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Abstract: We theoretically investigate lasing due to stimulated Brillouin scattering in integrated
ring resonators. We give analytic expressions and numerical calculations for the lasing threshold
for rings in the presence of for both linear and nonlinear loss. We demonstrate the operation
of the ring in the different regimes of amplification and lasing, and show how these regimes
depend on the coupling to the ring and on the nonlinear parameters. In the case of nonlinear
losses, we find that there can exist an upper threshold to the lasing regime where the losses are
dominated by free-carrier absorption. We also find that nonlinear losses can inhibit Brillouin
lasing entirely for certain ranges of coupling parameters, and we show how the correct ranges
of coupling parameters can be calculated and optimized for the design of integrated Brillouin
lasers.
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1. Introduction

Stimulated Brillouin Scattering (SBS) is a strong nonlinear interaction between optical fields
whereby energy is transferred between closely-spaced spectral lines by means of hypersonic
waves [1]. SBS is important in several photonics applications, including the fast processing of
radio-frequency signals [2], sensing [3], and the generation of ultra-narrow-linewidth sources
[4, 5]. Of particular interest is the use of SBS in integrated platforms, which give significant
advantages in terms of stability and device size [6]. Although the SBS gain can be significantly
enhanced in nanowire waveguides [7], achieving useful levels of Stokes amplification still
requires relatively high pump powers and waveguide lengths on the order of centimeters
[8, 9]. One way of circumventing these limitations is to use high quality-factor integrated
ring resonators, where the build-up of power in on-resonance pump and Stokes waves can
dramatically improve input power requirements. Ring resonators are commonly employed to
enhance nonlinear effects in a range of photonics applications [10–12], and recent experiments
have demonstrated SBS in hybrid silicon-chalcogenide racetrack structures [13] and Whispering
Gallery Mode (WGM) resonators [14]. The combination of a high-Q cavity and gain also
opens up the possibility of SBS lasing, which is essential for many of the proposed SBS-based
applications [15,16]; SBS lasing has thus far been demonstrated in fibre ring structures [17,18],
and integrated ring resonators have recently been proposed both for SBS-based amplification
[19] and for lasing [20, 21].
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Despite these recent studies, a quantitative picture of the physics of SBS lasing in integrated
ring resonators, including such important effects as nonlinear losses, does not yet exist in the
literature. Although several papers give expressions for the lasing threshold for the closely-
related case of Raman scattering (see for example [22, 23]) and these expressions have been
used (though without a formal derivation) in SBS lasing experiments [13], it is not known in
which situations these formulas can be correctly applied, and a full derivation of the lasing
threshold for SBS in integrated ring structures is currently lacking. As a result is sometimes not
clear as to exactly when lasing occurs for SBS, as distinct from regimes where the Stokes signal
is strongly amplified. This distinction is particularly problematic in semiconductor platforms, in
which nonlinear losses, in particular Free-Carrier Absorption (FCA), can significantly affect the
physics of the SBS interaction and will strongly affect the achievable SBS gain [24]. In the case
of straight waveguides, nonlinear losses lead to the existence of an optimal waveguide length
for SBS gain, as well as a maximum amplification of the Stokes signal; it is not immediately
clear how these effects carry over to ring resonators, and how these losses affect the transition
from SBS amplification to SBS lasing.

