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Abstract: Results from this study reveal a notable relationship between the 11 

synergistic/antagonistic performance of sewage sludge – food waste anaerobic co-digestion 12 

(AcoD) and organic loading. At the same sewage sludge content, biomethane potential (BMP) 13 

assays show an increasing specific methane yield as the content of food waste increased to the 14 

optimum organic loading of 15 kg VS/m3. Under these conditions, the specific methane yields 15 

experimentally measured in this study were considerably higher than those calculated by 16 

adding the specific methane individual co-substrates during mono-digestion. On the other hand, 17 

at above the optimum organic loading value, the antagonistic effect (i.e. lower specific methane 18 

yield compared to mono-digestion) was observed. The relationship between synergistic 19 

performance of AcoD and organic loading was also evidenced in the removal of volatile solids 20 

as well as chemical oxygen demand. Further analysis of the intermediate products show that 21 

methanogenesis was the rate limiting step during AcoD at a high organic loading value. As the 22 

organic loading increased, the digestion lag phase increased and the hydrolysis rate decreased.  23 

Keywords: Anaerobic co-digestion; synergistic effects; organic loading; sewage sludge; food 24 

waste; energy recovery. 25 

1. Introduction 26 

Sewage sludge is a solid by-product from municipal wastewater treatment. Because sewage 27 

sludge is rich in biodegradable organics and pathogenic agents, adequate treatment is necessary 28 

prior to disposal or any form of land applications (Semblante et al., 2014). Given the large 29 

amount of sewage sludge generated each day, sewage sludge management has become a major 30 

issue for the wastewater industry. Indeed, the treatment and disposal cost of sewage sludge 31 

accounts for up to 50% of the total operational budget of a typical wastewater treatment plant 32 

(WWTP) (Appels et al., 2008; Li et al., 2014). 33 

Anaerobic digestion (AD) is the most widely used technology for sewage sludge treatment. AD 34 

is a multi-stage biological process to convert organic materials to biogas and stabilised 35 

biosolids in the absence of oxygen (Mata-Alvarez et al., 2014). Biogas contains 40-60% CH4, 36 

30-40% CO2, and a trace amount of other gases such as H2S and water vapour (Chynoweth et 37 

al., 2001; Wickham et al., 2016). Given its methane content, biogas is a valuable renewable 38 

fuel, which can be used by a combined heat and power engine to generate electricity to offset 39 

part of the energy demand at the WWTP and heat which can be used by the AD process itself 40 
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(Shen et al., 2015). Stabilised biosolids is also a valuable resource and can be used for 41 

agriculture production and soil reclamation (Armstrong et al., In Press). 42 

The role of AD has become even more significant given the recent paradigm shift toward a 43 

circular economy in which sludge and organic wastes can be utilised as a renewable resource of 44 

energy and nutrients through anaerobic co-digestion (AcoD) (Mata-Alvarez et al., 2014; 45 

Nghiem et al., 2017). AcoD can utilise the infrastructure at existing WWTPs without a major 46 

capital investment (Nghiem et al., 2017). A significant increase in methane production can be 47 

achieved when the mixture of substrates has a balanced composition of carbon source, nutrients, 48 

and trace elements (Panpong et al., 2014b). The economic benefits from AcoD can be realised 49 

through gate fee revenue from organic wastes and bioenergy generation (Xie et al., 2016). In 50 

terms of environmental benefits, AcoD can divert the organic waste from the landfills and 51 

eliminate the greenhouse gas emissions at the same time (Nghiem et al., 2014; Xie et al., 2016). 52 

Other benefits include the dilution of toxic compounds, improve nutrition balance, and load 53 

increase of the biodegradable organic matter (Sosnowski et al., 2003).  54 

A range of organic wastes is available for AcoD operation. Among them, food waste is 55 

arguably the most abundant substrate that is also rich in energy (i.e. carbon) and nutrient 56 

content (Thi et al., 2016). In general, food waste consists of 10-30% readily biodegradable 57 

organic materials (Ratanatamskul & Manpetch, 2016; Zhang et al., 2016; Zhang et al., 2007). 58 

