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Truncated Cauchy Non-negative Matrix
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Abstract—Non-negative matrix factorization (NMF) minimizes the Euclidean distance between the data matrix and its low rank
approximation, and it fails when applied to corrupted data because the loss function is sensitive to outliers. In this paper, we propose a
Truncated CauchyNMF loss that handle outliers by truncating large errors, and develop a Truncated CauchyNMF to robustly learn the
subspace on noisy datasets contaminated by outliers. We theoretically analyze the robustness of Truncated CauchyNMF comparing
with the competing models and theoretically prove that Truncated CauchyNMF has a generalization bound which converges at a rate of
order O(

√
lnn/n), where n is the sample size. We evaluate Truncated CauchyNMF by image clustering on both simulated and real

datasets. The experimental results on the datasets containing gross corruptions validate the effectiveness and robustness of Truncated
CauchyNMF for learning robust subspaces.

Index Terms—Non-negative matrix factorization, Truncated Cauchy loss, Robust statistics, Half-quadratic programming.

F

1 INTRODUCTION

NON-NEGATIVE matrix factorization (NMF, [16]) ex-
plores the non-negativity property of data and has

received considerable attention in many fields, such as
text mining [25], hyper-spectral imaging [26], and gene
expression clustering [38]. It decomposes a data matrix into
the product of two lower dimensional non-negative factor
matrices by minimizing the Eudlidean distance between
their product and the original data matrix. Since NMF only
allows additive, non-subtractive combinations, it obtains
a natural parts-based representation of the data. NMF is
optimal when the dataset contains additive Gaussian noise,
and so it fails on grossly corrupted datasets, e.g., the AR
database [22] where face images are partially occluded by
sunglasses or scarves. This is because the corruptions or
outliers seriously violate the noise assumption.

Many models have been proposed to improve the ro-
bustness of NMF. Hamza and Brady [12] proposed a hy-
persurface cost based NMF (HCNMF) which minimizes the
hypersurface cost function1 between the data matrix and
its approximation. HCNMF is a significant contribution for
improving the robustness of NMF, but its optimization al-
gorithm is time-consuming because the Armijo’s rule based
line search that it employs is complex. Lam [15] proposed
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1. The hypersurface cost function is defined as h(x) =
√

(1 + x2)−1
which is quadratic when its argument is small and linear when its
argument is large.

L1-NMF2 to model the noise in a data matrix by a Laplace
distribution. Although L1-NMF is less sensitive to outliers
than NMF, its optimization is expensive because the L1-
norm based loss function is non-smooth. This problem is
largely reduced by Manhattan NMF (MahNMF, [11]), which
solves L1-NMF by approximating the non-smooth loss func-
tion with a smooth one and minimizing the approximated
loss function with Nesterov’s method [36]. Zhang et al. [29]
proposed an L1-norm regularized Robust NMF (RNMF-L1)
to recover the uncorrupted data matrix by subtracting a
sparse error matrix from the corrupted data matrix. Kong
et al. [14] proposed L2,1-NMF to minimize the L2,1-norm of
an error matrix to prevent noise of large magnitude from
dominating the objective function. Gao et al. [47] further
proposed robust capped norm NMF (RCNMF) to filter out
the effect of outlier samples by limiting their proportions
in the objective function. However, the iterative algorithms
utilized in L2,1-NMF and RCNMF converge slowly because
they involve a successive use of the power method [1].
Recently, Bhattacharyya et al. [48] proposed an important
robust variant of convex NMF which only requires the
average L1-norm of noise over large subsets of columns
to be small; Pan et al. [49] proposed an L1-norm based
robust dictionary learning model; and Gillis and Luce [50]
proposed a robust near-separable NMF which can deter-
mine the low-rank, avoid normalizing data, and filter out
outliers. HCNMF, L1-NMF, RNMF-L1, L2,1-NMF, RCNMF,
[48], [49] and [50] share a common drawback, i.e., they all
fail when the dataset is contaminated by serious corruptions
because the breakdown point of the L1-norm based models
is determined by the dimensionality of the data [7].

In this paper, we propose a Truncated Cauchy non-
negative matrix factorization (Truncated CauchyNMF)

2. When the noise is modeled by Laplace distribution, the maximum
likelihood estimation yields an L1-norm based objective function. We
therefore term the method in [15] L1-NMF.
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model to learn a subspace on a dataset contaminated by
large magnitude noise or corruption. In particular, we pro-
posed a Truncated Cauchy loss that simultaneously and
appropriately models moderate outliers (because the loss
corresponds to a fat tailed distribution in-between the trun-
cation points) and extreme outliers (because the trunca-
tion directly cut off large errors). Based on the proposed
loss function, we develop a novel Truncated CauchyNMF
model. We theoretically analyze the robustness of Trun-
cated CauchyNMF and show that Truncated CauchyNMF
is more robust than a family of NMF models, and derive
a theoretical guarantee for its generalization ability and
show that Truncated CauchyNMF converges at a rate of
order O(

√
lnn/n), where n is the sample size. Truncated

CauchyNMF is difficult to optimize because the loss func-
tion includes a nonlinear logarithmic function. To address
this, we optimize Truncated CauchyNMF by half-quadratic
(HQ) programming based on the theory of convex conjuga-
tion. HQ introduces a weight for each entry of the data ma-
trix and alternately and analytically updates the weight and
updates both factor matrices by easily solving a weighted
non-negative least squares problem with Nesterov’s method
[23]. Intuitively, the introduced weight reflects the magni-
tude of the error. The heavier the corruption, the smaller
the weight, and the less an entry contributes to learning
the subspace. By performing truncation on magnitudes of
errors, we prove that HQ introduces zero weights for entries
with extreme outliers, and thus HQ is able to learn the
intrinsic subspace on the inlier entries.

In summary, the contributions of this paper are three-
fold: (1) we propose a robust subspace learning framework
called Truncated CauchyNMF, and develop a Nesterov-
based HQ algorithm to solve it; (2) we theoretically analyze
the robustness of Truncated CauchyNMF comparing with
a family of NMF models, and provide insight as to why
Truncated CauchyNMF is the most robust method; and (3)
we theoretically analyze the generalization ability of Trun-
cated CauchyNMF, and provide performance guarantees for
the proposed model. We evaluate Truncated CauchyNMF
by image clustering on both simulated and real datasets.
The experimental results on the datasets containing gross
corruptions validate the effectiveness and robustness of
Truncated CauchyNMF for learning the subspace.

The rest of this paper is organized as follows: Section
2 describes the proposed Truncated CauchyNMF, Section
3 develops the Nesterov-based half-quadratic (HQ) pro-
gramming algorithm for solving Truncated CauchyNMF.
Section 4 surveys the related works and Section 5 verifies
Truncated CauchyNMF on simulated and real datasets. Sec-
tion 6 concludes this paper. All the proofs are given in the
supplementary material.

2 TRUNCATED CAUCHY NON-NEGATIVE MATRIX
FACTORIZATION

Classical NMF [16] is not robust because its loss function
e2(x) = x2 is sensitive to outliers considering the errors of
large magnitude dominate the loss function. Although some
robust loss functions, such as e1(x) = |x| for L1-NMF [15],

-6 -4 -2 0 2 4 6
0

1

2

3

4

5

6

x

lo
ss

 f
u

n
ct

io
n

(a)

 

 

e
2
(x)

e
1
(x)

e
c
(x;1)

e
t
(x;1,5)

e
0
(x)

-300 -200 -100 0 100 200 300

10
-4

10
-2

10
0

10
2

x

lo
ss

 f
u

n
ct

io
n

(b)

 

 

e
t
(x;1,200)

e
t
(x;0.1,100)

e
t
(x;0.01,50)

e
t
(x;0.001,25)

e
0
(x)

Fig. 1. The comparison of loss functions: (a) e2(x), e1(x),
ec(x; 1), et(x; 1, 5), and e0(x); and (b) et(x; γ, ε) when (γ, ε) =
(1, 200), (0.1, 100), (0.01, 50), (0.001, 25) and e0(x).

Hypersurface cost eh(x) =
√

1 + x2 − 1 [12], and Cauchy
loss ec(x; γ) = ln

(
1 + (x/γ)

2
)

, are less sensitive to outliers,
they introduces infinite energy for infinitely large noise in
the extreme case. To remedy this problem, we propose a
Truncated Cauchy loss by truncating the magnitudes of
large errors to limit the effects of extreme outliers, i.e.,

et(x; γ, ε) =

 ln
(

1 + (x/γ)
2
)
, |x| ≤ ε

ln
(

1 + (ε/γ)
2
)
, |x| > ε

, (1)

where γ is the scale parameter of the Cauchy distribution
and ε is a constant.