Here we theoretically and numerically investigate SBS lasing in ring resonators in the pres-
ence of linear and nonlinear optical loss. This analysis provides a better understanding of
the lasing mechanism in rings with materials such as silicon or germanium in which higher
order optical losses are non-negligible. We adopt the formalism outlined in [19], in which
techniques were given for the computation of SBS in the amplification regime. Building on
that work, we here study the different regimes of operation of the ring while focussing on the
transition between amplification and lasing, and compute the threshold powers for this transition
in the presence of nonlinear losses. We derive analytic expressions for the lasing threshold and
investigate the effect of nonlinear losses. This derivation follows that of [25], in which the
threshold is derived without noise initiation of the Stokes. While the derivation of the lasing
threshold follows from a small-signal approximation, we also provide and analyse a full model
including the large signal terms, and compute the Stokes amplification and the Stokes output
power for realistic ring resonator parameters. These results can therefore be used for resonator
design and for comparison with experimental results. We also discuss the physics of SBS lasing
in rings: in rings with nonlinear loss we show that there exists a finite power interval over which
lasing occurs; we compute this interval and provide design parameters that can be used for SBS-
based ring resonator structures. Our study is in particular useful for realizing SBS lasing in chip
scale devices. It provides sufficient information about optimum cavity inputs/outputs as well as
the required physical parameters, optical and acoustic properties in a ring configuration to be
used in designing integrated racetrack resonators for SBS lasing.

2. Geometry and numerical computations

Following [19], we consider the geometry of a ring resonator sketched in Fig. 1. A ring of length
L is coupled to a single straight waveguide via a coupling region; for the sake of simplicity
we assume that the SBS gain occurs only in the ring section and not in the coupler. Here we
consider the backward SBS process, in which input pump Pin

p and Stokes Pin
s contra-propagate;

the forward SBS process can be handled using the same formalism, appropriately modified to
account for the different propagation direction. This modification however, does not lead to
a change in the magnitude of resultant threshold powers or in output Stokes demonstrated in
this paper, assuming identical gain, loss coefficients, coupling and physical properties (i.e. ring
length) in the Forward SBS process to those of backward SBS.

Throughout this investigation we are assuming that the pump and the Stokes are aligned
to two cavity modes, and that the free-spectral-range (FSR) of the ring is equal to an integer
multiple of the Brillouin shift. Resonant coupling Brillouin lasers are in particular efficient —
in terms of the required pump power to achieve lasing — for chip scale ring resonators in
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which pump and Stokes frequencies are designed to lie on close resonances of the cavity. In
practice nonlinear dispersion (Kerr, free-carrier dispersion, and frequency pulling due the phase
shift arising from the SBS process itself) as well as thermal effects can result in a change in
the FSR of the cavity, however for typical power levels (as discussed in [26]) such changes
are far smaller than the SBS linewidth and can be neglected. The absolute values of the cavity
mode frequencies are however expected to shift markedly. We therefore assume that active
stabilisation of the pump is used to track the frequency of the cavity mode; the shift of the
Stokes frequency will then automatically continue to lie on-resonance. Note that this implicitly
assumes that the variation in pump power is slow enough to accommodate thermal effects;
throughout this paper we therefore operate in the quasi-CW regime, in which it is assumed that
the pulse lengths are much longer than the phonon lifetime — in most platforms this is on the
order of 10 ns. A study of full dynamic response, including the stability, of these devices we
leave to future investigations.

The powers in the pump and Stokes within the ring are then governed by the equations [24]

dPp

dz
= −(α + βPp + γP2

p )Pp − (2β + 4γPp + γPs + Γ)PpPs , (1)

dPs

dz
= (α + βPs + γP2

s )Ps + (2β + 4γPs + γPp − Γ)PpPs , (2)

where Pp and Ps are the circulating pump and Stokes powers, respectively; α, β and γ are the
linear, TPA and FCA-induced loss coefficients respectively, and Γ is the SBS gain expressed in
units of W−1m−1. We also note that pump and Stokes powers take positive values in our model,
as opposed to the formalism where counter-propagating waves have negative powers [24].
We have assumed here also that both pump and Stokes are in the same optical mode, and
so the nonlinear coefficients are identical in both equations; this is realistic given the close
spectral spacing of pump and Stokes for the SBS interaction, but could be generalized at
the expense of complicating the formulation. Furthermore, in Eqs. (1) and (2) we have not
considered noise, as arising from spontaneous emission or from thermal phonons. As a result,
this model does not allow noise-related predictions, such as the linewidth in the lasing regime.
The focus of this work is to study the dependence of the lasing threshold on the various system
parameters including coupling, nonlinear loss and pump power. A corresponding study of the
noise properties, beginning from the coupled amplitude equations, is beyond the scope of this
current work.

