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ABSTRACT 

Despite the large number of studies on externally bonded elements using FRP 

composites, there is a significant knowledge gap to gain a comprehensive understanding 

of potential parameters such as bond width, bond length, material properties and 

geometries that influence bond strength. Behaviour of FRP bonded to concrete has been 

well investigated and there are a number of experimental and theoretical studies in this 

area; however, limited attempts have been made to investigate the bond behaviour of 

the FRP to timber interface. This paper reports an investigation on the behaviour of FRP 

externally bonded to timber. A novel theoretical model has been developed through 

stepwise regression analysis of 136 single shear FRP-to-timber joints. This has led to 

establishing a new predictive model for determination of the bond strength for FRP-to-

timber joints. Results of this stepwise regression analysis are then assessed with results of 

experimental tests, and satisfactory comparisons have been achieved between ultimate 

applied loads and the predicted loads. Finally, a significant improvement in prediction of 
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bond behaviour has been achieved when results of the proposed analytical model 

compared with the existing models from the literature, signifying the capability of the 

new models. 

KEYWORDS: Bond strength, FRP, Timber, Pull-out test, Strain distribution profile  
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1 Introduction 

There are large numbers of timber structures worldwide that have reached the end of 

their design service life. Moreover, ageing, inappropriate maintenance, surface 

degradation due to insect and fungal attack, environmental action, and increased service 

loads have caused many structures to gradually deteriorate and result in significant 

reduction in load capacity and subsequent safety. Consequently, either entire structures 

or key components now require strengthening, rehabilitation or replacement [1-3]. 

Recent [4-6] studies and applications have demonstrated that Fibre Reinforced Polymer 

(FRP) has become a mainstream technology for the strengthening of ageing and 

deteriorated structures.  

FRPs are light, highly resistant to corrosion, cost effective and have superior strength and 

stiffness properties, whilst their specific strengths are capable of remaining high at 

elevated temperatures [4, 7]. FRP composite materials are able to carry high loads safely 

and increase the stability of structures and in some cases, are the only reasonable and 

applicable materials that can be used for retrofitting, particularly in places where it is 

impossible to gain access for heavy machinery [8]. These materials have a major role both 

in the field of strengthening and retrofitting of existing structures and in the new 

structural design [9]. External bonding of FRP composites has emerged as an innovative 

and widespread method for strengthening and retrofitting of infrastructure over the last 

three decades [5, 9, 10]. Although FRPs have a number of advantageous properties such 

as high elastic modulus, high fatigue performance, [9-11], they still have some important 

limitations.  
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One of the most common problems associated with the use the externally bonded FRP 

sheets is the premature failure due to debonding, which limits the full utilisation of the 

material strength of the FRP [12, 13]. Debonding can be defined as the single most 

important failure mechanism of retrofitted beams [14] that occurs at much lower FRP 

strains than its ultimate strain. Debonding directly impacts the total integrity of the 

structure, with the subsequent outcome that the ultimate capacity and desirable ductility 

of the structure may not be achieved.  

A number of studies have been carried out experimentally [15-18] and theoretically [19, 

20] to address the behaviour of FRP bonded to concrete substrate, masonry structures 

and more recently in structural glass beams [21, 22]. However, performance of FRP 

composite bonded externally to timber, considering debonding and other failure modes, 

has not been fully investigated and to date, limited attempts have been made to 

investigate the behaviour of FRP-to-timber joints.  This study presents results of 136 

Carbon Fibre Reinforced Polymer (CFRP) to timber joint with different bond width, bond 

length and cross-sectional size. Two different types of timber, namely Laminated Veneer 

Lumber (LVL) made out of softwood and kiln dried hardwood sawn timber, are utilised in 

this study. Factors affecting bond strength of FRP-to-timber joint have been investigated 

and subsequently, a proper constitutive model is introduced to accurately predict the 

ultimate strength of FRP-to-timber interface. Results of the proposed bond strength 

model are then assessed with results of pull-out tests and satisfactory comparisons are 

achieved. Finally, the predicted bond strength results have been then assessed by 

undertaking a comparative analysis with an existing model from the literature. 
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2 Experimental program 

2.1 Detail of test setup and instrumentation 

The experimental program in this study involved testing of 136 modified single shear 

CFRP-to-timber bonded interface as summarised in Table 1. Two different types of timber 

were used, namely Laminated Veneer Lumber (LVL) (using softwood species) and 

hardwood sawn timber. The LVL samples were of 320 or 370 mm length with a 110 mm x 

65 mm cross section, and the overall dimension of hardwood samples was 320 mm long x 

110 mm wide x 35 mm deep. One and two plies of unidirectional wet lay-up CFRP 

(MBRACETM) with the nominal thickness of 0.117mm were externally bonded with an 

epoxy base (Sikadur®-330) to the timber. In the LVL series, three different bond widths - 

35 mm, 45 mm, and 55 mm, with five different bond lengths - 50 mm, 100 mm, 150 mm, 

200 mm and 250 mm, were fabricated and tested. The hardwood samples included bond 

width of 45mm and bond lengths of 50 mm, 100 mm, 150 mm and 200 mm only. In all 

specimens, a 20 mm unbonded zone was provided at the loaded end to minimise wedge 

failure in the timber prism.  