To study the behavior of the Truncated Cauchy loss, we
compare the loss functions e2(x), e1(x), ec(x; 1), et(x; 1, 5),
and the loss function of the L0-norm, i.e., e0(x) ={

1, x 6= 0
0, x = 0

in Figure 1, because the L0-norm induces

robust models. Figure 1(a) shows that when the error is
moderately large, e.g., |x| ≤ 5, et(x; 1, 5) shifts from e2(x)
to e1(x) and corresponds to a fat-tailed distribution, and
implies that the Truncated Cauchy loss can model moder-
ate outliers well, while e2(x) cannot because it makes the
outliers dominate the objective function. When the error
gets larger and larger, et(x; 1, 5) gets away from e1(x) and
behaves like e0(x), and et(x; 1, 5) keeps constant once the
error exceeds a threshold, e.g., |x| > 5, and implies that the
Truncated Cauchy loss can model extreme outliers, whereas
neither e1(x) nor ec(x; 1) cannot because they encourage
infinite energy to infinitely large error. Intuitively, the Trun-
cated Cauchy loss can model both moderate and extreme
outliers well. Figure 1(b) plots the curves of both et(x; γ, ε)
and e0(x) with varying γ from 0.001 to 1 and accordingly
varying ε from 25 to 200. It shows that et(x; γ, ε) behaves
more and more close to e0(x) when γ approaches zero. By
comparing the behaviors of loss functions, we believe that
the Truncated Cauchy loss can induce robust NMF model.

Given n high-dimensional samples arranged in a
non-negative matrix V = [v1, . . . , vn] ∈ Rm×n+ , Trun-
cated Cauchy non-negative matrix factorization (Truncated
CauchyNMF) approximately decomposes V into the prod-
uct of two lower dimensional non-negative matrices, i.e.,
V = WH + E, where W ∈ Rm×r+ signifies the basis,
H = [h1, . . . , hn] ∈ Rr×n+ signifies the coefficients, and
E ∈ Rm×n signifies the error matrix which is measured
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by using the proposed Truncated Cauchy loss. The objective
function of Truncated CauchyNMF can be written as

min
W≥0,H≥0

1

2

∑
ij

g((
V −WH

γ
)2
ij), (2)

where g(x) =

{
ln(1 + x), 0 ≤ x ≤ σ
ln(1 + σ), x > σ

is utilized for the

convenience of derivation and σ is a truncation parameter,
and γ is the scale parameter. We will next show that the
truncation parameter σ can be implicitly determined by ro-
bust statistics and the scale parameter γ can be estimated by
the Nagy algorithm [32]. It is not hard to see that Truncated
CauchyNMF includes CauchyNMF as a special case when
σ = +∞. Since (2) assigns fixed energy to any large error
whose magnitude exceeds γ

√
σ, Truncated CauchyNMF can

filter out any extreme outliers.
To illustrate the ability of Truncated CauchyNMF to

model outliers, Figure 2 gives an illustrative example that
demonstrates its application to corrupted face images. In
this example, we select 26 frontal face images of an indi-
vidual in two sessions from the Purdue AR database [22]
(see all face images in Figure 2(a)). In each session, there
are 13 frontal face images with different facial expressions,
captured under different illumination conditions, with sun-
glasses, and with a scarf. Each image is cropped into a
165 × 120-dimensional pixel array and reshaped into a
19800-dimensional vector. The total number of face images
compose a 19800× 26-dimensional non-negative matrix be-
cause the pixel values are non-negative. In this experiment,
we aim at learning the intrinsically clean face images from
the contaminated images. This task is quite challenging
because more than half the images are contaminated. Since
these images were taken in two sessions, we set the dimen-
sionality low (r = 2) to learn two basis images. Figure 2(b)
shows that Truncated CauchyNMF robustly recovers all face
images even when they are contaminated by a variety of
facial expressions, illumination, and occlusion. Figure 2(c)
presents the reconstruction errors and Figure 2(d) shows the
basis images, which confirms that Truncated CauchyNMF is
able to learn clean basis images with the outliers filtered out.

In the following subsections, we will analyze the gener-
alization ability and robustness of Truncated CauchyNMF.
Before that, we introduce Lemma 1 which states that the
new representations generated by Truncated CauchyNMF
are bounded if the input observations are bounded. This
lemma will be utilized in the following analysis with the

= +

(b) (c)(a) (d)

Fig. 2. The illustrative example: (a) frontal face images from the AR
database, (b) face images reconstructed by Truncated CauchyNMF, (c)
error images, and (d) the learned basis images.

only assumption that each base is a unit vector. Such an as-
sumption is typical in NMF because the basesW are usually
normalized to limit the variance of its local minimizers. We
use ‖ · ‖p to represent the Lp-norm and ‖ · ‖ to represent the
Euclidean norm.

Lemma 1. Assuming ‖Wi‖ = 1, i = 1, . . . , r, and that the
input observations are bounded, i.e., ‖v‖ ≤ α for some
α > 0. Then the new representations are also bounded,
i.e., ‖h‖ ≤ 2α+ (σα)/(

√
2γ).

Although Truncated CauchyNMF (2) has a differentiable
objective function, solving it is difficult because the natural
logarithmical function is nonlinear. Section 3 will present
a half-quadratic (HQ) programming algorithm for solving
Truncated CauchyNMF.

2.1 Generalization Ability

To analyze the generalization ability of Truncated
CauchyNMF, we further assume that samples [v1, . . . , vn]
are independent and identically distributed and drawn from
a space V with a Borel measure ρ. We use A·j and Aij to
denote the j-th column and the (i, j)-th entry of a matrix ,
respectively, and ai is the i-th entry of a vector a.

For any W ∈ Rm×r+ , we define the reconstruction error
of a sample v as follows:

fW (v) = min
h∈Rr+

∑
j

g((
v −Wh

γ
)2
j ). (3)

Therefore, the objective function of Truancated CauchyNMF
(2) can be written as

min
W≥0,H≥0

1

2

∑
ij

g((
V −WH

γ
)2
ij) = min

W≥0

1

2

∑
i

fW (vi). (4)

Let us define the empirical reconstruction error of Trun-
cated CauchyNMF as Rn(fW ) = 1

n

∑n
i=1 fW (vi), and the

expected reconstruction error of Truncated CauchyNMF as
R(fW ) = Ev

1
n

∑n
i=1 fW (vi). Intuitively, we want to learn

W∗ = arg minW≥0R(fW ). (5)

However, since the distribution of v is unknown, we cannot
minimize R(fW ) directly. Instead, we use the empirical risk
minimization (ERM, [2]) algorithm to learn Wn to approxi-
mate W∗, as follows:

Wn = arg minW≥0Rn(fW ). (6)

We are interested in the difference between Wn and W∗.
If the distance is small, we can say that Wn is a good
approximation ofW∗. Here, we measure the distance of their
reduced expected reconstruction error as follows:

R(fWn)−R(fW∗) ≤ 2 sup
fW∈FW

|R(fW )−Rn(fW )|,

where FW = {fW |W ∈ W = Rm×r+ }. The right hand
side is known as the generalization error. Note that since
NMF is convex with respect to either W or H but not
both, the minimizer fWn

is hard to obtain. In practice, a
local minimizer is used as an approximation. Measuring
the distance between the local minimizer and the global
minimizer is also an interesting and challenging problem.
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By analyzing the covering number [30] of the function
class FW and Lemma 1, we derive a generalization error
bound for Truncated CauchyNMF as follows:
Theorem 1. Let ‖W·i‖ = 1, i = 1, . . . , r, and FW =
{fW |W ∈ W = Rm×r+ }. Assume that ‖v‖ ≤ α. For
any δ > 0, with probability at least 1 − δ, the equa-
tion (7) holds, where Γ( 1

2 ) =
√
π; Γ(1) = 1; and

Γ(x+ 1) = xΓ(x).

Remark 1. Theorem 1 shows that under the setting of our
proposed Truncated CauchyNMF, the expected reconstruc-
tion error R(fWn

) will converge to R(fW∗) with a fast rate
of order O(

√
lnn/n), which means that when the sample

size n is large, the distance between R(fWn
) and R(fW∗)

will be small. Moreover, if n is large and a local minimizer
W (obtained by optimizing the non-convex objective of
Truncated CauchyNMF) is close to the global minimizerWn,
the local minimizer will also be close to the optimal W∗.