On resonance, the values of the pump power at the beginning (z = 0) and at the end (z = L)
of the ring segment are related to the input pump power by [19]

Pin
p =

1

|κ |2
(√

Pp(0) − |τ |
√

Pp(L)

)2
, (3)

where κ and τ are the complex envelope coupling coefficients as depicted in Fig. 1, related by
|τ |2 + |κ |2 = 1 [25,27]. Similarly, the values of the Stokes are related via the coupling region by

Pin
s =

1

|κ |2
(√

Ps(L) − |τ |√Ps(0)

)2
. (4)

In writing Eqs. (3) and (4) we have implicitly assumed the coupling coefficients κ and τ are
the same for both pump and Stokes and do not change with frequency over very small (GHz)
ranges studied here. The system of Eqs. (1)-(4) encapsulates the physics of the ring operation:
the input pump is transferred to the ring at z = 0, experiences both linear and nonlinear loss
as well as loss to the other mode, and then is partially transferred to the output. The Stokes on
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Fig. 1. Schematic of a ring resonator in vicinity of a straight coupler.
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Fig. 2. Output Stokes power as a function of input pump power at the lasing region and
resonant condition in the presence of (a) linear losses and (b) both linear and nonlinear
losses. In (a) Γ = 500 W−1m−1, R = 10−11 and κ = 0.31. In (b) αL = 0.2;
γ = 1.8 × 105 W−2m−1, β = 10 W−1m−1, κ = 0.16 and Γ = 4000 W−1m−1. The
length L = 10.879 mm corresponds a ring resonator with free spectral range equal to a
Brillouin frequency shift of 10 GHz.
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the other hand is input at z = L and experiences gain with decreasing z, as well as linear and
nonlinear loss.

Figure 2 shows the output Stokes power resulting from the numerical solution of Eq. (1)-(4),
for a ring resonator with (a) linear losses only, and (b) with both linear and nonlinear losses. To
solve these equations we apply the numerical approach presented in [19] in which pump and
Stokes are computed using an iterative shooting technique, by which the differential equations
are solved at each step of the iteration using a Runge-Kutta method, and the mismatch in the
boundary conditions becomes a measure of the closeness to the true solution. In Fig. 2(a) the
output Stokes is computed for a ring with Γ= 500 W−1m−1 keeping the coupling constant fixed
at κ = 0.31 and changing the values of αL in order to highlight the impact of the linear loss. A
clear threshold pump power can be seen, denoted by a sharp increase in Stokes power; the value
of this threshold increases with the linear loss. The effect of nonlinear losses can be seen in the
example shown in Fig. 2(b). Here we have assumed that αL = 0.2; γ = 1.8 × 105 W−2m−1,
L = 10.879 mm, Γ = 4000 W−1m−1, which are close to experimentally-realisable values for
a silicon nanophotonic waveguide, and we have neglected TPA (β = 0 W−1m−1), which has
a negligible direct effect on SBS in silicon. The Stokes power is depicted as a function of
input pump power for different values of the ratio between input pump and Stokes, denoted by
R = Pin

s /P
in
p . In order to have an idea for the order of magnitude of R in the lasing regime, we

can assume that only a single Stokes photon is initializing the lasing. Then

R =
Pin

s

Pin
p
= vg

h fs

Pin
p
, (5)

where vg is the optical group velocity and h fs is the Stokes photon energy (h Plank’s constant
and fs Stokes frequency). As in the linear case (Fig. 2(b)), the Stokes increases rapidly with the
input pump beyond threshold. This trend however is reversed after the Stokes power rises to a
maximum value; thereafter, the Stokes power decreases as nonlinear losses begin to dominate.
For smaller power ratios R, the Stokes falls abruptly to negligible values once a second, higher
threshold is crossed. For higher power ratios, we see that there is no distinct threshold, instead
we find that with increasing pump power the amplification of the Stokes signal decreases
steadily.