Strain gauges were attached to the CFRP surface to measure the strain variation along the 

length of the FRP and also to qualitatively monitor the bond behaviour. Strain gauges of 5 

mm gauge length with 120.3 ±0.5 Ω resistance were bonded to the CFRP surface for each 

sample. One strain gauge was placed at the unbonded zone of the CFRP surface, and 

other strain gauges were distributed on the centre-line of FRP along the bond length as 

summarised in Table 2. Due to different bond length, the number of strain gauges varied 

between three to eight for the tested specimens. 
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Table 1, Detail of the tested specimens 

Timber type Identification of 
specimen 

FRP Thickness 
 (mm) 

Bond 
Length  
(mm) 

Bond 
Width  
(mm) 

Number  
of specimens 

Laminated Veneer Lumber LVL 50-35-01 

1 x 0.117 

50 35 5 

LVL 100-35-01 100 35 5 

LVL 150-35-01 150 35 5 

LVL 200-35-01 200 35 5 

LVL 50-35-02 

2 x 0.117 

50 35 5 

LVL 100-35-02 100 35 5 

LVL 150-35-02 150 35 5 

LVL 200-35-02 200 35 5 

LVL 50-45-01 

1 x 0.117 

50 45 5 

LVL 100-45-01 100 45 5 

LVL 150-45-01 150 45 5 

LVL 200-45-01 200 45 5 

LVL 150-45-02 2 x 0.117 150 45 5 

Hardwood H 50-45-01 

1 x 0.117 

50 45 5 

H 100-45-01 100 45 5 

H 150-45-01 150 45 5 

H 200-45-01 200 45 5 

H 50-45-02 

2 x 0.117 

50 45 5 

H 100-45-02 100 45 5 

H 150-45-02 150 45 5 

H 200-45-02 200 45 5 

Laminated Veneer Lumber LVL 50-55-01 

1 x 0.117 

50 55 5 

LVL 100-55-01 100 55 5 

LVL 150-55-01 150 55 5 

LVL 200-55-01 200 55 5 

LVL 250-55-01 250 55 3 

LVL 150-55-02 2 x 0.117 150 55 5 

LVL 250-55-02 2 x 0.117 250 55 3 

As shown in Figure 1, a modified single shear test setup was adopted to monitor bond 

behaviour and bond-slip relationships accurately. The bond-slip responses proposed by 

other researchers vary between a number of experimental studies presented in the 

literature. One reason for scattered results in the literature may be attributed to the test 

setup due to unexpected out of plane movements since the interface is under both shear 

and flexural stresses simultaneously. Besides, timber block may not be cut perfectly, so 

that these blocks cannot be tightly fitted and held in the frame. Therefore, some out-of-
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plane movement of timber block can be expected. In this research, the timber block was 

restrained in a steel rig and load is applied to the free end of the FRP. The slip between 

timber and CFRP was also measured by a LVDT mounted on the surface of the timber 

block. It is important to note that in previous test setups [23], two or more LVDTs had 

been used for measuring the bond slip between timber and FRP; however, the slip was 

finally derived using the strain gauge profiles, since it was believed that the data collected 

from LVDTs are not reliable due to timber out-of-plane movement. Therefore, one of the 

key advantages of the present test setup when compared with previous test setups, is 

that when the timber block experiences any unexpected out of plane movements, both 

the timber and the LVDT’s simultaneously have the same displacement. Moreover, at 

least one LVDT is omitted from the test, and the slip of interface can be measured with 

higher precision using only one LVDT placed at the loaded end. Figure 1 schematically 

shows the details of the specimens.  

During preparation of the test specimens, the timber surface was sanded with 300 and 

400 grit sandpaper to remove all contaminants and weak surface layers that can interfere 

with adhesion, and to develop a surface roughness. The timber surface was then wiped 

clean with acetone and air blasting. In addition, the surface of CFRP sheets was prepared 

as per ASTM-D2093-03 [24] and BSI [25] to remove all impurities and potential 

contaminants such as mould release agents, lubricants, or fingerprints as a result of the 

production process.  

For each of the bond length, five specimens were tested, except for samples with 250 mm 

bond length where three specimens were tested. A preliminary set of tests was also 
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conducted with the intention to check the test rig set up and to evaluate the influence of 

potential parameters such as bond width, bond length, bond thickness, material 

properties and geometries on the bond strength. Accordingly, decisions were made as to 

the factors that were to be considered for further detailed investigation. All specimens 

were fabricated and epoxy was allowed to cure in the laboratory environment with 20°C 

to 22°C temperature and 60% to 70% relative humidity for at least 10 days. The pull-out 

tests were performed using a universal testing machine which had a capacity of 500kN. 