Remark 2. Theorem 1 also implies that for any W
learned from (2), the corresponding empirical reconstruction
error Rn(fW ) will converge to its expectation with a spe-
cific rate guarantee, which means our proposed Truncated
CauchyNMF can generalize well to unseen data.

Note that the noise sampled from the Cauchy distribu-
tion should not be bounded because Cauchy distribution
is heavy-tailed. And bounded observations always imply
bounded noise. However, Theorem 1 keeps the bounded-
ness assumption on the observations for two reasons: (1)
the truncated loss function indicates that the observations
corresponding to unbounded noise are discarded, and (2)
in real applications, the energy of observations should be
bounded, which means their L2-norms are bounded.

2.2 Robustness Analysis
We next compare the robustness of Truncated CauchyNMF
with those of other NMF models by using a sample-
weighted procedure interpretation [20]. The sample-
weighted procedure compares the robustness of different
algorithms from the optimization viewpoint.

Let F (WH) denote the objective function of any NMF
problem and f(t) = F (tWH) where t ∈ R. We can verify
that the NMF problem is equivalent to finding a pair of WH
such that f

′
(1) = 03, where f

′
(t) denotes the derivative

of f(t). Let c(Vij ,WH) = (V − WH)ij(−WH)ij be the
contribution of the j-th entry of the i-th training example to

3. When minimizing F (WH), the low rank matrices W and H will
be updated alternately. Fixing one of them and optimizing the other
implies that f

′
(1) = 0. In other words, if f

′
(1) 6= 0, neither W nor H

can be a minimizer.

the optimization procedure and e(Vij ,WH) = |V −WH|ij
be an error function. Note that we choose c(Vij ,WH) as
the basis of contribution because we choose NMF, which
aims to find a pair of WH such that

∑
ij c(Vij ,WH) = 0

and is sensitive to noise, as the baseline for comparing
the robustness. Also note that e(Vij ,WH) represents the
noise added to the (i, j)-th entry of V . The interpretation of
the sample-weighted procedure explains the optimization
procedure as being contribution-weighted with respect to
the noise.

We compare f ′(1) of a family of NMF models in Table
1. Note that since multiplying f ′(1) by a constant will not
change its zero points, we can normalize the weights of
different NMF models to unity when the noise is equal to
zero. During the optimization procedures, robust algorithms
should assign a small weight to an entry of the training
set with large noise. Therefore, by comparing the deriva-
tive f ′(1), we can easily make the following statements:
(1) L1-NMF4 is more robust to noise and outliers than
NMF; Huber-NMF combines the ideas of NMF and L1-
NMF; (2) HCNMF, L2,1-NMF, RCNMF, and RNMF-L1 work
similarly to L1-NMF because their weights are of order
O(1/e(Vij ,WH)) with respect to the noise. It also becomes
clear that HCNMF, L2,1-NMF, and RCNMF exploit some
data structure information because the weights include the
neighborhood information of e(Vij ,WH) and that RNMF-
L1 is less sensitive to noise because it employs a sparse
matrix S to adjust the weights; (3) The interpretation of
the sample-weighted procedure also illustrates why CIM-
NMF works well for heavy noise. This is because its weights
decrease exponentially when the noise is large; And (4)
for the proposed Truncated CauchyNMF, when the noise is
larger than a threshold, its weights will drop directly to zero,
which decrease far faster than that of CIM-NMF and thus
Truncated CauchyNMF is very robust to extreme outliers.
Finally, we conclude that Truncated CauchyNMF is more
robust than any other NMF models with respect to extreme
outliers because it has the power to provide smaller weights
to examples.

3 HALF-QUADRATIC PROGRAMMING ALGORITHM
FOR TRUNCATED CAUCHYNMF
Note that Truncated CauchyNMF (2) cannot be solved di-
rectly because the energy function g(x) is non-quadratic.
We present a half-quadratic (HQ) programming algorithm
based on conjugate function theory [9]. To adopt the HQ

4. For the soundness of defining the subgradient ofL1-norm, we state
that 0

0
can be any value in [−1, 1].

R(fWn
)−R(fW∗) ≤ sup

fW∈FW

∣∣∣∣∣∣Ev 1

2n

∑
ij

g

((
V −WH

γ

)2

ij

)
− 1

2n

∑
ij

g

((
V −WH

γ

)2

ij

)∣∣∣∣∣∣
≤ min

ε

{
2ε+

α2

γ2

√(
mr ln

(
(4

1
mπ

1
2

(
8rα2 + 2α2

r2
+

σα2

√
2r3

+
2rσ2α2

r4

)
mr)/Γ(

m

2
)

1
m 2ε

)
+ ln(

2

δ
)

)
/2n

}

≤ 2

n
+
α2

γ2

√(
mr ln

((
4

1
mπ

1
2

(
8rα2 + 2α2

r2
+

σα2

√
2r3

+
2rσ2α2

r4

)
mrn

)
/Γ(

m

2
)

1
m 2

)
+ ln(

2

δ
)

)
/2n. (7)
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TABLE 1
Comparison of the robustness of Truncated CauchyNMF with those of other NMF models.

NMF methods Objective function F (WH) Derivative f ′(1)
NMF ‖V −WH‖2F

∑
ij 2c(Vij ,WH)

HCNMF
∑
ij(
√

1 + (V −WH)2ij − 1)
∑
ij

1√
1+(V−WH)2ij

c(Vij ,WH)

L2,1-NMF ‖V −WH‖2,1
∑
ij

1√∑
l(V−WH)2lj

c(Vij ,WH)

RCNMF
∑n
j=1 min{‖V·j −WH·j‖, θ}

∑n
j=1

{ ∑
i

1√∑
l(V−WH)2lj

c(Vij ,WH), ‖V·j −WH·j‖ ≤ θ

0, ‖V·j −WH·j‖ ≥ θ
RNMF-L1 ‖V −WH − S‖2F + λ‖S‖1

∑
ij 2(1−

Sij
(V−WH)ij

)c(Vij ,WH)

L1-NMF ‖V −WH‖1
∑
ij

1
|V−WH|ij

c(Vij ,WH)

HuberNMF

∑m
i=1

∑n
j=1 l((V −WH)ij , σ),

where l(x, σ) =

{
x2, |x| ≤ σ

2σ|x| − σ2, |x| ≥ σ

∑
ij

{
2c(Vij ,WH), |V −WH|ij ≤ σ
2σ

|V−WH|ij
c(Vij ,WH), |V −WH|ij ≥ σ

CIM-NMF
∑m
i=1

∑n
j=1 1−

1√
2πσ

e−(V−WH)2ij/2σ
2 ∑

ij
1

√
2πσ3e

−(V−WH)2ij/2σ
2 c(Vij ,WH)

CauchyNMF
∑
ij ln(1 + (V−WH

γ
)ij)

∑
ij

2
γ2+(V−WH)2ij

c(Vij ,WH)

Truncated CauchyNMF

∑
ij g((

V−WH
γ

)2ij),

where g(x) =

{
ln(1 + x), 0 ≤ x ≤ σ
ln(1 + σ), x > σ

∑
ij

{
2

γ2+(V−WH)2ij
c(Vij ,WH), |V −WH|ij ≤ γ

√
σ

0 · c(Vij ,WH), |V −WH|ij > γ
√
σ

algorithm, we transform (2) to the following maximization
form:

max
W≥0,H≥0

1

2

∑
ij

f((
V −WH

γ
)2
ij), (8)

where f(x) = −g(x) is the core function utilized in HQ.
Since the negative logarithmic function is convex, f(x) is
also convex.

3.1 HQ-based Alternating Optimization

Generally speaking, the half-quadratic (HQ) programming
algorithm [9] reformulates the non-quadratic loss function
as an augmented loss function in an enlarged parameter
space by introducing an additional auxiliary variable based
on the convex conjugation theory [3]. HQ is equivalent to
the quasi-Newton method [24] and has been widely applied
in non-quadratic optimization.

Note that the function f(x) : R+ → R is continuous, and
according to [3], its conjugate f∗(y) : R → R ∪ {+∞} is
defined as

f∗(y) = max
x∈R+

{xy − f(x)}.

Since f(x) is convex and closed (although the domain R+ is
open, f(x) is closed, see Section A.3.3 in [3]), the conjugate
of its conjugate function is itself [3], i.e., f∗∗ = f , then we
have:

Theorem 2. The core function f(x) and its conjugate f∗(y)
satisfy

f(x) = max
y
{yx− f∗(y)}, x ∈ R+, (9)

and the maximizer is y∗ =

{
−1/(1 + x), 0 ≤ x ≤ σ

0, x > σ
.

