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Quantum state tomography via local measurements is an efficient tool for characterizing quantum states.
However, it requires that the original global state be uniquely determined (UD) by its local reduced density
matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs
under the assumption that the global state is pure, but fail to be UD in the absence of that assumption.
This discovery allows us to classify quantum states according to their UD properties, with the requirement
that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally,
we experimentally test the feasibility and stability of performing quantum state tomography via the
measurement of local RDMs for each class. These theoretical and experimental results demonstrate the
advantages and possible pitfalls of quantum state tomography with local measurements.
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Introduction.—Quantum state tomography (QST) is one
of the most famous double-edged swords in quantum
information science. On the one hand, QST provides a
complete description of an arbitrary quantum state, which
is essential for benchmarking and validating quantum
devices [1–5]. On the other hand, the exponential resources
QST requires make scaling it to large systems infeasible in
practice. In the past decade, tremendous effort has been
devoted to boosting the efficiency of QST [6–12]. QST via
reduced density matrices (RDMs) [13–18] is one especially
promising approach, as it is significantly less resource
intensive and many experimental setups are able to perform
local measurements conveniently and accurately. One
criterion for adopting this approach is that the global state
has to be the only state which is compatible with its RDMs;
that is, it must be uniquely determined (UD) by its RDMs.
The UD criterion can be further classified into two

categories: uniquely determined among all states (UDA)
and uniquely determined among pure states (UDP) by local
RDMs. (In this work, UD refers to UD by its RDMs unless
otherwise specified. For the background of UD via general
measurements, seeAppendixA inRef. [19] formore details.)
The quantum states of many physically realistic quantum
systems usually belong to the UDA category. These systems
involve only few-body interactions [24] and possess
ground states which exhibit special properties [25–28].

To reconstruct states of this type, experimentalists need
only measure RDMs and search for the global state which
is compatible with these RDMs. This saves an exponential
number of measurements [29].
In the case of states which satisfy the UDP criterion, two

assumptions must be made if one wishes to reconstruct such
states via RDMs. First, the experimentally prepared states
must be (nearly) pure. Second, the search space of possible
reconstructions must be limited to pure states; otherwise, the
searching procedure may return incorrect mixed states with
the same RDMs. Despite these assumptions, searching for
UDP states has the advantage of significantly reducing the
number of search parameters since the search space is pure.
Traditionally, this has been the approach for dealing with
many related problems, for instance, the famous Pauli
problem and its finite dimensional versions [30,31].
In this Letter, we resolve the relation between the UDP

and UDA criteria, and it is shown that there are states that
are UDP but not UDA. Therefore, one should classify
many-body quantum states into three different nontrivial
classes: (A) neither UDP nor UDA, (B) UDA, or (C) UDP
but not UDA. One may argue that the existence of states of
class C is trivial as the set of pure states is of a much lower
dimension then that of the mixed states. We emphasize,
however, that this is not the case: when constructing
examples of states of class C, one is working with pure
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states that are already UDP, a strong restriction on the states
under consideration, and the dimension argument does not
work. In fact, to the contrary, it was known that for all three-
qubit states, UDP equals UDA, and there are no states in
class C. It is indeed a surprise that, when considering four
and more qubit systems, nontrivial examples emerge in
class C. In particular, we present a class of four-qubit states
that are UDP by their two-particle RDMs (2-RDMs) but fail
to be UDA. This is the first separation between UDA and
UDP in the setting of RDMs.
Our findings have important consequences to the RDM

approach to state tomography but are also illuminating to
other areas of related research. First, the existence of states
in class C must reveal interesting geometry of the many-
body quantum state space. Our usual intuition about the
state space looks more like the picture in Fig. 1(a)—the
Bloch sphere. In this simple situation, one easily verifies
that UDP equals UDA. However, in higher dimensional
state spaces, projections of the state space could possibly
look like Fig. 1(b), where UDP may not imply UDA.
Second, the UDAversus UDP problem, originated from the
study of ground states of local Hamiltonians, also sheds
light on the structure of many-body entanglement as the
local determination problem of entangled state is of
fundamental importance.
Our construction is based on the study of four-qubit

symmetric (i.e., bosonic) states. Note that the properties
of bosonic states have recently been extensively studied
theoretically [32–34] and experimentally [35,36] due to
their significant roles in characterizing cold atomic
systems.
To illustrate the validity of our construction, we

experimentally demonstrate the reconstruction of a series
of four-qubit states by measuring their 2-RDMs.