Given the high organic content of food waste, AD has been identified as an ideal solution for 59 

energy recovery from food waste. In addition to the many benefits of AcoD discussed above, 60 

there have been several reports of the synergistic effect when sewage sludge is co-digested 61 

with organic-rich substrates, particularly food waste (Fernández et al., 2005; Khairuddin et al., 62 

2015; Panpong et al., 2014a; Xie et al., 2017). This synergistic effect is defined as an increase 63 

methane yield compared to mono-digestion by per unit VS or COD input. However, data 64 

currently available in the literature are rather inconsistent. Antagonistic and neutral effects have 65 

also been observed during AcoD of sewage sludge and organic wastes. Silvestre et al. (2014) 66 

reported a decrease in methane production by more than 40% during thermophilic AcoD of 67 

sewage sludge and grease waste when the content of grease waste increased from 27 to 37% at 68 

the same organic loading. Their results demonstrate an antagonistic effect possibly due to fatty 69 

acid inhibition (Silvestre et al., 2014). In another study, Silvestre et al. (2015) did not observe 70 

any changes in the specific methane yield during mesophilic AcoD of sewage sludge and crude 71 
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glycerol at more than 1% (v/v) co-substrate addition. Given the inconsistency in the literature 72 

regarding synergistic effect during AcoD, it is hypothesised here that organic loading can play 73 

a major role in governing the specific methane yield.   74 

In practice, organic loading is a key parameter in the continuous operation of AcoD (Mata-75 

Alvarez et al., 2014). In a batch process, organic loading can be defined as the ratio of either 76 

VS or COD content over volume. In a continuous process, the retention time is taken into 77 

account and the organic loading rate (OLR) can be used instead. Mono-digestion of sewage 78 

sludge at WWTPs is usually operated at an OLR of less than 1 kg VS/(m3.d) (Nghiem et al., 79 

2017). On the other hand, given the high organic content of the co-substrate (particularly food 80 

waste), AcoD is operated at a much higher OLR value of up to 4.6 kg VS/( m3.d) (Nghiem et 81 

al., 2017; Zhang & Jahng, 2012), which may result in operational stability issues. Therefore, in 82 

terms of treatment efficiency and process stability, many dedicated efforts have been devoted 83 

to exploring the optimum organic loading for AcoD operation (Agyeman & Tao, 2014; 84 

Aramrueang et al., 2016; Li et al., 2015; Paudel et al., In Press).  85 

The aim of this study is to explore the relationship between organic loading and the synergistic 86 

effects during AcoD of sewage sludge and food waste through BMP evaluation. The specific 87 

objectives include (i) evaluating the process performance and stability from total solids (TS), 88 

VS, and soluble COD removal, (ii) determining the hydrolysis rate constant (Kh) based on the 89 

reaction kinetics, (iii) appraising the biomethane yield and the synergistic effect at various 90 

organic loadings. 91 

2. Materials and methods 92 

2.1 Substrate characterization 93 

Digestate and primary sludge samples were obtained from a full-scale WWTP in Wollongong 94 

and used as the inoculum and substrate respectively. Adult dog food from Optimum was used 95 

to simulate food waste. The Optimum dog food (beef & rice) contains mainly protein, 96 

carbohydrate, and fat. All substrates and inoculum were stored at 4 °C for less than 3 days prior 97 

to the BMP evaluation.  98 

2.2 BMP assays 99 

Food waste and sewage sludge were co-digested using a custom-built BMP system. The BMP 100 

system consisted of an array of 1000 mL volume fermentation glass bottles (Wiltronics 101 
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Research Pty Ltd) and gas collection galleries as shown in Figure 1 (Nghiem et al., 2014). Each 102 

bottle was submerged in a water bath (Model SWB20D, Ratek Instrument Pty Ltd) which 103 