By substituting x = (V−WH
γ )2

ij into (9), we have the
augmented loss function

f((
V −WH

γ
)2
ij) = max

Yij
{Yij(

V −WH

γ
)2
ij−f∗(Yij)}, (10)

where Yij is the auxiliary variable introduced by HQ for
(V−WH

γ )2
ij . By substituting (10) into (8), we have the objec-

tive function in an enlarged parameter space

max
W≥0,H≥0

{1

2

∑
ij

max
Yij
{Yij(

V −WH

γ
)2
ij − f∗(Yij)}} =

max
W≥0,H≥0,Y

{1

2

∑
ij

{Yij(
V −WH

γ
)2
ij − f∗(Yij)}}, (11)

where the equality comes from the separability of the opti-
mization problems with respect to Yij .

Although the objective function in (8) is non-quadratic,
its equivalent problem (11) is essentially a quadratic opti-
mization. In this paper, HQ solves (11) based on the block
coordinate descent framework. In particular, HQ recursively
optimizes the following three problems. At t-th iteration,

Y t+1 : maxY
1

2

∑
ij

(Yij(
V −W tHt

γ
)2
ij − f∗(Yij)), (12)

Ht+1 : maxH≥0
1

2

∑
ij

(Y t+1
ij (

V −W tH

γ
)2
ij), (13)

W t+1 : maxW≥0
1

2

∑
ij

(Y t+1
ij (

V −WHt+1

γ
)2
ij). (14)

Using Theorem 2, we know that the solution of (12) can be
expressed analytically as

Y t+1
ij =

{
− 1

1+(V−W
tHt

γ )2ij
, if |(V −W tHt)ij | ≤ γ

√
σ

0, if |(V −W tHt)ij | > γ
√
σ

.

Since (13) and (14) are symmetric and intrinsically
weighted non-negative least squares (WNLS) problems,
they can be optimized in the same way using the Nesterov
method [10]. Taking (13) as an example, the procedure
of its Nesterov based optimization is summarized in Al-
gorithm 1, and its derivative is derived in the supple-
mentary material. Considering that (13) is a constrained
optimization problem, similar to [18], we use the following
projected gradient-based criterion to check the stationarity
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of the search point , i.e., ∇Pj (hk) = 0, where ∇Pj (hk)l ={
∇Pj (hk)l, (hk)l ≥ 0

min{0,∇Pj (hk)l}, (hk)l = 0
. Since the above stopping

criterion will make OGM run unnecessarily long, similar to
[18], we use a relaxed version

‖∇Pj (hk)‖F ≤ max{ε1, 10−3} × ‖∇Pj (h0)‖F , (15)

where ε1 is a tolerance that controls how far the search point
is from a stationary point.

Algorithm 1 Optimal Gradient Method (OGM) for WNLS

Input: V·j ∈ Rm+ , W t ∈ Rm×r+ , Ht
·j ∈ Rr+, Dt+1

j .
Output: Ht+1

·j .
1: Initialize z0 = Ht

·j , h
0 = Ht

·j , α0 = 1, k = 0.
2: Calculate Lj = ‖W tTDt+1

j W t‖2.
repeat

3: ∇j(zk) = W tTDt+1
j W tzk −W tTDt+1

j V·j .

4: hk+1 = Π+(zk − ∇j(z
k)

Lj
).

5: αk+1 =
1+
√

4α2
k+1

2 .
6: zk+1 = hk+1 + αk−1

αk+1
(hk+1 − hk).

7: k ← k + 1.
until {The stopping criterion (15) is satisfied.}
8: Ht+1

·j = zk.

The complete procedure of the HQ algorithm is sum-
marized in Algorithm 2. The weights of entries and factor
matrices are updated recursively until the objective function
does not change. We use the following stopping criterion to
check the convergence in Algorithm 2:

|F (W t, Ht)− F (W ∗, H∗)|
|F (W 0, H0)− F (W t, Ht)|

≤ ε2, (16)

where ε2 signifies the tolerance, F (W,H) signifies the ob-
jective function of (8) and (W ∗, H∗) signifies a local min-
imizer5. The stopping criterion (16) implies that HQ stops
when the search point is sufficiently close to the minimizer
and sufficiently far from the initial point. Line 3 updates the
scale parameter by the Nagy algorithm and will be further
presented in Section 3.2. Line 4 detects outliers by robust
statistics and will be presented in Section 3.3.

The main time cost of Algorithm 2 is incurred on lines
2, 4, 5, 6, 7, 8, and 9. The time complexities of lines 2
and 7 are both O(mnr). According to Algorithm 1, the
time complexities of lines 6 and 9 are O(mr2) and O(nr2),
respectively. Since line 4 introduces a median operator, its
time complexity is O(mn ln(mn)). In summary, the total
complexity of Algorithm 2 is O((mn ln(mn) +mnr2)).

3.2 Scale Estimation

The parameter estimation problem for Cauchy distribution
has been studied for several decades [32] [33] [34]. Nagy [32]
proposed an I-divergence based method, termed the Nagy
algorithm for short, to simultaneously estimate location and

5. Since any local minimal is unknown beforehand, we instead utilize
(W t−1, Ht−1) in our experiments.

Algorithm 2 Half-quadratic (HQ) Programming Algorithm
for Truncated CauchyNMF

Input: W ∈ Rm×n+ , r � min{m,n}.
Output: W,H .
1: Initialize W 0 ∈ Rm×r+ , H0 ∈ Rr×n+ , t = 0.
repeat

2: Calculate Et = V −W tHt and Qt+1 = 1

(1+(E
t

γ )2)
.

3: Update the scale parameter γ based on Et.
4: Detect the indices Ω(t) of outliers and set Qt+1

Ω(t) = 0.
for j = 1, . . . , n do

5: Calculate Dt+1
j = diag(Qt+1

·j ).
6: Update Ht+1

·j by Algorithm 1.
end for
7: Calculate Et = V −W tHt+1 and Qt+1 = 1

(1+(E
t

γ )2)
.

for i = 1, . . . ,m do
8: Calculate Dt+1

i = diag(Qt+1
i· ).

9: Update W t+1
i· by Algorithm 1.

end for
10: t← t+ 1.

until {Stopping criterion (16) is satisfied.}
11: W = W t, H = Ht.

scale parameters. The Nagy algorithm minimizes the dis-
crimination information6 between the empirical distribution
of the data points and the prior Cauchy distribution with
respect to the parameters. In our Truncated CauchyNMF
model (2), the location parameter of the Cauchy distribution
is assumed to be zero, and thus we only need to estimate the
scale-parameter γ.

Here we employ the Nagy algorithm to estimate the
scale-parameter based on all the residual errors of the data.
According to [32], supposing there exist a large number of
residual errors, the scale-parameter estimation problem can
be formulated as

minγ D(ηn|f0,γ) = min
γ

∫ +∞

∞
ln

1

f0,γ(x)
dFn(x)

= min
γ

N∑
n=1

1

N
ln

1

f0,γ(xk)
, (17)

where D(·|·) denotes the discrimination information, and
the first equality is due to the independence of ηn and γ, and
the second equality is due to the Law of large numbers. By
substituting the probability density function f0,γ of Cauchy
distribution7 into (17) and replacing {xn} with {Eij}, we
can rewrite (17) as follows: minγ

∑m
i=1

∑n
j=1

1
mn ln{πγ(1 +

(
Eij
γ )2)}. To solve this problem, Nagy [32] proposed an

efficient iterative algorithm, i.e.,

γk+1 = γk

√
1/e0

k − 1, k = 0, 1, 2, . . . , (18)

6. The discrimination information of random variable ξ1 given ran-
dom variable ξ2 is defined as D(ξ1|ξ2) =

∫+∞
−∞ ln

f1(x)
f2(x)

dF1(x), where
f1 and f2 are the PDFs of ξ1 and ξ2, and F1 is the distribution function
of ξ1.

7. The probability density function (PDF) of Cauchy distribution is
fx0,γ(x) = 1/(πγ(1 + (x−x0

γ
)2)), where x0 is the location parameter,

specifying the location of the peak of the distribution, and γ is the scale
parameter, specifying the half-width at half-maximum.
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where γ0 > 0, and e0
k = 1

mn

∑m
i=1

∑n
j=1

1

(1+(
Eij
γk

)2)
. In

[32], Nagy proved that the algorithm (18) converges to a
fixed point assuming the number of data points is large
enough, and this assumption is reasonable in Truncated
CauchyNMF.