Both thresholds are associated with transitions between lasing and amplification regimes. In
the amplification regime the output Stokes is proportional to the input Stokes signal, with gain
arising from SBS-induced transfer of energy from the pump. In the lasing regime an infinitely
small Stokes signal can generate a finite Stokes output — in a real device, this input Stokes
would arise from quantum fluctuations. In this situation the Stokes signal is necessarily far
smaller than the pump, and so it is useful to consider the Small Signal Approximation (SSA);
under this approximation Eqs. (1) and (2) take the simpler form of [24]

dPp(z)

dz
= −

(
α + βPp(z) + γP2

p (z)

)
Pp(z), (6)

dPs(z)
dz

=

(
α + γP2

p (z) − (Γ − 2β)Pp(z)

)
Ps(z). (7)

The lasing threshold corresponds to input pump powers for which the Stokes output, when
computed using the SSA, tends to infinity. This divergence means that the final value of the
Stokes signal, as arising from the full equations (1) and (2), cannot in principle depend on the
strength of an initial small signal.
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3. Thresholds for rings with linear losses only

We can gain insight into the values at which the thresholds occur by considering the loss and
gain mechanisms that act on the Stokes signal within the ring. There are different regimes of
behaviour, depending on the value of the round-trip envelope gain G of the Stokes, defined as

G =

√
Ps (0)
Ps (L)

. (8)

The different modes of operation are reflected in the overall change of the Stokes signal as it
passes through the entire device. The net Stokes amplification through the bus, defined as the
ratio of output Stokes power from the bus to the input Stokes power, can be expressed as a
function of G by [19]:

A :=
Pout

s

Pin
s
=

∣∣∣∣∣∣
|τ | − G

1 − |τ |G
∣∣∣∣∣∣
2

, (9)

For a ring with linear losses we find three different regimes of operation, depending on the
value of G in the SSA. Figure 3(a) shows these regimes schematically as a function of input
pump power. For G < 1, the output Stokes is attenuated (A < 1) because the power conversion
from SBS is still too weak to achieve any Stokes enhancement. For values 1 < G < 1/|τ |, the
SBS gain mechanism is strong enough to compensate the optical losses in the cavity, but is not
strong enough for lasing to occur. This is the amplification region, in which the output Stokes
from the ring will be proportional to the input Stokes, with amplification factor A > 1 taking
a finite value greater than 1. The amplification region has been explored in detail in [19]. As
G approaches 1/|τ | the net Stokes amplification tends towards infinity, so that a finite Stokes
value is attained even for a vanishingly small input Stokes signal. The input pump power for
which this occurs is the lasing threshold. If we include the impact of pump depletion (thereby
abandoning the SSA) by solving Eqs. (1) and (2), we find that G remains below 1/|τ | for all
pump powers, and therefore from Eq. (9) the Stokes amplification saturates (as shown by the
solid line in Fig. 3(a)). However to compute the lasing threshold the SSA is sufficient: a general
expression for G in the case of the SSA can be obtained by writing Eq. (7) as dPs

dz
= −g(z)Ps,

where g(z) =
(
α + γP2

p (z) − (Γ − 2β)Pp(z)
)
, so that

G = exp

[
1
2

∫ L

0
g(z)dz

]
. (10)

Combining Eq. (9) and Eq. (10), the most general condition for the lasing threshold is then

|τ | exp

[
1
2

∫ L

0
g(z)dz

]
= 1. (11)

Figure 3(b) compares the Stokes amplification A predicted by the full model to the
amplification computed with the SSA using the parameters illustrated in Fig. 2(a). From the
figure it can be seen that the lasing threshold is a monotonic function of the linear loss and
shifts to larger pump powers as αL increases and more power is required to compensate the
loss. The maximum amplification however does not significantly vary with loss and is mainly a
function of coupling coefficients and the power ratio R [19].