We examine the differences among states of the three
possible classes. We test the robustness (stability) against
experimental errors of our construction.
Three classes.—We classify four-qubit pure states into

three classes according to how they are UD by their
2-RDMs and present some examples for each class.
Class A: Neither UDP nor UDA. Consider GHZ-type

state:αj0000i þ βj1111i, whose 2-RDMs are

jαj2j00ih00j þ jβj2j11ih11j: ð1Þ
It is not UDP (thus not UDA) since any pure state
αj0000i þ eiϕβj1111i or mixed state jαj2j0000ih0000j þ
jβj2j1111ih1111j has the same 2-RDMs. Therefore, to
reconstruct four-qubit GHZ-type states experimentally, it
is insufficient to only measure its 2-RDMs, even if
assuming the prepared state is pure.
Class B: UDP and UDA. The W-type state

jWi ¼ aj0001i þ bj0010i þ cj0100i þ dj1000i ð2Þ
is known to be UDA [37] and also UDP. Unlike the
GHZ-type state, to reconstruct the global state, one needs
only know its 2-RDMs.
Class C: UDP but not UDA. The existence of this type

of states is the main theoretical result of this Letter. Up until
now, no such states are known. This is likely due to the fact
that analytically determining the uniqueness properties of
quantum states is notoriously difficult in general.
The outline of our approach is as follows. We focus

on the four-qubit bosonic (symmetric) state jψSi ¼P
4
j¼0 cjjwji, where the normalized Dicke state jwji is

defined to be proportional to Psymðj0i⊗j ⊗ j1i⊗4−jÞ with
Psym being the projection onto the four-qubit symmetric
subspace. This symmetry assumption significantly simpli-
fies the analysis since all the 2-RDMs are the same.
To further simplify the analysis, we assume c1 ¼ c3 ¼ 0
and that c0, c2, and c4 are all real:

jψSi ¼ c0jw0i þ c2jw2i þ c4jw4i: ð3Þ
To determine the parameter regions of c0, c2, c4 where

jψSi is UDP but not UDA, we take three steps.
Step 1: First, we prove that there is no other pure

bosonic state which has the same 2-RDMs as jψSi when
jψSi’s 2-RDMs have three distinct nonzero eigenvalues.
Step 2: Next, we observe that any pure bosonic state

which is uniquely determined among all other pure bosonic
states is also UDP.
Step 3: Finally, we provide the region where the

2-RDMs of jψSi are separable. jψSi is guaranteed not to
be UDA in this region. Therefore, within this parameter
region, jψSi is UDP but not UDA as long as its 2-RDMs
are nondegenerate and not rank one.
We direct the reader to Appendix B for steps 1 and 2 and

to Appendix C for step 3 in the Supplemental Material [19].
Note that for jψSi in this class, all the mixed states which

FIG. 1. Three-dimensional caricatures of the possible shapes of
state space and the space of reduced density matrices as
projections. Pure states are given by the extreme points. (a) A
sphere, for which all boundary points are extreme points. Only
the points on the boundary of the projected circle have a unique
preimage in the state space, and so are UDA. All the interior
points have multiple extreme points in their preimage, so they are
not UDP. Thus, UDP implies UDA. (b) A polytope, for which the
five vertices are extreme points. The four corner points have a
unique preimage in the state space, and so are UDA. However,
one interior point located at the center has multiple preimages
where only one is an extreme point, so it is UDP but not UDA.

PRL 118, 020401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 JANUARY 2017

020401-2



share the same RDMs with jψSi form a convex set. This set,
with jψSi as an extreme point, has infinite states.
Experiment.—We experimentally inspect all three

classes of state using nuclear magnetic resonance (NMR)
and test their stability against experimental noise. The four-
qubit sample is 13C-labeled transcrotonic acid dissolved in
d6-acetone, where the molecular structure and Hamiltonian
form are shown in Appendix E [19]. All experiments were
carried out on a Bruker DRX 700 MHz spectrometer at
room temperature.
The experiments are divided into three steps: (i) prepare

the initial state j0000i, (ii) evolve j0000i to the desired state
in each class, and (iii) measure the final state by full QST
and 2-RDMs, reconstruct the original state via the mea-
sured 2-RDMs, and compare it with the full QST result. We
describe each step briefly as follows. For more experi-
mental details, see Appendixes E and F in Ref. [19].
(i) In the majority of experiments in quantum informa-

tion, j0i⊗n is chosen as the input state. In NMR, we instead
generate a so-called pseudopure state (PPS) from the
thermal equilibrium state. This initialization step is realized
by the spatial averaging technique [38–40], which involves
both unitary and nonunitary (realized by z-gradient pulses)
transformations. The form of four-qubit PPS is