constantly maintained the temperature at 35.0  0.1 C. Each setup of fermentation bottle 104 

consisted of a rubber stopper, S-shaped airlock, and soft tubes, which connect to a gas valve to 105 

the gas collection gallery and sampling valve for taking samples. The S-shaped airlock can 106 

maintain the substrates under an anaerobic condition by allowing the releasement of biogas 107 

produced in the fermentation bottle while preventing any intrusion of air into the system. The 108 

gas collector consists of a 1000 mL volume plastic cylinder and a plastic container, which both 109 

filled up with 1 M sodium hydroxide solution to ensure the gathered biomethane free from the 110 

disturbance of carbon dioxide and hydrogen sulphide.  111 

           112 

Figure 1. (a) Photograph and (b) Schematic diagram of the BMP test equipment including 113 

water bath, BMP bottle, and gas collection gallery 114 

Prior to the BMP evaluation, all the fermentation bottles were flushed with N2 for 5 min before 115 

the immediate filling of co-substrates and inoculum as introduced in section 2.1. Organic 116 

loading was calculated based on the initial VS content in each BMP bottle (Table 1). All BMP 117 

experiments were conducted in duplicate.  118 

Two BMP bottles were filled with only inoculum and used as the reference. Mono-digestion 119 

was simulated by filling the BMP bottles with inoculum and either sewage sludge or food 120 

waste. Co-digestion was simulated by filling the BMP bottles with inoculum, sewage sludge, 121 

and food waste. The active volume of all BMP bottles was 750 mL, which consisted of 450 mL 122 

of inoculum and a specified amount of substrate as noted in Table 1. When the substrate 123 

volume was less than 300 mL, Milli-Q water was added to obtain the total volume of 750 mL. 124 
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After filling with inoculum and substrates, the BMP bottles were flushed with N2 again, sealed 125 

with rubber stopper instantly, and placed in the water bath, which was maintained at 35 °C. 126 

The gas valves were then opened to allow biogas from entering to the gas collection gallery. 127 

The BMP experiments were terminated when the daily methane production during three 128 

consecutive days was less than 10 mL. All BMP bottles were mixed manually twice a day.  129 

The BMP protocol used in this study is broadly consistent with the standard procedure 130 

recommended by Holliger et al., (Holliger et al., 2016). However, it is noted that in this study, 131 

the inoculum to substrate (I/S) ratio was not constant to simulate varying organic loading at a 132 

constant reactor volume. 133 

Table 1. Operating conditions of batch experiments with 450 mL inoculum and the total 134 

volume of 750 mL. 135 

 Mono-digestion Co-digestion 

 
SS FW20 

FW30 + 

SS 
FW70 + SS 

FW110 + 

SS 

FW150 + 

SS 

Organic loading 

(kg VS/m3) 5.67 3.56 8.17 15.29 22.4 29.52 

I/S ratio  1.53:1 2.44:1 1.06:1 0.57:1 0.39:1 0.29:1 

SS: sewage sludge (300g); FW20: 20 g food waste; FW30 + SS: 30 g food waste and 150 g 136 

sewage sludge; FW70 + SS: 70 g food waste and 150 g sewage sludge; FW110 + SS: 110 g food 137 

waste and 150 g sewage sludge; FW150 + SS: 150 g food waste and 150 g sewage sludge. 138 

2.3 First order kinetics 139 

2.3.1 Biomethane production 140 

Methane productivity was calculated and the cumulative methane yield was simulated with 141 

modified Gompertz model in Eq. (1): 142 

𝑀 = 𝑃𝑒𝑥𝑝{− 𝑒𝑥𝑝 [
𝑒𝑅𝑚𝑎𝑥(𝜆−𝑡)

𝑃
+ 1]}                                                                                          (1) 143 

Where P is the maximum methane potential (mL); M is the cumulative methane production 144 