The maximum load range of 30 kN was applied based on predicted load capacity of 

sample tests as well as results of preliminary test samples which were in the range of 17-

20kN. During pull-out tests, an initial 2 kN was applied and unloaded for all specimens 

and then the load was applied at the rate of 0.3 mm/min as per ISO 6238 [26] and ASTM 

D905-03 [27].  

Table 2, Position of the strain gauges along the bonded length 

 Distance of the strain gauges from the loaded end (mm) 

Bond length SG2 SG3 SG4 SG5 SG6 SG7 SG8 

50 15 40      

100 15 50 85     

150 15 50 85 120    

200 15 50 85 120 155 190  

250 15 50 85 120 155 190 225 

 

 
 

 

[Insert Figure 1 here] 
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2.2 Material properties 

The timber pieces used in this study were selected to be as free as possible from knots, 

pitch pockets and other natural growth features. The specimens used for material tests 

on timber were cut from the same timber members used to make the joint tests. A total 

of 28 timber samples (14 LVL and 14 hardwoods) were fabricated and tested in 

accordance with BS EN 408:2010 [28] to determine the mechanical properties of the 

timber prism. Tensile strength and elastic modulus of CFRP was determined based on 

tensile tests on six CFRP coupons following the ASTM D3039/D3039M Standard [29]. The 

epoxy adhesive was not tested; however, as per manufacture’s product data sheet [30], 

the values of elastic modulus and tensile strength of Sikadur®-330 were 4.5GPa and 

30MPa, respectively, and these values are used in the analytical phase of this study. The 

material test results are tabulated in Table 3.  

Table 3, Material Properties of timber, FRP and adhesive 

Material Tensile  Compressive Poisson ratio %  
(CoV) Tensile  

Strength  
MPa (CoV) 

Modulus of 
Elasticity, 
GPa (CoV) 

Compressive  
Strength  
MPa (CoV) 

Modulus of 
Elasticity, 
GPa (CoV) 

Hardwood 67.53 (8.71) 19.75 (8.58) 64.93 (4.45) 19.70 (24.13) 0.36 (24.66) 

LVL 44.31 (15.61) 16.18 (5.06) 56.26 (1.79) 17.68 (16.96) 0.30 (27.04) 

FRP 2497 (6.45) 228.89 (10.22) -- -- -- 

Sikadur®-330 30 4.5 -- -- -- 

CoV: co-efficient of variation 

3 Factors affecting bond strength  

The bond mechanism between timber and FRP is relatively complex and is influenced by a 

number of variables. Failure of a fibre reinforced polymer timber beam can take place in 
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several ways, including but not limited to substrate failure (timber separation), FRP 

delamination, FRP/adhesive separation, FRP rupture, cohesion failure (adhesive de-

cohesion), adhesive failure, and substrate-to-adhesive interfacial failure. More than one 

of these modes may be observed in an actual failure. When debonding occurs, the stress 

shifts over a partial active area leading to local shear stress concentrations. Discontinuity 

near the ends of FRP is another reason of stress concentration [11]. Among the 

mentioned failure modes, adhesive failure occurs rarely due to its strong characteristic 

behaviour [31]; however, debonding between adhesive and adherent is often the critical 

failure mode since it has a significant influence on the performance of strengthened 

structures [14, 32]. 

Regardless of the effect of environmental conditions, surface treatment and moisture 

content, the bond strength depends significantly on the strength of the substrate 

material. Existing experimental investigations have suggested that the main failure mode 

associated to the externally bonded FRP joints is substrate failure under shear. Crews and 

Smith [33] reported that timber failure has been the main failure mode that occurred in 

their tests, indicating that the bond behaviour may be controlled by the properties of 

timber rather than that of the adhesive. Yao [32] also stated that substrate failure most 

often take place in pull-out tests under shear, occurring generally at a few millimetres 

from the adhesive layer. Therefore, it can be concluded that the substrate properties 

directly impact the bond strength. 

Adhesive stiffness and adhesive strength are also reported amongst factors that impact 

the bond strength [34]; however, results of 86 single shear tests conducted by Wan [35] 
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stated that the properties of the adhesives used had not noticeably influenced the bond 

strength. A number of studies have also been carried out considering the behaviour of 

bond [14, 36-39] and their results show that the bond strength is highly dependent on the 

geometry of the bond and also varies with the FRP width and thickness, and the specimen 

alignment [14, 32]. Furthermore, it has also been observed that boundary conditions [14] 

and FRP to substrate width ratio [31] significantly impact on the bond strength.  Another 

important parameter that significantly impacts on the bond strength is the bond length; 

however, effective bond length must always be taken into consideration. Many 

experimental studies [6, 14, 32, 36, 40] and fracture mechanics analyses [41, 42] have 

confirmed that there is no benefit in extending the bond length beyond the effective 

bond length where there is no increase in the bond strength. As mentioned above, there 

is a significant knowledge gap to gain a comprehensive understanding of parameters that 

influence the bond strength, particularly when FRP is bonded to timber. Therefore, a 

sound understanding of the behaviour of FRP-to-timber interface needs to be developed. 