An analytic expression for the small signal G can be derived in the linear case; by solving
Eq. (6) for β = 0 and γ = 0, then substituting into Eq. (7) [19], we find that:

G = exp
[
− αL

2
+
Γ

2α
Pp(0)(1 − e−αL )

]
. (12)
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Fig. 3. (a) Schematic variation of the round-trip gain in a ring resonator with linear loss
within the SSA and full model. (b) The corresponding Stokes total amplification of a ring
resonator with the parameters described in Fig. 2(a). The solid circle lines show A for the
small signal model.

Now by substituting G into Eq. (11) and using Eq. (3), the lasing threshold is given by

Pin,th
p =

(
αL − 2 ln |τ |

)
(1 − e−αL )

α

Γ

(1 − |τ |e(−αL/2) )2

|κ |2 , (13)

Figure 4(a) shows the contours of normalized pump power Pin,th
p

Γ
α as a function of αL and

|κ |. We have assume that αL varies between 0 and 1; the reason for this is that for L = 1 cm —
which is corresponding to a Brillouin frequency of about 10 GHz in conventional waveguides
— then α varies between 0 dBCm−1 to ∼ 4.35 dBCm−1 as a typical range for the linear loss
coefficient. While Fig. 4(a) takes into account the SBS lasing, we note that very similar contours
are also obtained for the required Stokes power to initialize Stokes amplification [19]. From the
figure the threshold power increases with αL as additional power is needed to overcome the
losses in the ring. Similarly, the threshold power decreases with the SBS gain (because a higher
gain will compensate losses at lower power levels), however achieving lasing is feasible at any
value of Γ. We also note that, for a given value of αL, the threshold experiences a minimum
as a function of the coupling coefficient |κ | at the critical coupling point. Below and above this
point the ring is under/over-coupled and the total pump power in the ring will be reduced in
comparison to the critical point.

In practice, one has to measure the optical loss and coupling parameters of a ring to be able
to determine threshold by Eq. (13). While there are methods to evaluate these quantities [28],
Eq. (13) can also be expressed in terms of the optical quality factor [22,23]. The loaded Q factor
of the ring can be calculated via (see the Appendix)

QL =

√
2πLneff

2λ

√
1 + |τ |2e−αL

1 − |τ |e− αL
2

, (14)

where neff is the effective index of the ring. Now assuming αL � 1 and small |κ |, Eq. (13)
simplifies to

Pin,th
p =

π2n2
eff

λ2

L
Γ

Qc
1

Q3
L

, (15)
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Fig. 4. (a) Contours of the lasing threshold as a function of αL and the coupling coefficient.
The dashed line shows the critical coupling. (b) The threshold difference ΔPin,th

p between
the power obtained by Eq. (13) with the threshold estimated from 15, plotted for a range
of the coupling coefficient |κ | and for different values of αL. ΔPin,th

p is normalized to the
exact theoretical value of the threshold (i.e. Eq. (13)) and is plotted in percentage.

where Qc is the Q factor due to the coupling which is given by

Qc =

√
2πLneff

2λ

√
1 + τ2

1 − τ . (16)

Equation (15) has also been derived in [22] for Raman sources: it shows the inverse square
dependency of the threshold power to the loaded Q-factor in the case where QL = Qc. Figure
4(b) shows the difference between the threshold results obtained by Eq. (13) and Eq. (15) for
different values of αL. Here, ΔPin,th

p = Pin,th
p [Eq. (13)]−Pin,th

p [Eq. (15)] which is normalized to

Pin,th
p [Eq. (13)]. From the figure, there is a very good agreement between the threshold values

for small values of αL and |κ | because Eq. (15) is obtained based on these assumptions. ΔPin,th
p

then grows for larger loss and coupling coefficients.