3.3 Outlier Rejection
Looking more carefully at (12), (13) and (14), HQ in-
trinsically assigns a weight for each entry of V with
both factor matrices Ht+1 and W t+1 fixed, i.e., Qt+1

ij ={
1

1+(E
t

γ )2ij
, if |Etij | ≤ γ

√
σ

0, if |Etij | > γ
√
σ

, where Et denotes the error

matrix at the t-th iteration. The larger the magnitude of error
for a particular entry, the lighter the weight is assigned
to it by HQ. Intuitively, the corrupted entry contributes
less in learning the intrinsic subspace. If the magnitude
of error exceeds a threshold γ

√
σ, Truncated CauchyNMF

assigns zero weights to the corrupted entries to inhibit their
contribution to the learned subspace. That is how Truncated
CauchyNMF filters out extreme outliers.

However, it is non-trivial to estimate the threshold γ
√
σ.

Here, we introduce a robust statistics-based method to ex-
plicitly detect the support of the outliers instead of estimat-
ing the threshold to detect outliers. Since the energy function
of Truncated CauchyNMF gets close to that of NMF as the
error tends towards zero, i.e., limx→0(ln(1 + x2)− x2) = 0.
Truncated CauchyNMF encourages the small magnitude
errors to have a Gaussian distribution. Let Θt denote the
set of magnitudes of error at the t-th iteration of HQ,
i.e., Θt = {|Etij | : 1 ≤ i ≤ m, 1 ≤ j ≤ n} where
Et = V − W tHt. It is reasonable to believe that a subset
of Θt, i.e., Γt = {θ ∈ Θt : θ ≤ med{Θt}}, obeys a Gaussian
distribution, where med{Θt} signifies the median of Θt.
Since |Γt| = bmn2 c, it suffices to estimate both the mean
µt and standard deviation δt from Γt. According to the
three-sigma-rule, we detect the outliers as Ot = {τ ∈ Γt :
|τ − µt| > 3δt} and output their indices Ω(t).

To illustrate the effect of outlier rejection, Figure 3
presents a sequence of weighting matrices generated by HQ
for the motivating example described in Figure 2. It shows
that HQ correctly assigns zero weights for the corrupted
entries in only a few iterations and finally detects almost all
outliers including illumination, sunglasses, and scarves (see
the last column in Figure 3) in the end.

4 RELATED WORK

Before evaluating the effectiveness and robustness of Trun-
cated CauchyNMF, we briefly review the state-of-the-art of
non-negative matrix factorization (NMF) and its robustified
variants. We have thoroughly compared the robustness
between the proposed Truncated CauchyNMF and all the
listed related works.

4.1 NMF
Traditional NMF [17] assumes that noise obeys a Gaussian
distribution and derives the following squared L2-norm
based objective function: minW≥0,H≥0 ‖V −WH‖2F , where
‖X‖F =

√∑
ij X

2
ij signifies the matrix Frobenius norm.

It is commonly known that NMF can be solved by using
the multiplicative update rule (MUR, [17]). Because of the
nice mathematical property of squared L2-norm and the
efficiency of MUR, NMF has been extended for various
applications [4] [6] [28]. However, NMF and its extensions
are non-robust because the L2-norm is sensitive to outliers.

4.2 Hypersurface Cost Based NMF
Hamza and Brady [12] proposed a hypersurface cost based
NMF (HCNMF) by minimizing the summation of hypersur-
face costs of errors, i.e., minW≥0,H≥0{

∑
ij δ((V −WH)ij)},

where δ(x) =
√

1 + x2 − 1 is the hypersurface cost func-
tion. According to [12], the hypersurface cost function has
differentiable and bounded influence function. Since the
hypersurface cost function is differentiable, HCNMF can
be directly solved by using the projected gradient method.
However, the optimization of HCNMF is difficult because
Armijo’s rule based line search is time consuming [12].

4.3 L1-Norm Based NMF
To improve the robustness of NMF, Lam [15] assumed
that noise is independent and identically distributed from
Laplace distribution and proposed L1-NMF as follows:
minW≥0,H≥0 ‖V − WH‖1, where ‖X‖1 =

∑
ij |Xij | and

| · | signifies the absolute value function. Since the L1-
norm based loss function is non-smooth, the optimization
algorithm in [15] is not scalable on large-scale datasets.
Manhattan NMF (MahNMF, [11]) remidies this problem by
approximating the loss function of L1-NMF with a smooth
function and minimizing the approximated loss function us-
ing Nesterov’s method. Although L1-NMF is less sensitive
to outliers than NMF, it is not sufficiently robust because its
breakdown point is related to the dimensionality of data [7].

4.4 L1-Norm Regularized Robust NMF
Zhang et al. [29] assumed that the dataset contains
both Laplace distributed noise and Gaussian distributed

Fig. 3. An illustrative example of the sequence of weights generated by
the HQ algorithm.
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noise and proposed an L1-norm regularized Robust NMF
(RNMF-L1) as follows: minW≥0,H≥0,S{‖V −WH − S‖2F +
λ‖S‖1}, where λ is a positive constant that trades off the
sparsity of S. Similar to L1-NMF, RNMF-L1 is also less
sensitive to outliers than NMF, but they are both non-robust
to large numbers of outliers because the L1-minimization
model has a low breakdown point. Moreover, it is non-
trivial to determine the tradeoff parameter λ.

4.5 L2,1-Norm Based NMF
Since NMF is substantially a summation of the squared L2-
norm of the errors, the large magnitude errors dominate
the objective function and cause NMF to be non-robust. To
solve this problem, Kong et al. [14] proposed the L2,1-norm
based NMF (L2,1-NMF) which minimizes the L2,1-norm of
the error matrix, i.e., minW≥0,H≥0 ‖V −WH‖2,1, where the
L2,1-norm is defined as ‖E‖2,1 =

∑n
j=1 ‖E·j‖2. In contrast

to NMF, L2,1-NMF is more robust because the influences of
noisy examples are inhibited in learning the subspace.

4.6 Robust Capped Norm NMF
Gao et al. [47] proposed a robust capped norm NMF
(RCNMF) to completely filter out the effect of outliers
by instead minimizing the following objective function:∑
W≥0,H≥0

∑n
j=1 min{‖V·j − WH·j‖, θ}, where θ is a

threshold that chooses the outlier samples. RCNMF cannot
be applied in practical applications because it is non-trivial
to determine the pre-defined threshold, and the utilized
iterative algorithms in both [14] and [47] converge slowly
with the successive use of the power method [1].

4.7 Correntropy Induced Metric Based NMF
The most closely-related work is the half-quadratic al-
gorithm for optimizing robust NMF, which includes
the Correntropy-Induced Metric (CIM)-based NMF (CIM-
NMF) and Huber-NMF by Du et al. [8]. CIM-NMF mea-
sures the approximation errors by using CIM [19], i.e.,
minW≥0,H≥0

∑m
i=1

∑n
j=1 ρ((V −WH)ij , δ), where ρ(x, δ) =

1 − 1√
2πδ

e−
x2

2δ2 . Since the energy function ρ(x, δ) increases
slowly as the error increases, CIM-NMF is insensitive to
outliers. In a similar way, Huber-NMF [8] measures the
approximation errors by using the Huber function, i.e.,
minW≥0,H≥0

∑m
i=1

∑n
j=1 l((V −WH)ij , c), where l(x, c) ={

x2, |x| ≤ c
2c|x| − c2, |x| ≥ c and the cutoff c is automatically

determined by c = med{|(V −WH)ij |}.
Truncated CauchyNMF is different from both CIM-NMF

and Huber-NMF in four aspects: (1) Truncated CauchyNMF
is derived from the proposed Truncated Cauchy loss which
can model both modearte and extreme outliers, whereas
neither CIM-NMF or Huber-NMF can do that; (2) Trun-
cated CauchyNMF demonstrates strong evidence of both
robustness and generalization ability, whereas neither CIM-
NMF nor Huber-NMF demonstrates evidence of neither;
(3) Truncated CauchyNMF iteratively detects outliers by
the robust statistics on the magnitude of errors, and thus
performs more robustly than CIM-NMF and Huber-NMF
in practice; And (4) Truncated CauchyNMF obtains the
optima for each factor in each iteration round by solving
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Fig. 4. Learning the one-dimensional subspace (i.e., a straight line) from
180 synthetic two-dimensional data points by L2-NMF, L1-NMF, and
Truncated CauchyNMF in four cases: (a) clean dataset, (b) 20 points
contaminated in x-direction, (c) 40 points contaminated in x-direction,
and (d) 80 points contaminated in both directions.

the weighted non-negative least squares (WNLS) problems,
whereas the multiplicative update rules for CIM-NMF and
Huber-NMF do not.