(mL); Rmax is the maximum methane production rate (mL/d); λ is the lag phase (d); e is Euler’s 145 

number (≈2.71828); and t is the time (d). 146 

2.3.2 Hydrolysis process 147 
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Kh reflects the rate of the hydrolysis stage and depends highly on the addition of co-substrate, 148 

and operating conditions (Xie et al., 2017). It can be directly calculated using the net 149 

cumulative biogas yield by applying the equation as follows: 150 

𝐿𝑛 (
𝑃−𝑀

𝑃
) = −𝐾ℎ𝑡                                                                                                                   (2) 151 

Non-linear fitting of the biomethane production based on Eq. (1) and linear regression of 152 

Ln[(P-M)/P] against time (t) based on Eq. (2) were conducted using the IBM SPSS software 153 

package (version 23.0) to determine λ and Kh, respectively. Eq. (2) is based on the assumption 154 

that hydrolysis is the limiting step and all COD was converted to methane. Thus, in this study, 155 

Kh was obtained from the initial period when the accumulation of COD has not occurred. The 156 

p-value less than 0.05 is considered statistically significant.  157 

2.4 Analytical methods 158 

Liquid sample of 1 mL was taken from each BMP bottle periodically using a 5-mL syringe. All 159 

the samples were stored at 4 °C to avoid further digestion in the samples. The total volume of 160 

these taken samples occupied less than 1.5% of the initial total volume to minimise the impact 161 

of further digestion performance in the BMP bottle. Samples were diluted to 5 mL and 10 mL 162 

respectively for the pH and total COD measurements. The dilution factor was taken into 163 

account to back calculate the actual pH value of the initial sample. After pH and total COD 164 

measurements, samples were further diluted to a total volume of 30 mL followed by 165 

centrifuging at 3750 rpm for 20 min. Then, the supernatant of 15 mL from each sample was 166 

taken and stored at 4 °C for soluble COD and total organic acid (TOA) analysis. Total and 167 

soluble COD were measured by a Hach DBR200 COD Reactor and a Hach DR/2000 168 

spectrophotometer (program number 435 COD HR) according to US-EPA Standard Method 169 

5220. Biomethane production was recorded at 10 am and 5 pm each day by reading the 170 

displacement volume in the gas collection cylinder. The detailed method for measuring 171 

methane yield was explained in Wickham et al. (2016). TS and VS were measured by 172 

following the standard method 2540G (Eaton et al., 2005) within 3 days of sample collections. 173 

TOA was conducted according to the standard distillation method 5560C (Eaton et al., 2005). 174 

2.5 Specific methane yield and removal rate 175 

Thus, the specific methane yield was calculated as: 176 

𝑌𝑠𝑝 =
(𝑌𝑠𝑢𝑏−𝑌𝑖𝑛)

𝑉𝑆𝑎𝑑𝑑𝑒𝑑
                                                                                                                           (3) 177 
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Where Ysp is the specific methane yield (mL); Ysub is the total methane production from the 178 

substrate (mL); Yin is the total methane yield from the inoculum, which was 1145 mL, and 179 

VSadded is the mass VS added from the substrate in the BMP bottle (g). 180 

The calculated methane yield from a mixture of sewage sludge and food waste could also be 181 

obtained from the specific methane yield of each individual substrate without taking into 182 

account any synergistic effect: 183 

𝑌𝑐𝑝 =
𝑉𝑆𝐹𝑊×𝑌𝐹𝑊+𝑉𝑆𝑆𝑆×𝑌𝑆𝑆

𝑉𝑆𝐹𝑊+𝑉𝑆𝑆𝑆
                                                                                                           (4) 184 

Where Ycp is the calculated methane yield (mL methane/g VSadded); VSFW is the VS added from 185 

the food waste in the co-digestion BMP bottles (g); YFW is the specific methane yield of mono-186 

digestion of 20 g food waste (mL methane/g VSadded); VSSS is the VS added from the sewage 187 

sludge in the co-digestion bottles; and YSS is the specific methane yield of mono-digestion of 188 

sewage sludge (mL methane/g VSadded).  189 

The removal rate can be calculated using the following equation (Xie et al., 2017): 190 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 = 100% ×  (1 −
𝐶𝐶𝑜,𝐸𝑛𝑑−𝐶𝐼𝑛,𝐸𝑛𝑑