4. Thresholds for rings with both linear and nonlinear losses

We have seen in Section 2 that the round-trip gain G is greatly affected by the degree of
optical loss in the ring. Depending on the strength of nonlinear loss relative to the linear loss,
three different scenarios can be attained for the round trip gain. These situations are shown
schematically in Fig. 5(a). The first possibility is that the nonlinear loss is negligible at weak
pump powers, leading to a similar threshold to that of the linear case, but dominates as the
pump power increases. Within the SSA there are two lasing thresholds (pink dashed lines): the
SBS gain mainly compensates the linear loss to reach the lower lasing threshold, while for
higher powers the nonlinear loss term γP2

p grows quadratically with the pump power until it is
comparable with α in Eq. (7), upon which the second threshold is reached. This leads to a finite
lasing interval for the ring; while within the SSA the Stokes power tends to infinity on the edges
of this interval (and is not physically meaningful within the interval itself), in the full model G
is prevented by the loss terms from reaching the line 1/|τ | and hence the output Stokes power
remains finite. This behaviour is shown by numerical calculations of a case study in Fig. 5(b),
in which the lasing interval is clearly seen as the flat region for the output Stokes signal. The
Stokes is shown for different values of R; while this formally represents an input Stokes seed,
this can be shown to be equivalent to a distributed initiation via spontaneous emission [29].
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Fig. 5. (a) Schematic variation of the round-trip gain in a ring resonator with nonlinear loss
in three different operating regimes shown in pink (with two lasing thresholds), green (with
single threshold) and blue (no lasing). Dashed lines show the result of the small sig-
nal model and the solid lines are expected in the full model. (b) An example of the
Stokes output power for a ring with two lasing thresholds. The black dotted lines shows
the SSA. The results of the full model are also shown for different values of the power
ratio R. for a ring with the SBS gain and loss parameters described in Fig. 2(b). (c) The
Stokes output power for a ring with parameters which leads to a single lasing threshold.
Γ = 5970 W−1m−1; |κ | = 0.24; α = 40.9 m−1 and γ = 1.8 × 105 W−2m−1. (d) The
Stokes output power in a ring with parameters that leads to only Stokes amplification.
Γ= 5700 W−1m−1 and the loss and coupling parameters are as in (c).
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In the second scenario, the effect of nonlinear loss grows such that it is comparable with the
linear loss at the first threshold, and both effects combine to compensate the gain for a single
power (green lines in Fig. 5(a)). In this situation lasing will only formally occur for a single
input power; beyond this point nonlinear effects will dominate the behaviour. In this situation
certain signatures of lasing, such as a linear increase beyond threshold, will not appear — as
shown in Fig. 5(c) the Stokes power remains flat at the threshold and decreases thereafter.

In the third scenario (Fig. 5(a), blue line) the value of the round trip gain is clamped by the
nonlinear terms to values below the line 1/|τ |. In this case the nonlinear losses dominate to
the extent that lasing is entirely forbidden. Amplification of the Stokes signal is still however
possible if G takes values larger than unity. This is shown in Fig. 5(d), in which the output
Stokes grows in proportion to the input Stokes.

Analytic expressions

We now derive expressions for the round trip gain G, and threshold powers, for the case of rings
having both linear and nonlinear losses. As in the linear case, the starting point for threshold
calculations is the SSA. In the following we neglect the TPA coefficient β as this loss term
is small compared to FCA loss in technologically important semiconductors such as silicon.

Following the notation in [19] we define a dimensionless parameter V = Pp(0)
√

γ
α which is a

normalised measure of the power in the ring. The governing equation for the pump (6) can be
solved analytically; the solution is

Pp(z) =
√
α

γ

V√
(1 + V 2)e2αz − V 2

. (17)

Now by substituting into Eq. (7), G is given by

G =

(
1

V 2 + 1 − V 2e−2αL

) 1
4

exp

[
−αL

2
− F arctan

(
V − V

√
(V 2 + 1)e2αL − V 2

V 2 +
√

(V 2 + 1)e2αL − V 2

)]
, (18)

where F = Γ
2
√
αγ

is the SBS nonlinear figure of merit [24].