4 Existing bond strength and shear strength models 

As noted previously, timber failure has been reported as the main failure mode in the 

study conducted by Crews and Smith [33], indicating that the bond behaviour may be 

controlled by the properties of timber rather than that of the adhesive. Wan [23] has 

conducted a more extensive study on FRP-to-timber interface in which results of 86 single 

shear tests are reported and correspondingly developed a bond strength model and bond 

stress-slip model for FRP-to-timber bond as follow:  

ffefetu tELbP
28.0

012.0                          (1) 
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In Eq. (1), ɣt and ɣe were referred to timber sides and adhesive type, respectively. bf, Le 

and Ef.tf were referred to bond with, effective bond length and stiffness of FRP, 

respectively. In Eq. (2), A and B were experimental parameters, s was corresponding slip 

at specific location and Cn was referred to elastic stiffness. More explanation of these 

equations and parameters can be found in the study conducted by Wan [23]. 

The bond stress model proposed by Wan [23], Eq. (2), has been derived based on the 

theoretical proposals of Qiao and Chen [43] and Dai et al. [44] where concrete had been 

used as a substrate. In addition, the mechanical properties of timber was not considered 

in Eq. (1) because Wan [23] believed that softwood, hardwood and glulam used in the 

research were not significantly different from one another. As such, the importance of 

timber properties that have a major factor influencing the failure of the interface 

reported by others [33, 45] has been ignored in Wan’s [23] model. Furthermore, in the 

Wan [23] study, the expression of the effective bond length was calculated using the 

model derived by Chen and Teng [31]. It is worth emphasising that Chen and Teng’s 

model [31] was derived based on results of FRP-to-concrete interface. It is notable that 

there are some fundamental differences between the failure mechanism in timber and 

concrete when bonded with FRP. Concrete is weak in tension; whilst timber is often 

stronger in tension. Debonding initiates when the tensile stress at the interface exceeds 

the bond strength. Therefore, the models which work for FRP-to-concrete bond may not 

work for FRP-to-timber bond due to these differences. As a result, the bond strength 

model proposed by Wan [23]  did not fit very well into the experimental results (Figure 2). 
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Consequently, for safe and economic design of FRP repair/strengthening of timber 

structures, further understanding of the bond is essential and thus, a new bond strength 

model for FRP-to-timber bonded interface is highly required to predict the ultimate load 

of the bond with better accuracy. 

 
 
 

[Insert Figure 2 here] 
 
 
 

5 Analysis of test results 

A modelling analysis has been previously conducted by the authors [46] based on 

experimental results obtained from the literature (Wan [23]) for determining the key 

parameters affecting bond strength. It is important to note that the main focus in study 

performed by Wan [23] was on bond length and types of adhesive. However, other 

studies [23, 35] have concluded that the adhesives used does not noticeably influence the 

bond strength. In addition, in Wan’s study [23], there were limited variations in 

parameters such as bond width, FRP-to-timber width ratio, tensile strength of timber, etc. 

The present experiments consist of all potential parameters and their impact on the bond 

strength as explained in the following sections.  

5.1 Bond width series 

Results from the tests with different bond widths, namely, 35 mm, 45 mm, and 55 mm, 

showed that the bond width significantly impacts on the bond strength; with the increase 

of the FRP plate width, the interfacial bond strength increases. This phenomenon may 
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lead to a decrease in the interfacial slip during the softening-debonded stage. In addition, 

results obtained from previous work conducted by the authors [6] showed that the 

maximum shear stress decreased with the increase of FRP-to-timber width ratio as shown 

in Figure 3. It is important to note that all bond characteristic and timber type in samples 

shown in Figure 3 are identical except for the bond width. This finding is in agreement 

with the previous studies when the FRP was bonded to concrete [11, 47, 48]. Figure 4 

shows the local slip profiles along bonded length at various load levels for FRP with 

35mm, 45mm and 55mm width; it can be seen that the local slip at the same level of 

applied load decreases with increasing FRP-to-timber width ratio. One reason can be 

highlighted that when FRP-to-timber width ratio is low, the force transfers from the FRP 

to timber leads to a non-uniform stress distribution across the width of timber leading to 

interfacial failure at lower load level. In addition, a smaller FRP width compared to the 

timber width may result in a higher stress in the bond at failure; directing stress from 

bonded area to the timber outside of the bonded zone. These findings are consistent with 

the previous studies conducted by [11, 38, 49]. 