5 EXPERIMENTAL VERIFICATION

We explore both the robustness and the effectiveness of
Truncated CauchyNMF on two popular face image datasets,
ORL [27] and AR [22], and one object image dataset, i.e.,
Caltech 101 [44], by comparing with six typical NMF mod-
els: (1) L2-NMF [16] optimized by NeNMF [10]; (2) L1-NMF
[15] optimized by MahNMF [11]; (3) RNMF-L1 [29]; (4) L2,1-
NMF [14]; (5) CIM-NMF [8]; and (6) Huber-NMF [8]. We first
present a toy example to intuitively show the robustness of
Truncated CauchyNMF and several clustering experiments
on the contaminated ORL dataset to confirm its robustness.
We then analyze the effectiveness of Truncated CauchyNMF
by clustering and recognizing face images in the AR dataset,
and clustering object images in the Caltech 101 dataset.

5.1 An Illustrative Study
To illustrate Truncated CauchyNMF’s ability to learn a
subspace, we apply Truncated CauchyNMF on a synthetic
dataset composed of 180 two-dimensional data points (see
Figure 4(a)). All data points are distributed in a one-
dimensional subspace, i.e., a straight line (y = 0.2x). Both
L2-NMF and L1-NMF are applied on this synthetic dataset
for comparison.

Figure 4(a) shows that all methods learn the intrinsic
subspace correctly on the clean dataset. Figures 4(b) to 4(d)
demonstrate the robustness of Truncated CauchyNMF on a
noisy dataset. First, we randomly select 20 data points and
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TABLE 2
Relative reconstruction error (%) of L2-NMF, L2,1-NMF, RNMF-L1, L1-NMF, Huber-NMF, CIM-NMF, and CauchyNMF on ORL dataset

contaminated by Laplace noise with deviation varying from 40 to 280.

δ L2-NMF L2,1-NMF RNMF-L1 L1-NMF Huber-NMF CIM-NMF Truncated CauchyNMF
40 14.78(0.01) 16.68(0.04) 17.18(0.09) 13.56(0.04) 14.05(0.07) 15.93(0.08) 13.41(0.04)
80 24.91(0.02) 25.39(0.03) 21.30(0.11) 17.18(0.05) 17.53(0.04) 16.27(0.06) 14.70(0.06)
120 36.30(0.02) 35.65(0.07) 24.66(0.08) 21.33(0.06) 21.87(0.07) 18.95(0.05) 15.94(0.07)
160 47.48(0.03) 46.08(0.04) 27.49(0.06) 25.38(0.06) 26.47(0.08) 22.11(0.05) 16.88(0.13)
200 59.18(0.04) 57.35(0.04) 30.27(0.11) 29.73(0.10) 31.72(0.16) 25.84(0.07) 18.10(0.13)
240 70.70(0.03) 68.52(0.07) 32.96(0.15) 33.98(0.17) 37.12(0.55) 29.68(0.11) 19.88(0.55)
280 82.06(0.04) 79.78(0.09) 35.81(0.17) 38.13(0.37) 43.07(0.62) 33.67(0.12) 27.23(4.06)

(a) (b) (c)

Fig. 5. Example face images of ORL database: (a) an example face
image and its noised versions by Laplace noise with deviation δ =
40, 80, 120, 160, 200, 240, 280, (b) an example face image and its noisy
versions, where p% pixels are contaminated by Salt & Pepper noise and
p = 5, 10, 20, 30, 40, 50, 60, (c) an example face image and its occluded
versions by b× b-blocks with b = 10, 12, 14, 16, 18, 20, 22.

contaminate their x-coordinates, with their y-coordinates
retained to simulate outliers. Figure 4(b) shows that L2-
NMF fails to recover the subspace in the presence of 1

9
outliers, while both Truncated CauchyNMF and L1-NMF
perform robustly in this case. However, the robustness of
L1-NMF decreases as the outliers increase. To study this
point, we randomly select another 20 data points and con-
taminate their x-coordinates. Figure 4(c) shows that both
L2-NMF and L1-NMF fail to recover the subspace, but
Truncated CauchyNMF succeeds. To study the robustness
of Truncated CauchyNMF on seriously corrupted datasets,
we randomly select an additional 40 data points as outliers.
We contaminate their y-coordinates while keeping their x-
coordinates consistent. Figure 4(d) shows that Truncated
CauchyNMF still recovers the intrinsic subspace in the
presence of 4

9 outliers while both L2-NMF and L1-NMF
fail in this case. In other words, the breakdown point of
Truncated CauchyNMF is greater than 44.4%, which is quite
close to the highest breakdown point of 50%.

5.2 Simulated Corruption
We first evaluate Truncated CauchyNMF’ robustness to
simulated corruptions. To this end, we add three typical
corruptions, i.e., Laplace noise, and Salt & Pepper noise,
randomly positioned blocks, to frontal face images from
the Cambridge ORL database and compare the clustering
performance of our methods with the performance of other
methods on these contaminated images. Figure 5 shows
example face images contaminated by these corruptions.

The Cambridge ORL database [27] contains 400 frontal
face photos of 40 individuals. There are 10 photos of each
individual with a variety of lighting, facial expressions and
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Fig. 6. Evaluation on frontal face images of ORL database contaminated
by Laplace noise: (a) average accuracy and standard deviation of K-
means, L2-NMF, L2,1-NMF, RNMF-L1, L1-NMF, Huber-NMF, CIM-NMF
and Truncated CauchyNMF, (b) comparison of average normalized mu-
tual information and standard deviation.

facial details (with-glasses or without-glasses). All photos
were taken against the same dark background and each
photo was cropped to a 32× 32 pixel array and normalized
to a long vector. The clustering performance is evaluated
by two metrics, namely accuracy and normalized mutual
information [22]. The number of clusters is set equal to
the number of individuals, i.e., 40. Intuitively, the better a
model clusters contaminated images, the more robust it is
for learning the subspace. In this experiment, we utilize
K-means [21] as a baseline. To qualify the robustness of
all NMF models, we compare their relative reconstruction
errors, i.e., ‖V̂ −WH‖F /‖V̂ ‖F , where V̂ denotes the clean
dataset, and W and H signify the factorization results on
the contaminated dataset.

5.2.1 Laplace Noise
Laplace noise exists in many types of observation, e.g.,
gradient-based image features such as SIFT [31], but the
classical NMF cannot deal with such data because the dis-
tributions violate the assumption of classical NMF. In this
experiment, we study Truncated CauchyNMF’s capacity to
deal with Laplace noisy data. We simulate Laplace noise
by adding random noise to each pixel of each face image
from ORL where the noise obeys a Laplace distribution
Laplace(0, δ). For the purpose of verifying the robustness
of Truncated CauchyNMF, we vary the deviation δ from 40
to 280 because the maximum pixel value is 255. Figure 5(a)
gives an example face image and its seven noisy versions
by adding Laplace noise. Figure 6(a) and 6(b) present the
mean and standard deviations of accuracy and normalized
mutual information of Truncated CauchyNMF and the rep-
resentative models.



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2777841, IEEE
Transactions on Pattern Analysis and Machine Intelligence

TPAMI-2017-04-0298.R1, OCTOBER 2017 10

TABLE 3
Relative reconstruction error (%) of L2-NMF, L2,1-NMF, RNMF-L1, L1-NMF, Huber-NMF, CIM-NMF, and Truncated CauchyNMF on ORL dataset

contaminated by Salt & Pepper noise with the percentage of corrupted pixels varying from 5% to 60%.

p L2-NMF L2,1-NMF RNMF-L1 L1-NMF Huber-NMF CIM-NMF Truncated CauchyNMF
5 12.51(0.03) 14.50(0.05) 14.36(0.10) 11.33(0.04) 12.00(0.06) 13.05(0.09) 12.37(0.05)
10 15.36(0.02) 16.44(0.04) 14.93(0.12) 11.50(0.05) 12.03(0.07) 12.25(0.11) 12.27(0.06)
20 20.30(0.03) 19.99(0.07) 15.97(0.08) 11.98(0.04) 12.29(0.04) 12.18(0.08) 12.00(0.06)
30 24.44(0.03) 23.33(0.08) 17.47(0.11) 13.25(0.09) 13.24(0.06) 13.86(0.09) 11.80(0.04)
40 28.30(0.03) 26.59(0.06) 19.11(0.06) 16.75(0.08) 17.23(0.11) 18.94(0.13) 12.35(0.06)
50 31.51(0.04) 29.46(0.06) 21.71(0.11) 22.49(0.67) 26.82(0.33) 28.54(0.22) 22.97(0.28)
60 24.28(0.03) 31.92(0.04) 26.33(0.13) 29.62(0.17) 34.30(0.22) 39.10(0.63) 35.26(0.13)

Figure 6 confirms that NMF models outperform K-
means in terms of accuracy and normalized mutual in-
formation. L1-NMF outperforms L2-NMF and L2,1-NMF
because L1-NMF models Laplace noise better. L1-NMF
outperforms RNMF-L1 because L1-NMF assigns smaller
weight for large noise than RNMF-L1. CIM-NMF and
Huber-NMF perform comparably with L1-NMF when the
deviation of Laplace noise is moderate. However, as the
deviation increases, their performance is dramatically re-
duced because large-magnitude outliers seriously influence
the factorization results. In contrast, Truncated CauchyNMF
outperforms all the representative NMF models and re-
mains stable as deviation varies.