𝐶𝐶𝑜,𝐼𝑛𝑖−𝐶𝐼𝑛,𝐸𝑛𝑑
)                                                                              (5) 191 

Where 𝐶𝐶𝑜,𝐸𝑛𝑑 is the concentration of the substrates in the BMP bottles at the end of the 192 

experiment; 𝐶𝐼𝑛,𝐸𝑛𝑑 is the concentration of inoculum in controls at the ending point; 𝐶𝐶𝑜,𝐼𝑛𝑖 193 

refers to the initial concentration in the co-digestion bottles.  194 

3. Results and discussion 195 

3.1 Substrate characterization 196 

Table 2. Key properties of inoculum, primary sludge, and food waste. 197 

  Inoculum  Primary Sludge Food Waste 

TS (%) 2.18 ± 0.01 1.91 ± 0.26 19.69 ± 1.05 

VS (%) 1.45 ± 0.03 1.42 ± 0.19 13.34 ± 2.90 

VS/TS (%) 66.52 74.14 67.73 

pH 7.28 ± 0.01 5.80 ± 0.07 6.44 ± 0.01 

Total COD (mg/kg) 16,100 ± 950 21,300 ± 1350 798,000 ± 38,184 

Soluble COD (mg/kg) 1,120 ± 66 1,800 ± 114 93,000 ± 2,828 

 198 
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Food waste exhibited distinctive properties compared to sewage sludge in terms of pH, COD 199 

and TS/VS (Table 2). Although the VS/TS ratio of food waste was comparable to that of 200 

sewage sludge, the VS content of food waste was approximately 10 times higher than that of 201 

primary sludge. Most notably, the soluble COD of food waste was almost 40 times higher than 202 

that of primary sludge. The results suggest that much of the organic content of food waste is 203 

readily biodegradable. The inoculum showed a neutral pH. On the other hand, sewage sludge 204 

was slightly acidic, indicating some initial hydrolysis of sewage sludge (Wickham et al., 2016; 205 

Xie et al., 2017). Food waste was also slightly acidic because of the presence of mainly short-206 

chain acids (Beck-Friis et al., 2001; Sundberg et al., 2004). 207 

3.2 Effects of organic loading on specific methane yields  208 

Figure 2 shows cumulative methane yield from each BMP test as a function of time and the 209 

influence of organic loading on specific methane yields. Lag phase can be observed at high 210 

organic loading. It is also apparent that duration of the observed lag phase increased as the 211 

organic loading increased. In addition, there appears to be an optimum organic loading at 212 

approximately 15 kg VS/m3, corresponding to the co-digestion of 70 g of food waste and 150 g 213 

of sewage sludge. At above this value, organic overloading occurred, evidenced by excessive 214 

lag time and insignificant specific methane yields (Figure 2).  215 
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Figure 2. (a) Cumulative methane yield as a function of time and (b) Specific methane yield at 217 

day 48 over various organic loadings. SS: sewage sludge (300g); FW20: 20 g food waste; FW30 218 

+ SS: 30 g food waste and 150 g sewage sludge; FW70 + SS: 70 g food waste and 150 g 219 

sewage sludge; FW110 + SS: 110 g food waste and 150 g sewage sludge; FW150 + SS: 150 g 220 

food waste and 150 g sewage sludge. 221 
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Results presented in Figure 2 also show clear evidence of the synergistic effect of co-digestion. 222 