 

[Insert Figure 3 here] 

 

       

[Insert Figure 4 here] 
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5.2 Timber species series 

Results of the experimental investigations showed that the main failure of the bond is 

attributed to timber failure as shown in Figure 5, occurring generally at a few millimetres 

from the adhesive layer. Whilst the tensile and compressive strength of the hardwood 

sawn timber were quite similar, LVL samples were stronger in compression, as shown in 

Table 3. FRP-timber joint specimens made from LVL exhibited a degree of ductile 

behaviour, failing gradually; while joints made from hardwood exhibited brittle 

behaviour, failing suddenly. The brittle failure of joints was more eminent when two 

layers of FRP were bonded to the timber. On the other hand, a higher ultimate load was 

recorded for specimens made from hardwood when compared with the joints made from 

LVL as shown in Figure 6. Higher tensile strength of the hardwood species therefore 

improved the bond strength. This finding is in agreement with observations made by 

Crews and Smith [33]. Therefore, it can be concluded that mechanical properties of the 

particular timbers been used need to be known for determining the bond strength when 

FRP is bonded to timber.   

 

 

 

[Insert Figure 5 here] 

 

[Insert Figure 6 here] 
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5.3 Bond length series 

Many factors control the failure mode for an FRP strengthened beam. One of these 

factors is bond length and effective bond length must always be taken into consideration, 

since many experimental studies [14, 32, 36, 40] and fracture mechanics analyses [41, 42] 

have confirmed that there is no benefit in extending the bond length beyond that where 

there is no increase in the bond strength. Therefore, five different bond lengths (50mm, 

100mm,150 mm, 200mm, and 250mm) were tested. The effective bond length of FRP-to-

timber joints have been considered in the previous study conducted by authors [6] and a 

novel empirical model was derived (Eq 3).   

25.0)()ln( utffe ftEL                (3) 

)5.2(2

25.1

t

f

t

f

b

b

b

b





                           (4) 

where Ef and tf are the modulus of elasticity and thickness of FRP, respectively. fut is the 

ultimate tensile strength of timber block. The effect FRP to timber width ratio (β) (Eq. 4) 

was determined based on linear regression analysis using the test data of all specimens, 

where bf and bt are widths of FRP laminates and timber block, respectively.  

Figure 7 shows the strain distribution profiles at various load levels along bonded length. 

It is important to mention that all bond characteristic and timber type in samples shown 

in Figure 7 are identical except bond length. Strain on point zero refers to the strain in the 

unbonded area. Three distinct profile trends can be identified from these strain 
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distribution diagrams based on the level of applied loads. In the first trend, the strain 

distribution exhibited a linear descending shape towards the end of the bond as the load 

was initially applied. This downward pattern represents that the stress transfer length has 

been constant. The second trend shows that the strain increased gradually between 

strain gauges 2 and 4 until crack initiated in the interface. Although all sample results are 

not shown here, it was observed that the maximum load associated with this strain 

distribution occurred approximately at 60% to 65% of the ultimate applied load, 

depending on bond geometries. This observation is more evident when the bond length 

was equal or longer than effective bond length as shown in Figure 7 (d) and Figure 9. 

However, for those samples where the bond length was not long enough debonding 

occurred at much lower FRP strains than its ultimate strain. Accordingly, the distance 

from loaded end to the point where the strain profile reaches zero defines the so-called 

initial transfer length. Once a crack is formed, the effective bond zone propagates from 

the loaded end toward the unloaded end and a further increase in strain distribution was 

observed until the applied loading P reached ultimate load Pu. In the third trend, Figure 7, 

there is a bilinear tendency in the strain distribution with a transition point occurring at 

the limit of the initial transfer area. In the current study, this transition point generally 

coincided with approximately 75% of the ultimate load, and in some other samples 

around 80% of the ultimate load was recorded. The bilinear trend in strain distribution is 

different from the theoretical relationship between the FRP sheet strain and the distance 

from the loaded end since it is expected to be uniform for completely homogeneous 

material. This phenomenon may be due to material heterogeneity or stress concentration 

in the FRP plate and timber at a meso-scale [11, 19]. It should be noticed that when the 
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bond length is long enough, the strain gauges near the far end of bond experience quite 

minimal strain values. 

The average ultimate loads for the specimens represented in Figure 7 (a-d) are 5.27kN, 

6.27kN, 7.66kN and 7.94kN, respectively. The ultimate load of specimens (c) and (d) are 

relatively similar; however, their values are approximately 1.5 times higher than the peak 

load obtained for specimens (a) and 1.26 times of the ultimate load obtained for 

specimens (b). One reason may be due insufficient bond length in specimens (a and b), 

since the bond length of specimens (a) and (b) are 50mm and 100mm, respectively, while 

the predicted effective bond length using Eq. (3) is 134mm. Therefore, premature 

debonding can be expected at lower FRP strains limiting the full utilisation of the bond. 

On the other hand, when the bond length is long enough, the strain gauges near the far 

end of bond experience quite minimal strain values as shown in Figure 7 (d). 

Nevertheless, debonding starts when the relative slip between FRP and timber exceeds 

the ultimate slip. At this point, the ultimate load that can be carried by the FRP plate is 

attained and simultaneously, the effective bond zone shifts towards the free end of the 

bond. Therefore, the ultimate load Pu remains almost constant. This condition signifies 

the concept of effective bond length that there is no benefit in extending the bond length 

beyond that where there is no increase in the bond strength. 