Unlike Eq. (12), G is now a complicated function of three parameters V , αL and F . To
evaluate the lasing threshold, we substitute Eq. (18) into Eq. (10) and then use Newton’s
method to determine the solutions of Eq. (11). Figure 6 shows the contours of Vmin and Vmax,
corresponding to the first and second lasing threshold respectively, as functions of the universal
ring parameters αL and κ, for typical SBS Figures of Merit F = 1.1 ((a),(b)) and F = 1.5
((c),(d)). It can be seen in Figs. 6(a) and 6(b) that for a constant αL, Vmin increases while Vmax

decreases with the coupling coefficient |κ |. This can be understood from the interpretation of
Vmin,max as measuring the minimum/maximum powers permissible for lasing in the ring: as the
coupling increases toward the critical coupling point, the overall power in the ring increases,
making it easier to achieve lasing if only linear losses are dominant, but harder if nonlinear
losses are significant. As we approach the amplification region Vmin and Vmax become closer:
the lasing power interval becomes smaller until there only exists a single threshold. The interval
is widest in the weakly-coupled regime; this is therefore the most promising configuration for
SBS lasing in the presence of nonlinear loss. In addition, comparing the contours of V th at
F = 1.1 with the ones in F = 1.5 reveals that SBS lasing can be achieved across wider ranges
of αL and |κ | for larger values of F . In addition, the lasing power interval in weakly-couled
regimes is further expanded.

The quantity V th, defined as either Vmin or Vmax as required, can be used to determine the
threshold pump power required for lasing. By substituting Eq. (17) into Eq. (3), the lasing
threshold(s) can be expressed in terms of input pump power
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(a) (b)

(c) (d)

Fig. 6. Vmin and Vmax at the lasing threshold as a function of κ and αL for (a,b) F = 1.1
and (c,d) F = 1.5.

Pin,th
p =

√
α

γ

V th

√|κ |
(
1 − |τ | 4

√
1

((V th)2 + 1)e2αL − (V th)2

)
, (19)

Assuming that the physical parameters of the ring remain fixed and hence the ratio α/γ remains
constant, we see that Pin,th

p is approximately proportional to V th. For a given figure of merit, a
low ratio of α/γ leads to a smaller threshold power as well as a smaller threshold interval, as
measured in terms of the parameters of the ring. In Fig. 7 the lasing thresholds are computed
for ring resonators with F = 1.1 (Fig. 7(a) and 7(b)) and F = 1.5 (Fig. 7(c) and 7(d)).
In these examples we have assumed α/γ = 2 × 10−4 W2. It can be seen that for a given
coupling coefficient, as αL increases both upper and lower thresholds shift to higher powers
to compensate linear (for lower threshold) and nonlinear (for upper threshold) losses. We also
note that although the minimum (maximum) lasing threshold at larger values of F , becomes
smaller (larger) in weakly-coupled rings.

For a given coupling coefficient the lasing power interval is larger for larger values of F .
This is shown in Fig. 8 where F takes four different values, 1.1, 1.25, 1.5 and 1.75. As the SBS
figure of merit becomes smaller, given a constant coupling coefficient |κ |, both thresholds are
increased because additional power is required to compensate the loss. In addition the threshold
interval becomes smaller because the range of powers required to compensate both linear and
nonlinear losses in the ring decreases. As the nonlinear loss coefficient γ approaches zero, the
SBS figure of merit F grows without bound and the power required to attain the upper threshold
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(c) (d)

Fig. 7. Minimum/Maximum values of the lasing threshold in mW as a function of κ and
αL for F = 1.1 (a,b) and F = 1.5 (c,d) for α

γ = 2 × 10−4W2.