Notably higher specific methane yield from the co-digestion between food waste and sewage 223 

sludge at organic loadings of 8 and 15 kg VS/m3, corresponding to FW30 + SS and FW70 + SS, 224 

can be seen in Figure 2 compared to mono-digestion of only food waste. The total methane 225 

production for 30 g and 70 g food waste co-digestion bottles were 3990 mL and 7850 mL, 226 

respectively. By comparison, the total methane production from mono-digestion of sewage 227 

sludge and food waste were 1050 mL and 1470 mL. After normalising by the amount of VS in 228 

each BMP test, the specific methane yield increased as the organic loading increased up to the 229 

optimum value of 15 kg VS/m3. These results demonstrate the dependence of the synergistic 230 

effect of co-digestion on organic loading. 231 

Table 3. Measured and calculated specific methane yield (mL methane/g VSadded) at various 232 

organic loadings. 233 

 

Mono-digestion Co-digestion 

SS FW20 FW30 + SS FW70 + SS FW110 + SS FW150 + SS 

Organic loading 

(kg VS/m3) 
5.67 3.56 8.17 15.29 22.4 29.52 

Measured specific 

methane yield 
246.5 575.4 651.5 684.5 111.5 91.4 

Calculated specific 

methane yield 
246.5 575.4 461.3 514.4 533.8 543.8 

SS: sewage sludge (300g); FW20: 20 g food waste; FW30 + SS: 30 g food waste and 150 g sewage 234 

sludge; FW70 + SS: 70 g food waste and 150 g sewage sludge; FW110 + SS: 110 g food waste and 150 g 235 

sewage sludge; FW150 + SS: 150 g food waste and 150 g sewage sludge. 236 

Further evidence of the synergistic effect of food waste and sewage sludge co-digestion as well 237 

as the dependence of the synergistic effect of co-digestion on organic loading can also be seen 238 

in Table 3. The specific methane yield of co-digestion between sewage sludge with either 30 or 239 

70 g experimentally obtained in this study was 30-40% higher than the calculated value from 240 

mono-digestion of each individual substrate by ignoring the synergistic effect (Eq. 4). Organic 241 

loading is a major factor under these experimental circumstances. It is noted that I/S ratio and 242 

pH may also impact the specific methane yields (Hashimoto, 1989; Jayaraj et al., 2014). By 243 

contrast, antagonistic effect was observed for 110 g and 150 g food waste co-digestion with 244 

sewage sludge due to organic overloading. In these two BMP tests, due to organic overloading, 245 

the specific methane yield was even lower than that from mono-digestion (section 3.3.3). A 246 

similar phenomenon was reported in a continuous system and the specific methane yield 247 

decreased by 25% when increased the OLR from 2 to 3 kg VS/(m3.d) (Xie et al., 2012). In 248 



11 

 

terms of microorganism communities, organic overloading has been a major inhibitory impact 249 

on the methanogenic communities (Regueiro et al., 2015). Under an overloading condition, 250 

excessive organic acids can accumulate in the system. Both methanogenic population and the 251 

Syntrophomonadaceae family, which has been identified with the syntrophic relationship to 252 

methanogenic Archaea, decreased significantly due to the accumulation of volatile fatty acids 253 

(Kleyböcker et al., 2014; Regueiro et al., 2015). Hence, a retention time much longer than the 254 

period of 48 days in this study would be required to evaluate the specific methane yield 255 

(Holliger et al., 2016). 256 

3.3 System performance and stability 257 

3.3.1 Intermediate product parameters 258 

System performance and stability can be evaluated by examining intermediate product 259 

parameters including soluble COD and TOA as well as pH value of the digestate. The pH 260 

profile during the entire digestion process is presented in Figure 3a. Subjected to the limited 261 

buffering capacity, pH decreased significantly due to the fast accumulation of the intermediate 262 

acids in hydrolysis and acidogenesis phases. Once the acid production has been exhausted and 263 

the methanogenic process was able to convert organic acid to methane gas, the pH was 264 

recovered to a neutral value. It is noteworthy that pH dropped more rapidly and significantly 265 

for BMP bottles with high organic loading. This observation can be attributed to the 266 

accumulation of intermediate acids due to the slow reaction rate in methanogenesis phase. 267 