In the present study, experimental tests results revealed that bond width, bond stiffness 

and timber strength are the key parameters that significantly affect the bond strength of 

FRP-to-timber interface. Figure 8 shows the effect of bond width (FRP-to-timber width 

ratio), bond length and type of timber on the bond strength. As can be seen, the bond 
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strength has significantly increased when the bond width and timber tensile strength 

increased. In addition, bond length directly has a major impact on the bond strength; 

however, bond strength cannot increase further once the bond length exceeds the 

effective bond length. Nevertheless, a longer bond length can improve the ductility of the 

interface [38]. 

 

 

[Insert Figure 7 here] 

 

 

 

[Insert Figure 8 here] 

 

 

 

[Insert Figure 9 here]
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6 Proposed bond strength model 

The average shear stress between two consecutive strain gauge positions and thus the 

shear stress distribution can be determined as follows [36]: 

ji

jiff

ji
l

Et









)( 
                                                                (5) 

where ɛi and ɛj are two strain gauges at positions i and j, and ∆li-j is the distance 

between these two gauges. Ef and tf are elastic modulus and thickness of the laminate, 

respectively. Proceeding in this way for all gauge positions, results of stress distribution 

along the interface can be obtained. Stress distribution along the bonded length for 

two specimens are shown in Figure 10 as an example. Furthermore, Figure 11 

illustrates the evaluation of shear stress distribution along the bonded length as a 

function of the relative load. It can be seen that the shear stress in the region near the 

bearing end reaches a peak (Pmax) and then begins to decrease abruptly, while 

simultaneously the shear stress in the adjacent region is beginning to increase. It is 

important to be noted that, the decrease of the shear stress signifies failure in one 

region, while ascending of shear stress in the adjacent region illustrates that the load is 

being transferred there. Thus, the effective bond zone is being shifted inward along 

the bond length. This phenomenon was constantly observed such that the region of 

high stress transferred from one area to the adjacent area until the total failure of the 

bond occurred. 
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[Insert Figure 10 here] 

 

 

[Insert Figure 11 here] 

 

 

As emphasised in section 5, the ultimate bond strength has been mostly related to 

bond width, bond stiffness, timber strength and the bond length. Therefore, stepwise 

regression (SR) as a robust approach has been used for selecting the best combination 

of independent variables that best fits the dependent variable (the ultimate load (Pu) 

in the present study). When dealing with a large group of potential independent 

variables, stepwise regression can be employed to determine the most significant 

variables in predicting the dependent variable [50]. Stepwise regression is a robust 

approach for selecting the best subset of independent variables that provides efficient 

prediction of the dependent variable. In addition, such analysis significantly reduces 

computing complexity than is required for all possible regressions [51]. Stepwise 

regression is a combination of Forward and Backward selection. In Forward selection, 

the determination of the best subset models can be obtained either by trying out one 

independent variable into the regression model that produces the highest value of R-

Squared if statistical significance of model is kept. Whilst, Backward selection includes 

all potential independent variables in the regression model and removing those that 

are least significant. Stepwise regression is a combination of these two methods, 

selecting variable(s) that has the highest effect on the residual sum of squares; and 
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conversely, removing the variable(s) that has the least significant on the residual sum 

of squares.  

However, the verification of the capability of the  model proposed by SR is not only to 

rely value of R-squared or the model’s P-value (an indicator that describes whether or 

not a variable has statistically significant predictive capability in the presence of the 

other variable), but instead, assess the model against an “independent” data set that 

was not used to create the model [52]. Thus, a model can be built based on a sample 

of the dataset available (e.g., 70%) and then, assess the accuracy of the model using 

the remaining 30% dataset [53].  Accordingly, a database including 100 experimental 

results of the FRP-to-timber joint has been used to create the model (predict) and 

remaining 36 sets of data have been used to test the measurement accuracy of SR 

model. Statistical Analysis Software (SAS®) was used for the stepwise regression 

analysis. SAS®, which permits choosing the stepwise variable selection option by 

providing the opportunity to specify the method as “Forward” or “Backward”. In the 

present study, a fully stepwise analysis has been selected (both Forward and Backward 

methods) allowing the software to perform a straight multiple regression using all the 

variables. The stepwise selection process has been performed using different possible 

combinations of independent variables including linear; polynomial; exponential 

model; reciprocal model and nonlinear multiple regression. A simple analytical formula 

but with a superior accuracy has been derived covering those critical variables that 

influence on the bond strength as follows:  
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The units for the above equation are: Megapascals, Newtons, and millimetres, where, 

bf, Ef and tf are the FRP width, elastic modulus and thickness of FRP sheet, respectively.  

fut and bt refer to the ultimate tensile strength and width of the timber prism, 

respectively. Le is the effective bond length derived using Eq.  (3). The latter parameter 

ɤt is related to the timber types, in which ɤt is equal to 0.1 and 0.08 for LVL and 

hardwood, respectively. 