The clustering performance in Figure 6 confirms Trun-
cated CauchyNMF’s effectiveness in learning the subspace
on the ORL dataset contaminated by Laplace noise. Table
2 compares the relative reconstruction errors of Truncated
CauchyNMF and the representative algorithms. It shows
that CauchyNMF performs the most robustly in all situa-
tions. That is because Truncated CauchyNMF can not only
model the simulated Laplace noise but also models the
underlying outliers, e.g., glasses, in the ORL dataset.

5.2.2 Salt & Pepper Noise
Salt & Pepper noise is a common type of corruption in
images. The removal of Salt & Pepper noise is a challenging
task in computer vision since this type of noise contam-
inates each pixel by zero or the maximum pixel value,
and the noise distribution violates the noise assumption of
traditional learning models. In this experiment, we verify
Truncated CauchyNMF’s capacity to handle Salt & Pepper
noises. We add Salt & Pepper noise to each frontal face
image of the ORL dataset (see Figure 5(b) for the contam-
inated face images of a certain individual) and compare
the clustering performance of Truncated CauchyNMF on
the contaminated dataset with that of the representative
algorithms. To demonstrate the robustness of Truncated
CauchyNMF, we vary the percentage of corrupted pixels
from 5% to 60%. For each case of additive Salt & Pepper
noise, we repeat the clustering test 10 times and report the
average accuracy and average normalized mutual informa-
tion to eliminate the effect of initial points.

Figure 7 shows that all models perform satisfactorily
when 5% of the pixels of each image are corrupted. As the
number of corrupted pixels increases, the classical L2-NMF
is seriously influenced by the Salt & Pepper noise and its
performance is dramatically reduced. Although L1-NMF,
Huber-NMF and CIM-NMF perform more robustly than
L2-NMF, their performance is also degraded when more
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Fig. 7. Evaluation on frontal face images of ORL database contaminated
by Salt & Pepper noise: (a) average accuracy and standard deviation
of K-means, L2-NMF, L2,1-NMF, RNMF-L1, L1-NMF, Huber-NMF, CIM-
NMF and Truncated CauchyNMF, (b) comparison of average normalized
mutual information and standard deviation.

than 40% of pixels are corrupted. Truncated CauchyNMF
performs quite stably even when 40% of pixels are cor-
rupted and outperforms all the representative models in
most cases. All the models fail when 60% of pixels are
corrupted, because it is difficult to distinguish inliers from
outliers in this case.

Table 3 gives a comparison of Truncated CauchyNMF
and the representative algorithms in terms of relative re-
construction error. It shows that L1-NMF, Hubel-NMF,
CIM-NMF and Truncated CauchyNMF perform comparably
when less than 20% of the pixels are corrupted, but the
robustness of L1-NMF, Hubel-NMF, CIM-NMF are unstable
as the percentage of corrupted pixels increases. Truncated
CauchyNMF performs stably when 30% ∼ 50% of the pixels
are corrupted by Salt & Pepper noise. This confirms the
robustness of Truncated CauchyNMF.

5.2.3 Contiguous Occlusion
The removal of contiguous segments of an object due to oc-
clusion is a challenging problem in computer vision. Many
techniques such asL1-norm minimization and nuclear norm
minimization are unable to handle this problem. In this
experiment, we utilize contiguous occlusion to simulate
extreme outliers. Specifically, we randomly position a b× b-
sized block on each face image of the ORL dataset and fill
each block with a pixel array whose pixel values equal 550.
To verify the effectiveness of subspace learning, we apply
both K-means and all NMF models to the contaminated
dataset and compare the clustering performance in terms
of both accuracy and normalized mutual information. This
task is quite challenging because large numbers of outliers
with large magnitudes must be ignored to learn a clean
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TABLE 4
Average accuracy (%) and average normalized mutual information (%) of K-means, L2-NMF, L2,1-NMF, RNMF-L1, L1-NMF, Huber-NMF,

CauchyNMF, CIM-NMF, and Truncated CauchyNMF on occluded ORL dataset with block size b varying from 10 to 22 with step size 2.

b K-means L2-NMF L2,1-NMF RNMF-L1 L1-NMF Huber-NMF CauchyNMF CIM-NMF Truncated CauchyNMF
10 17.20(39.77) 17.10(39.80) 17.20(39.71) 17.50(39.47) 17.65(38.87) 17.68(38.95) 19.27(39.27) 58.48(75.41) 57.80(73.94)
12 17.65(39.95) 17.38(39.43) 17.10(39.90) 17.33(39.46) 17.33(38.79) 17.73(38.96) 18.57(38.96) 56.05(73.36) 58.23(74.31)
14 17.63(40.10) 17.25(39.43) 17.45(39.92) 17.35(39.11) 17.70(39.18) 17.65(38.77) 19.03(39.18) 26.88(46.63) 55.38(71.94)
16 17.55(39.95) 17.25(39.72) 17.20(39.82) 17.25(39.37) 17.43(38.90) 17.35(38.80) 18.36(19.01) 21.18(42.40) 47.30(65.39)
18 16.78(39.09) 17.00(39.06) 16.90(39.73) 16.95(38.67) 16.88(38.20) 17.00(38.41) 17.90(38.48) 23.93(45.21) 42.93(61.84)
20 17.35(39.40) 17.15(39.25) 17.20(39.56) 17.15(38.59) 17.08(38.52) 17.00(38.45) 17.40(38.08) 22.33(43.64) 37.48(57.57)
22 17.15(39.38) 16.75(38.82) 16.88(39.14) 16.90(38.45) 16.95(38.59) 17.10(38.67) 17.73(38.69) 25.38(46.39) 30.05(50.98)

Fig. 8. Face image examples of two individuals in the AR dataset, with
10 images per individual.

subspace. To study the influence of outliers, we vary the
block size b from 10 to 22, where the minimum block size
and maximum block size imply 10% and 50% outliers,
respectively. Figure 5(c) shows the occluded face images of
a certain individual.

Table 4 shows that K-means, L2-NMF, L2,1-NMF,
RNMF-L1, L1-NMF, Huber-NMF, and CauchyNMF8 are se-
riously deteriorated by the added continuous occlusions. Al-
though CIM-NMF performs robustly when the percentage
of outliers is moderate, i.e., 10% (corresponds to b = 10)and
14% (corresponds to b = 12), its performance is unstable
when the percentage of outliers reaches 20% (corresponds
to b = 14). This is because CIM-NMF keeps energies for
extreme outliers and makes a large number of extreme out-
liers dominate the objective function. By contrast, Truncated
CauchyNMF reduces energies of extreme outliers to zeros,
and thus performs robustly when the percentage of outliers
is less than 40% (corresponds to b = 20).

5.3 Real-life Corruption
The previous section has evaluated the robustness of Trun-
cated CauchyNMF under several types of synthetic outliers
including Laplace noise, Salt & Pepper noise, and con-
tiguous occlusion. The experimental results show that our
methods consistently learns the subspace even when half
the pixels in each image are corrupted, while other NMF
models fail under this extreme condition. In this section,
we evaluate Truncated CauchyNMF’s ability to learn the
subspace under natural sources of corruption, e.g., contigu-
ous disguise in the AR dataset and object variations in the
Caltech-101 dataset.