Under this circumstance, the methanogenesis process is considered to be the rate-limiting step 268 

(Ma et al., 2013). The exceedingly accumulated intermediate acids, on the other hand, led to a 269 

longer microbe adaptation time, which is a longer lag phase. For BMP bottles with low (8 kg 270 

VS/m3) or optimal (15 kg VS/m3) organic loading, no observable inhibition was observed. The 271 

pH value decreased but rapidly recovered to neutral (Figure 3).  272 
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Figure 3. (a) pH and (b) soluble COD concentrations as a function of time in the BMP tests. 274 

SS: sewage sludge (300g); FW20: 20 g food waste; FW30 + SS: 30 g food waste and 150 g 275 

sewage sludge; FW70 + SS: 70 g food waste and 150 g sewage sludge; FW110 + SS: 110 g food 276 

waste and 150 g sewage sludge; FW150 + SS: 150 g food waste and 150 g sewage sludge. 277 

Soluble COD content in the BMP bottle increased due to the accumulation of organic acids. A 278 

similar observation can be seen with TOA content in all BMP bottles (data not shown). As 279 

noted above, the methanogenesis phase is the rate-limiting step for bottles with high organic 280 

loadings. The highest soluble COD content (38,970 mg/L) was observed in the 150 g food 281 

waste and sewage sludge bottles (Figure 3b). On the other hand, soluble COD and TOA 282 

contents were low and stable at low organic loading. In this case, hydrolysis could be 283 

considered as the rate-limiting step. It is noteworthy that soluble COD fluctuated in the first 7 284 

days of the reaction for BMP bottles with organic loading higher than 15 kg VS / m3. It may be 285 

the result of a different hydrolysis rate between readily and slowly biodegradable organics. 286 

3.3.2 Gompertz modelling  287 

Table 4. Performance of mono- and co-digestion with sewage sludge and food waste. 288 

  
Mono-digestion Co-digestion 

SS FW20 FW30 + SS FW70 + SS 

P (mL) 1536.0 ± 4.0 1555.7 ± 2.0 3960.5 ± 13.0 8956.4 ± 174.0 

Rmax (mL methane/d) 372.9 ± 11.6 227.9 ± 2.5 500.3 ± 12.2 338.0 ± 18.9 

Lag phase, λ (day) 0.4 ± 0.1 1.1 ± 0.041 1.6 ± 0.1 9.8 ± 0.7 

Ultimate specific methane 

yield (mL CH4/g VSadded) 
330.7 557.7 591.8 715.6 

R2 0.99 0.99 0.99 0.98 

SS: sewage sludge (300g); FW20: 20 g food waste; FW30 + SS: 30 g food waste and 150 g sewage 289 

sludge; FW70 + SS: 70 g food waste and 150 g sewage sludge; FW110 + SS: 110 g food waste and 150 g 290 

sewage sludge; FW150 + SS: 150 g food waste and 150 g sewage sludge. 291 



13 

 

The modified Gompertz model was used to simulate the digestion process. As noted in section 292 

2.3.1, the lag phase (λ) and the ultimate specific methane yield could be obtained by fitting data 293 

presented in Figure 2 to the Gompertz model. The ultimate specific methane yields obtained 294 

from the Gompertz model (Table 4) were consistent with experimentally obtained values 295 

previously presented in Table 3. Similar results at a comparable organic loading level have also 296 

been reported by Xie et al. (2017). 297 

Table 4 also shows an increasing lag phase as the organic loading increased. The lag phase 298 

during mono-digestion of sewage sludge and food waste was insignificant. For comparison, a 299 

lag phase of 9.8 days was observed at the optimum organic loading of 15 kg VS / m3 (70 g of 300 

food waste and 150 g of sewage sludge). In the lab scale, a similar lag phase expansion was 301 

observed by Kougias et al. (2014) when increased the organic proportion in the feeding 302 

substrate. 303 

3.3.3 TS, VS, and soluble COD removals 304 

The removals for TS, VS and soluble COD are important properties in the batch system 305 