Figure 12 shows the evaluation of the stepwise regression model of FRP-to-timber 

bonded interface against experimental results. Results of the analytical solution (Eq. 6) 

presented in this paper have been compared with the existing model proposed by [23] 

(Eq. 1) to evaluate the capability of the proposed model and also to demonstrate the 

improvement of the current analytical model against previous model. As shown in 

Figure 2 and Figure 12, it is interesting to note that the coefficient of determination 

(R2) of the stepwise regression analysis signifies that the SR model (R2=0.89) is even 

more enhanced when compared with the model proposed by [23] (R2=0.59) and is a 

more accurate predictor than the existing model. 

 

 

[Insert Figure 12 here] 

 

 

Apart from regression analysis, reliability of the derived model was also assessed 

based on the Integral Absolute Error (IAE, %). This index has been used by other 
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researchers [54, 55] to evaluate the performance of the fitted model. In Eq. (7), Oi and 

Pi are the observed and predicted values, respectively. The value of zero rarely occurs 

for IAE; however, having a regression model with a low value of IAE demonstrates that 

the derived model is reliable. For an acceptable regression equation, a range of 0 to 

10% is suggested in the literature [56, 57]. The Integral Absolute Error of 0.9% was 

obtained using Eq. (7) for the proposed model against experimental results which is 

quite low and is in agreement with recommendations made in the literature [56, 57], 

emphasising the reliability of proposed model. 

100
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7 Discussion 

Apart from ultimate bond strength, the bond stress also needs to be considered to 

evaluate the capability of the interface for both ultimate and serviceability limit state 

designs. As mentioned above, when the applied load increases, the shear stress in the 

region near the loaded end reaches up to the maximum value and then begins to 

decrease abruptly. The decrease of the shear stress signifies that debonding is formed 

in one region, while ascending of shear stress in the adjacent region illustrates that the 

load is being transferred there. In the majority of sample tests, it was observed that 

the debonding has initiated approximately at 60% to 65% of the ultimate applied load 

(as shown in Figure 7 (d) and Figure 9, Figure 11), depending on bond geometries. 

Therefore, the coefficient (ɤt) in Eq. (6) may be reduced by 60% to control the interface 

for both ultimate and serviceability limit state (without debonding).  
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The analytical model, Eq. (8), proposed in the recent study conducted by authors has 

been used for determining bond stress along the interface. In addition, the accuracy of 

the proposed analytical model has been compared with the model proposed by Wan 

et al. [35]. Figure 13 shows bond stress profiles at various load levels obtained from 

experimental tests, Wan’s model [35] Eq. (2), and Eq. (8) of the present study.  
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Where τ(x) is the bond stress, P is the applied load, and x = 0 corresponds to the free 

end and x = L represents the loaded end. The proposed analytical model predicts the 

nature of the stress profile at most load levels, particularly at or close to the ultimate 

load. Good correlation between the predicted maximum stress from the proposed 

model and experimental results has been obtained. Comparison of results with existing 

model [35] also shows that the proposed model is able to achieve much better 

correlation with the experimental results. Table 4 provides the configuration and 

results of the selected specimens as well as bond strength obtained from experimental 

tests and the current proposed bond strength model. Although all sample results are 

not presented in Table 4, the ratio of the predicted bond strength to the bond strength 

obtained from experimental results for all sample tests has an average value of 1.00 

with the coefficient of variation of 8.5%. It can be seen that, SR model not only 

performs significantly better than the existing model, but also high correlation has 

been obtained when SR model has been compared against the experimental test as 
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shown in Figure 12. In addition, Table 4 shows the comparison of measured effective 

bond length using strain profile with the predicted effective bond length using Eq. (3) 

in the present study.  As can be seen, superior correlation has been obtained for the 

proposed effective bond length model against the experimental results.  
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Table 4, Selected test results 

Specimen 
Codes 

Timber FRP 
Effective bond 

length 
 
 
bf/bt 

Smax 

(mm) 
τmax 
(MPa) 

Pu (kN) 

Lt 
(mm) 

bt 
(mm) 

dt 

(mm) 
tf 

(mm) 
Bf 
(mm) 

Eftf  

(Gpa.mm) 
Lf 

(mm) 
(EXP.
mm) 

(Anal. 
mm) 

(Exp.) (Anal.) 
(Anal. 
/Exp.) 