5.3.1 Contiguous Disguise
The Purdue AR dataset [22] contains 2600 frontal face im-
ages taken from 100 individuals comprising 50 males and 50

8. In this experiment, we compare with CauchyNMF to show the
effect ot truncation. For CauchyNMF, we set σ = +∞ and adopt the
proposed HQ algorithm to solve it.
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Fig. 9. Clustering performance in terms of average accuracy and av-
erage normalized mutual information of Truncated CauchyNMF, CIM-
NMF, Huber-NMF, L2,1-NMF, RNMF-L1, L2-NMF, and L1-NMF on the
AR dataset, with the number of clusters varying between 2 and 10: (a)
average accuracy versus number of clusters, and (b) average normal-
ized mutual information versus number of clusters.

females in two sessions. There is a total of 13 images in each
session, including one normal image, three images depicting
different facial expressions, three images under varying
illumination conditions, three images with sunglasses, and
three images with a scarf for each individual. Each image is
cropped into a 55×40-dimensional pixel array and reshaped
into a 2200-dimensional long vector. Figure 8 gives 20
example images of two individuals and shows that the im-
ages with disguises, i.e., sunglasses and scarf, are seriously
contaminated by outliers. Therefore, it is quite challenging
to correctly group these contaminated images, e.g., the 4th,
5th, 9th and 10th columns in Figure 8, with the clean images,
e.g., the 1st and 6th columns in Figure 8. According to the
results in Section 5.2.3, Truncated CauchyNMF can handle
contiguous occlusions with extreme outliers well, we will
therefore show the effectiveness of Truncated CauchyNMF
to do this job.

To evaluate the effectiveness of Truncated CauchyNMF
in clustering, we randomly select between two and ten
images of each individual to comprise the dataset. By con-
catenating all the long vectors, we obtain an image intensity
matrix denoted as V . We then apply NMF to V to learn
the subspace, i.e., V ≈ WH , where the rank of W and
H equals the number of clusters. Lastly, we output the
cluster labels by performing K-means on H . To eliminate
the influence of randomness, we repeat this trial 50 times
and report the averaged accuracy and averaged normalized
mutual information for comparison.

Figure 9 gives both average accuracy and average nor-
malized mutual information in relation to the number of
clusters of Truncated CauchyNMF and other NMF models.
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TABLE 5
Face recognition accuracies (%) of SEC and NMF models on the AR dataset, with the reduced dimensionalities of NMF models set to 200 and the

test images classified by SRC in the subspaces learned by NMF methods.

Methods Total Normal Expressions Illuminations Scarves Sunglasses
Truncated CauchyNMF+SRC 90 99 96.67 92.67 90.67 77

CIM-NMF+SRC 82.54 96 92.33 90.67 82.33 60.33
L1-NMF+SRC 87.15 94 90 95.33 84.67 76.33
L2-NMF+SRC 80.38 90 85 95.33 79.33 58.67

Huber-NMF+SRC 48.85 70 59.33 51.33 48.33 29.33
L2,1-NMF+SRC 75.23 87 83.33 88 72 53.67
RNMF-L1+SRC 49.92 67 55.33 55.33 52 31.33

SEC 78.92 95 93.33 90.67 74.67 51.67

It shows that Truncated CauchyNMF consistently achieves
the highest clustering performance on the AR dataset. This
result confirms that Truncated CauchyNMF learns the sub-
space more effectively than other NMF models, even when
the images are contaminated by contiguous disguises such
as sunglasses and a scarf.

We further conduct the face recognition experiment on
the AR dataset to evaluate the effectiveness of Truncated
CauchyNMF. In this experiment, we treat the images taken
in the first session as the training set and the images taken
in the second session as the test set. This task is challenging
because (1) the distribution of the training set is different
from that of the test set, and (2) both training and test
sets are seriously contaminated by outliers. We first learn
a subspace by conducting Truncated CauchyNMF on the
whole dataset and then classify each test image by the
sparse representation classification method (SRC) [45] on
the coefficients of both training images and test images in
the learned subspace. Since there are totally 100 individu-
als and the images of each individual were taken in two
sessions, we set the reduced dimensionality of Truncated
CauchyNMF to 200. We also conduct other NMF variants
with the same setting for comparison. To filter out the
influence of continuous occlusions in face recognition, Zhou
et al. [46] proposed a sparse error correction method (SEC)
which labels each pixel of test image as occluded pixel and
non-occluded one by using Markov random field (MRF) and
learns a representation of each test image on non-occluded
pixels. Although SEC succeeds to filter out the continuous
occlusions in the test set, it cannot handle outliers in the
training set. By contrast, Truncated CauchyNMF can take
the occlusions off on both training and test images, and thus
boost the performance of the subsequent classification.

Table 5 shows the face recognition accuracies of NMF
variants and SEC. In the AR dataset, each individual
contains one normal image and twelve contaminated im-
ages under different conditions including varying facial
expressions, illuminations, wearing sunglasses, and wearing
scarves. In this experiment, we not only show the results on
total test set but also show the results on the test images
taken under different conditions separately. Table 5 shows
that Truncated CauchyNMF performs the best in most cases,
especially, it performs almost perfectly on normal images. It
validates that Truncated CauchyNMF can learn an effective
subspace from the contaminated data. In most situations,
SEC performs excellently, but the last two columns indicate
that the contaminated training images seriously weaken
SEC. Truncated CauchyNMF performs well in such situa-

Fig. 10. Example images in Caltech101 dataset from 6 categories, and
we have four images per category.

tions because it effectively removes the influence of outliers
in the subspace learning stage.

5.3.2 Object Variation

The Caltech 101 dataset [44] contains pictures of objects
captured from 101 categories. The number of pictures for
each category varies from 40 to 800. Figure 10 shows
example images from 6 different categories including dol-
phin, butterfly, sunflower, watch, pizza and cougar body.
We extract convolutional neural network (CNN) feature for
each image using the Caffe framework [39] and pre-trained
model of Imagenet with AlexNet [42]. As objects from the
same categories may vary in shape, color and size, and
the pictures are taken from different viewpoints, clustering
objects of the same category together is a very challenging
task. We will show the good performance of Truncated
CauchyNMF compared to other methods such as CIM-NMF,
Huber-NMF, L2,1-NMF, RNMF-L1, L2-NMF, L1-NMF, and
K-means.

Following the similar protocol as in section 5.3.1, we
demonstrate the effectiveness of Truncated CauchyNMF in
clustering objects. We test with 2 to 10 randomly selected
categories. The image feature matrix is denoted as V . NMFs
are applied to V to compute the subspace, i.e. V ≈ WH ,
where the rank of W and H equals the number of clusters.
Cluster labels are obtained by performing K-means on H .
We repeated such trial 50 times and computed averaged
accuracies and normalized mutual information among all
trials for comparison.

Figure 11 presents the accuracy and normalized mu-
tual information versus cluster numbers of different NMF
models. Truncated CauchyNMF significantly outperforms
other approaches. As the number of categories increases, the
accuracy achieved by other NMF models decreases quickly,
while Truncated CauchyNMF maintains a strong subspace
learning ability. We can see from the figure that Truncated
CauchyNMF is more robust to the object variations com-
pared to other models.
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Fig. 11. The clustering performance, in terms of both accuracy and
normalized mutual information, of Truncated CauchyNMF, CIM-NMF,
Huber-NMF, L2,1-NMF, RNMF-L1, L2-NMF, L1-NMF, and K-means on
the Caltech101 dataset with the number of clusters varying from 2 to 10.

Note that, in all above experiments, we optimized the
Truncated CauchyNMF and the other NMF models with
different types of algorithms. However, the high perfor-
mance is not due to the optimization algorithm. To study
this point, we applied the Nesterov based HQ algorithm
to optimize the representative NMF models and compared
their clustering performance on the AR dataset. The results
show that Truncated CauchyNMF consistently outperforms
the other NMF models. See the supplementary materials for
detailed discussions.

6 CONCLUSION

This paper proposes a Truncated CauchyNMF framework
for learning subspaces from corrupted data. We propose
a Truncated Cauchy loss which can simultaneously and
appropriately model both moderate and extreme outliers,
and develop a novel Truncated CauchyNMF model. We the-
oretically analyze the robustness of Truncated CauchyNMF
by comparing with a family of NMF models, and provide
the performance guarantees of Truncated CauchyNMF. Con-
sidering that the objective function is neither convex nor
quadratic, we optimize Truncated CauchyNMF by using
half-quadratic programming and alternately updating both
factor matrices. We experimentally verify the robustness and
effectiveness of our methods on both synthetic and natural
datasets and confirm that Truncated CauchyNMF are robust
for learning subspace even when half the data points are
contaminated.
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