experiment, which can be used to evaluate the performance of the digestion process. The 306 

soluble COD removal represents the reduction of soluble organic content.  307 

Table 5. TS, VS, and Soluble COD removals at various organic loadings. 308 

Removal (%) 
Mono-digestion Co-digestion 

SS FW20 FW30 + SS FW70 + SS FW110 + SS FW150 + SS 

TS 76.2 98.4 82.3 82.9 64.3 55.2 

VS 67.8 94.3 72.4 75.6 56.0 40.9 

Soluble COD 48.0 59.7 62.4 53.4 -16.5% -283.9% 

SS: sewage sludge (300 g); FW20: 20 g food waste; FW30 + SS: 30 g food waste and 150 g sewage 309 

sludge; FW70 + SS: 70 g food waste and 150 g sewage sludge; FW110 + SS: 110 g food waste and 150 g 310 

sewage sludge; FW150 + SS: 150 g food waste and 150 g sewage sludge. 311 

TS, VS and soluble COD removals in the co-digestion bottles were higher than those in the 312 

mono-digestion of sewage sludge. These results provide further evidence of the synergistic 313 

effect of co-digestion and the biodegradable nature of food waste during AD (Grimberg et al., 314 

2015). It is noted that the production and consumption of soluble COD can occur 315 

simultaneously, thus, data in Table 5 represent the overall balance of soluble COD in the 316 

system. The low removal of soluble COD during co-digestion of food waste and sewage sludge 317 

can be attributed to the very high soluble COD content in food waste as previously discussed in 318 

section 3.1.   319 
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3.4 Kinetics of the hydrolysis process 320 

Table 6. Hydrolysis rate constant for mono- and co-digestion of sewage sludge and organic 321 

waste. 322 

  
Mono-digestion Co-digestion 

SS FW20 FW30 + SS FW70 + SS 

Kh 0.458 0.263 0.202 0.123 

R2 0.978 0.965 0.990 0.992 

p-value 0.001 0.001 0.001 0.001 

SS: sewage sludge (300 g); FW20: 20 g food waste; FW30 + SS: 30 g food waste and 150 g sewage 323 

sludge; FW70 + SS: 70 g food waste and 150 g sewage sludge; FW110 + SS: 110 g food waste and 150 g 324 

sewage sludge; FW150 + SS: 150 g food waste and 150 g sewage sludge. 325 

The Kh of the hydrolysis process was determined using Eq. (2) and cumulative methane 326 

production data presented in Figure 2a. Kh decreased as the organic loading increased (Table 6). 327 

In other words, the hydrolysis rate decreased with increasing organic content. These results are 328 

consistent with data reported by Wirth et al. (2015) and Cheng et al. (2016). These results are 329 

also consistent with the increasing lag phase at increasing organic loading as discussed in 330 

section 3.3.2. The observed decrease in Kh value as the amount of food waste increased from 331 

30 to 110 g  indicates the need to enhance the hydrolysis process during co-digestion possible 332 

by an additional acid phase digester (Koch et al., 2015).  333 

4. Conclusion 334 

This study shows that the synergistic/antagonistic performance of AcoD between sewage 335 

sludge and food waste was dependent on organic loading. At the same sewage sludge content, 336 

the specific methane yield increased as the content of food waste increased to the optimum 337 

organic loading of 15 kg VS/m3. At or below this optimum organic loading, the experimentally 338 

obtained specific methane yields were notably higher than those values calculated by adding 339 

the specific methane yields of individual co-substrates during mono-digestion. On the other 340 

hand, at an excessive organic loading value, the antagonistic effect (i.e. lower specific methane 341 

yield compared to mono-digestion) was observed. The interplay between synergistic 342 

performance of AcoD and organic loading could also be seen in the removal rates of VS as 343 

well as COD. Results from intermediate product analysis also suggests that methanogenesis 344 

was the rate limiting step during AcoD.  345 
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