ρ0000 ¼
1 − ϵ

16
Iþ ϵj0000ih0000j; ð4Þ

where I is identity and ϵ ≈ 10−5 is the polarization.
Although the PPS is highly mixed, the large I does not
evolve under any unital propagator, nor is it observed in
NMR spectra. Hence, only the deviated part j0000i
contributes to the experimental results and the PPS is able
to serve as an input state.
(ii) The next step is to create the desired states of the

different UD classes. The radio-frequency (rf) pulses
during this procedure are optimized by the gradient ascent
pulse engineering (GRAPE) algorithm [41,42] and are
designed to be robust to the static field distributions (T�

2

process) and rf inhomogeneity. The designed fidelity for
each pulse exceeds 0.99, and all pulses are rectified via a
feedback-control setup in the NMR spectrometer to min-
imize the discrepancies between the ideal and implemented
pulses [43,44].
Class A: States belonging to this class are neither UDP

nor UDA by their 2-RDMs. The following states are in
class A:

jGHZiþ ¼ αj0000i þ βj1111i;
jGHZi− ¼ αj0000i − βj1111i;

ρGmix ¼ jαj2j0000ih0000j þ jβj2j1111ih1111j; ð5Þ
and ρGþ and ρG− are the density matrices of jGHZiþ and
jGHZi−, respectively. All of these states have the same
2-RDMs, which means that the 2-RDMs are not sufficient
to reconstruct these states. To verify this, we first need to
prepare each state in Eq. (5) from j0000i. For ρGþ, qubit
one first undergoes a rotation around the y axis that

RyðθÞ ¼ e−iθσy=2 with θ ¼ 2 arccosðαÞ. Then three con-
trolled-NOT (CNOT) gates CNOT12, CNOT13, and CNOT14

are applied consecutively, where qubit one is the control
and others are targets. The single-qubit rotation RyðθÞ is
realized by a 1 ms GRAPE pulse, and the three CNOT gates
are realized by a 30 ms GRAPE pulse. We can similarly
construct ρG− by instead employing a single-qubit rotation
of Ryð−θÞ ¼ eiθσy=2. For ρGmix, we simply prepare a classical
distribution of two pure states j0000i and j1111i. In these
experiments, we prepare nine distinct states by varying α
from 0.1 to 0.9 with 0.1 increment.
Class B: States belonging to this class are both UDP and

UDA, with the W-type state in Eq. (2) being a typical
example. In experiment, we simply set a ¼ b and c ¼ d, and
then prepare six inputs jWi by changing a from 0.1 to 0.6
with 0.1 increment. This state preparation is directly realized
by a state-to-state GRAPE pulse with a duration of 20 ms.
Class C: States belonging to this class are UDP but not

UDA. The type of state we prepare jψSi is described in
Eq. (3) and conforms to the following parametrization:

c0 ¼
sin t − sin θ cos t

ffiffiffi
2

p ;

c2 ¼ cos θ cos t;

c4 ¼ −
sin θ cos tþ sin t

ffiffiffi
2

p ;

where we fix θ ¼ π=12 and choose t from π=6þ π=18 to
5π=6 − π=18, and increment by π=18. With the exception
of the point t ¼ π=2, this curve lies within the region of
states that are UDP but not UDA, as outlined in
Appendixes A and B. All these states are prepared by
state-to-state GRAPE pulses with a fixed duration of
20 ms. In order to demonstrate that these states are not
UDA, we also prepare corresponding mixed states with the
same 2-RDMs as outlined in Appendix D in Ref. [19].
(iii) After preparing these states, we perform four-qubit

QST [45,46], which includes measuring the 2-RDMs. To
determine the original four-qubit state, a maximum like-
lihood approach [47] is adopted to reconstruct the most
likely state based on the measured 2-RDMs.
Results.—Now, we discuss the effectiveness and stability

of QST via 2-RDMs for each class of states.
Class A: In Fig. 2(a), it is clear that any two of ρGþ, ρG− ,

and ρGmix have completely different fidelities in the
four-qubit form (blue and yellow), but they share the same
2-RDMs up to minor experimental errors (red and green).
Therefore, these states are neither UDP nor UDA, and it is
insufficient to rely only on their 2-RDMs for QST.
Class B: TheW-type state in Eq. (2) is known to beUDA.