LVL 50-35-01-2 320 110 65 0.117 35 27 50 50 134 0.32 0.305 1.69 4.92 4.37 0.89 

LVL 100-35-01-1 320 110 65 0.117 35 27 100 100 134 0.32 0.412 2.20 6.35 6.18 0.97 

LVL 150-35-01-2 320 110 65 0.117 35 27 150 129 134 0.32 0.920 3.42 7.27 7.57 1.04 

LVL 200-35-01-4 320 110 65 0.117 35 27 200 136 134 0.32 0.884 4.67 8.75 8.74 1.00 

LVL 50-45-01-3 320 110 65 0.117 45 27 50 50 148 0.41 0.202 1.36 6.09 6.37 1.05 

LVL 100-45-01-1 320 110 65 0.117 45 27 100 100 148 0.41 0.640 3.30 9.07 9.01 0.99 

LVL 150-45-01-3 320 110 65 0.117 45 27 150 146 148 0.41 0.725 2.62 10.15 11.04 1.09 

LVL 200-45-01-3 320 110 65 0.117 45 27 200 182 148 0.41 1.760 3.30 11.13 12.75 1.14 

LVL 50-55-01-1 320 110 65 0.117 55 27 50 50 163 0.50 0.334 2.63 8.05 8.61 1.07 

LVL 100-55-01-2 320 110 65 0.117 55 27 100 100 163 0.50 0.655 3.47 12.50 12.18 0.97 

LVL 150-55-01-1 320 110 65 0.117 55 27 150 169 163 0.50 0.736 2.98 14.48 14.92 1.03 

LVL 200-55-01-3 320 110 65 0.117 55 27 200 180 163 0.50 1.296 4.37 15.74 17.22 1.09 

LVL 250-55-01-1 370 110 65 0.117 55 27 250 190 163 0.50 1.227 1.52 15.32 19.26 1.26 

LVL 50-35-02-1 320 110 65 0.234 35 54 50 50 143 0.32 0.186 3.04 7.00 6.18 0.88 

LVL 100-35-02-3 320 110 65 0.234 35 54 100 100 143 0.32 0.548 5.59 8.45 8.74 1.04 

LVL 150-35-02-2 320 110 65 0.234 35 54 150 140 143 0.32 0.845 4.85 10.99 10.71 0.97 

LVL 200-35-02-4 320 110 65 0.234 35 54 200 149 143 0.32 0.749 3.71 12.32 12.37 1.00 

LVL 150-45-02-3 320 110 65 0.234 45 54 150 151 158 0.41 0.818 3.91 16.75 15.61 0.93 

LVL 150-55-02-1 320 110 65 0.234 55 54 150 180 174 0.50 0.553 3.76 16.72 16.88 1.01 

LVL 250-55-02-3 370 110 65 0.234 55 54 250 194 174 0.50 0.966 5.56 20.40 21.79 1.07 

H 50-45-01-3 320 110 35 0.117 45 27 50 50 164 0.41 0.340 2.86 5.92 6.29 1.06 

H 100-45-01-1 320 110 35 0.117 45 27 100 100 164 0.41 0.595 3.35 8.83 8.90 1.01 

H 150-45-01-4 320 110 35 0.117 45 27 150 157 164 0.41 0.879 3.88 9.91 10.90 1.10 

H 200-45-01-4 320 110 35 0.117 45 27 200 191 164 0.41 1.210 2.01 12.03 12.59 1.05 

H 50-45-02-2 320 110 35 0.234 45 54 50 50 175 0.41 0.192 4.56 9.16 8.90 0.97 

H 100-45-02-1 320 110 35 0.234 45 54 100 100 175 0.41 0.602 5.67 11.56 12.59 1.09 

H 150-45-02-3 320 110 35 0.234 45 54 150 170 175 0.41 0.877 7.24 16.13 15.42 0.96 

H 200-45-02-4 320 110 35 0.234 45 54 200 185 175 0.41 0.963 5.21 16.05 17.80 1.11 
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[Insert Figure 13 here] 

 

 

8 Conclusion 

This paper presents the application of a stepwise regression analysis for determining 

the key parameters affecting bond strength when the FRP plates are externally 

attached to timber and evaluate their influence on the bond strength. The proposed 

stepwise regression model is based on 136 experimental results of FRP-to-timber 

single shear pull out tests. 

A novel and simple predictive bond strength model with a higher accuracy for FRP-to-

timber joints has been established covering all parameters affecting the interface. The 

proposed model is a function of bond stiffness, timber tensile strength, FRP to timber 

width ratio and bond length. A comparative analysis of the results of the experimental 

pull-out tests results and those predicted from the analytical model demonstrated the 

capability of the model in prediction of the ultimate load.  

Results of the proposed model has been assessed by undertaking a comparative 

analysis with existing model from the literature to verify the capability of the new 

model. It is noted that the coefficient of determination (R2) of the stepwise regression 
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analysis signifies that the SR model is even more enhanced and is a more accurate 

predictor than the existing bond strength model. 

The scope of the present study is limited to results of experimental tests; however, the 

derived model is considered to be generally applicable to externally bonded FRP-to-

timber joints. Additional research will be needed to further verify the proposed model 

for more general applications and also to address long-term response issues. This 

study is a part of an ongoing research project aiming to scrutinise all potential 

parameters affecting bond strength, particularly when FRP is bonded to timber. Due to 

the lack of studies available in the literature, the future research includes numerical 

investigation which is one of the most neglected fields of research especially in the 

area of FRP-to-timber interface. 
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