods using commercially available DNA release portable devices and/or
sample preparation using microfluidic support; (ii) alternative amplification detection
methods such as visible colorimetric or turbidimetric change and/or solid-phase ‘dipstick’
tests (Maffert et al., 2017). With further development and the aforementioned focus on
the preparation of these assays at the POC (Parida et al., 2008; Tomita et al., 2008), it is
anticipated that both LAMP tests described in this study may fill an important niche in the
repertoire of ancillary diagnostic tools available to clinicians.
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