tends to infinity. While in the case of linear loss, the Stokes output steadily increases with the
input pump, in rings with nonlinear loss there exists a maximum attainable Stokes power within
the lasing threshold interval. The SSA can be used to estimate the corresponding pump power
to the maximum Stokes in the lasing regime. The general approach is that we look for the
pump power at which the round-trip gain (12) reaches its maximum within the SSA. Within this
assumption, the value of G in the lasing threshold interval exceeds 1/|τ |, and so does not have
a physical meaning (because G will be clamped by the nonlinear losses to values below 1/|τ |).
However as a first estimate this maximum can be expected to occur at a pump power close to the
true maximum value of G, because it is at this power that the overall SBS gain in the ring attains
its highest value. Figure 9(a) shows the normalized pump power corresponding to the maximum
output Stokes in the lasing regime as a function of αL and F . We note that the Stokes output
at this pump power is a function of the power ratio R as well as loss and SBS gain coefficients
which can be in general evaluated numerically by solving Eqs. (1) and (2). The white area
on left hand side of the contours is the amplification region. Figure 9(b) shows the computed
value of the maximum Stokes power for a weak input Stokes power. These calculations are
performed in the limit that the input Stokes is extremely weak (1 pW in these calculations), and
show the maximum output power that can be obtained in the lasing regime, as a consequence
of the higher-order loss terms. It can be seen that for a certain αL by increasing F the output
Stokes first starts increasing. Whether a larger figure of merit is obtained by increasing the SBS
gain or by reducing the nonlinear loss, this will lead to an increase in the round trip gain G
as it shifts toward 1/|τ |, thereby enhancing the Stokes output. At larger values of F however,
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Fig. 8. Lasing thresholds as a function of the coupling coefficient for different values of F .
αL is assumed to be 0.3 and α/γ = 2 × 10−4 W2.

nonlinear losses — including small and large signal terms in Eqs.(1) and (2) — prevent further
enhancement of G. Thus, the output Stokes does not change although a larger pump power is
required to compensate the nonlinear losses (see Fig. 9(a)).
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Fig. 9. The normalized input pump power corresponding to the maximum Stokes output
in the lasing regime for a range of αL and SBS figure of merit. |τ | is assumed to be 0.9. (b)
The maximum Stokes output in mW. The initial Stokes is assumed to be 1 pW.

5. Conclusion

We have investigated the physics of SBS lasing in integrated ring resonators. We provided
numerical and analytic tools to evaluate the lasing threshold in rings with different SBS gains,
losses and coupling properties. Moreover, useful expressions were derived and examined for
the lasing threshold, and we have clarified the discussion of the distinction between lasing
and amplification regimes in the case of SBS. Interestingly we found that nonlinear losses
result in a finite lasing power interval, the size of which depends on the innate properties of
the ring — if the properties lie outside this range then lasing will not be possible. This has
consequences for experimental work that aims to design integrated structures for SBS-based
lasers and applications.
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Appendix: Derivation of the optical quality factor

We include here a brief derivation of the expression in Eq. (14) for the Quality factor, because
it helps clarify the assumptions we have made. The pump transmission Tp of a ring resonator is
given by [19]

Tp =
( |τ | − e− αL

2 )2 + |τ |e− αL
2 (Δθ2 )2

(1 − |τ |e− αL
2 )2 + |τ |e− αL

2 (Δθ2 )2
, (20)

where Δθ = neffΔωL/C is the phase change over a single round trip, which is a function of
frequency ω, ring length L and the effective index neff (C is the speed of light). To find the full
width at half maximum (FWHM), the transmission must be equal to

Tp =
1
2

(
Tmax + Tmin

)
, (21)

where Tmax (Tmin) is the maximum (minimum) pump power transmission in the spectrum, given
by

Tmax =

( |τ | + e− αL
2

1 + |τ |e− αL
2

)2
, Tmin =

( |τ | − e− αL
2

1 − |τ |e− αL
2

)2
. (22)

The phase angle corresponding to the FWHM, ΔθFWHM can then be obtained by substituting
Eq. (21) in Eq. (20) and rearranging the equation

ΔθFWHM =
2
√

2(1 − 1|τ |e− αL
2 )√

1 + |τ |2e−αL
. (23)

Now the Q factor can be expressed as

QL =
ω0

ΔωFWHM
=

√
2πLneff

2λ

√
1+|τ |2e−αL

1−|τ |e− αL
2
,

where ΔωFWHM is the linewidth and ω0 is the pump resonance frequency.
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