In Fig. 3(a), the blue triangles represent the fidelities
FðρWQST; ρW2-RDMÞ between the prepared four-qubit state
ρWQST via full QST and the reconstructed four-qubit state
ρW2-RDM via 2-RDMs. For every testedW-type state, theworst
fidelity is still about 97% as shown by the triangles in
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Fig. 3(a). This indicates that the 2-RDMs are indeed sufficient
for the reconstruction of the original four-qubit state.
However, under realistic experimental conditions, the

prepared state ρWQST unavoidably deviates from the desired
state. This may drive it outside the UDA region, so that it is
no longer UDA. To test if this is the case, we simulate
different outputs of 2-RDMs by adding Gaussian distrib-
uted noise and repeating the reconstruction of the four-
qubit state via the 2-RDMs, as outlined in Appendix F in
Ref. [19]. From the yellow bars in Fig. 3(a), it can be seen
that even with artificial noise, QST via 2-RDMs is stable,
since the fidelity is always over 0.95.
Class C: This class is UDP, which means we do not have

any other pure state that gives the same 2-RDMs other than
the target state. However, it is not UDA, so there do exist
some mixed states (see Appendix D in Ref. [19]) with the
same 2-RDMs. Figure 2(b) illustrates such results. Both in
theory and experiment, we see that the target state jψSi and
a corresponding mixed state have low fidelity with one
another (yellow) but the same 2-RDMs (blue). Therefore,
when reconstructing this type of four-qubit state via its
2-RDMs, we need to assume that the original state is pure.
Otherwise, it is likely to obtain some mixed state which will
not necessarily be the true state of the system.

Similarly to the W-type state, we test whether the UDP
property of jψSi is stable against noise. As seen in Fig. 3(b),
even under the application of Gaussian noise, as long as we
assume our state is pure we can always reconstruct the
correct four-qubit state with high fidelity (> 0.90) using
only its 2-RDMs.
Conclusion.—In summary, we disprove the hypothesis

that UDP implies UDA for RDMs [16] by demonstrating
the existence of a family of four-qubit states that are UDP
but not UDA by their 2-RDMs. This new finding allows us
to classify pure states into three classes according to their
UD properties, in order to improve the efficiency of QST:
in class A, where the state is neither UDP nor UDA, full
QST is necessary; in class B, where the state is UDP and
UDA, the measurement of 2-RDMs is sufficient to deter-
mine the global state; and in class C, where the state is UDP
but not UDA, the measurement of 2-RDMs combined with
the assumption that the global state is pure is sufficient.
This approach simplifies QST significantly, since full QST
of n qubits requires 4n − 1 observables while 2-RDM
measurement requires ðn

1
Þ × 3þ ðn

2
Þ × 9 observables (all

weight-one and weight-two Pauli operators) only.
We check the feasibility of this protocol for each classwith

a four-qubit NMR quantum processor. The results indicate
that for classes B and C, it is not necessary to implement the
full QST—2-RDMs already enable the reproduction of the
global state with high fidelities. As there are always exper-
imental errors, we also demonstrate the stabilities of this
protocol, namely, whether it is robust against experimental

FIG. 3. Stability test against experimental noise for jWi and
jψSi. The noise is artificially added in Gaussian distribution to the
measured 2-RDMs under experimental conditions, by randomly
sampling 90 distinct sets of 2-RDMs. The arrows indicate the
mean for each sampled results. (a) Fidelities of the jWi (class B)
in a noisy environment. The x axis is the coefficient a defined in
Eq. (2). (b) Fidelities of the jψSi (class C) in a noisy environment,
as a function of t defined in Eq. (3).

(a)

(b)

FIG. 2. (a) GHZ-type states (class A) such as ρGþ in Eq. (5) are
neither UDPnorUDA.The four-qubit fidelities between ρGþ and ρG−
(blue) and ρGþ and ρGmix (yellow) are completely different, but they
do have the same 2-RDMs (red and green, where the worst-case
fidelity out of six possible 2-RDM fidelities is shown) up to minor
experimental errors. The error bars are calculated from the
imperfection of theGRAPE pulses and fitting procedure. (b) States
in class C are not UDA, so there can exist mixed states between
which they have very low four-qubit fidelity (red) but the same
2-RDMs (blue). However, these types of states areUDP, so there do
not exist any other four-qubit pure states with the same 2-RDMs.
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noise. The results reveal that the approach of doing QST
solely via the measurement of 2-RDMs is robust to the noise
under our experimental conditions and hopefully behaves
the same in other experimental platforms.
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