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ABSTRACT 

It has been demonstrated previously that the endogenous compound N-arachidonyl-

glycine inhibits the glycine transporter GlyT2, stimulates glycinergic 

neurotransmission, and provides analgesia in animal models of neuropathic and 

inflammatory pain. However, it is a relatively weak inhibitor with an IC50 of 9 µM and 

is subject to oxidation via cyclooxygenase limiting its therapeutic value. In this paper 

we describe the synthesis and testing of a novel series of mono-unsaturated C18 

and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2. We 

demonstrate that they are up to 28 fold more potent that N-arachidonyl-glycine with 

no activity at the closely related GlyT1 transporter at concentrations up to 30 µM. 

This novel class of compounds show considerable promise as a first generation of 

GlyT2 transport inhibitors. 
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INTRODUCTION  

Lipids are increasingly acknowledged for having important interactions with membrane 

proteins, as both the environment in which membrane proteins operate1, and as 

ligands which can impart changes in activity2-5. Arachidonylethanolamide 

(anandamide) is one of the most recognised lipid ligands and is proposed to exhibit its 

agonist effects by accessing the binding site of cannabinoid (CB) receptors via the cell 

membrane6, 7. N-arachidonyl glycine (NAGly) is a carboxylic acid derivative of 

anandamide (Figure 1) which is endogenously produced through two distinct 

enzymatic pathways8 in the central nervous system. NAGly is found in highest 

concentrations within the spinal cord and may play an important role in modulating 

pain9. Intrathecal injection of NAGly reduces mechanical allodynia and thermal 

hyperalgesia in rat models of both neuropathic and inflammatory chronic pain10, 11. 

Furthermore, co-application of NAGly with CB1 or CB2 receptor antagonists does not 

disrupt the analgesic effects of NAGly which is consistent with early binding studies of 

anandamide derivatives that show NAGly has negligible activity at cannabinoid 

receptors12, which raises the question as to how NAGly mediates its analgesic activity. 

One possible mechanism of action is modulation of glycinergic neurotransmission. 

NAGly prolongs the time course of glycine in glycinergic synapses of lamina II of the 

superficial dorsal horn13, an area responsible for integrating ascending pain 

information. It has been shown that NAGly inhibits the glycine transporter GlyT2, but 

has no effect on the closely related glycine transporter GlyT114, which suggests that 

NAGly may exert analgesia by increasing inhibitory tone at glycinergic neurons. 

Inhibitory glycinergic neurons play an important role within the spinal cord where they 

are expressed predominantly in lamina III and V of the dorsal horn15 and project to the 

brain to modulate signalling. Recently, in a rat nerve ligation model of neuropathic 



pain, it has been shown that excitatory radial neurons in lamina II have  impaired 

glycinergic inputs16 which is likely to cause incorrect processing of sensory information 

in the dorsal horn and can lead to a neuropathic pain phenotype. Increasing glycinergic 

signalling, via inhibition of glycine transport, could therefore be an effective strategy to 

repair this dysfunction. 

Glycinergic neurotransmission is tightly regulated through Na+/Cl- dependent glycine 

transporters17 which govern the synaptic concentrations of glycine and are responsible 

for terminating neurotransmission by rapidly transporting glycine back into cells. The 

two subtypes of glycine transporters, GlyT1 and GlyT2, are differentially expressed, 

with GlyT1 being ubiquitously expressed in both inhibitory and excitatory synapses, 

and GlyT2 almost exclusively occupying the membranes of presynaptic inhibitory 

glycinergic neurons18. Selective inhibition of GlyT2 is therefore uniquely located to 

modulate inhibitory tone and signalling in the ascending pain pathway. 

GlyT2 is an essential protein; knock out of the GlyT2 gene in mice produces severe 

neuromotor symptoms and is lethal two weeks postnatal19. The consequences of this 

deletion are presynaptic in origin, which suggests GlyT2 plays a crucial role in 

maintaining the pool of glycine to be loaded into vesicles for exocytotic release. ORG-

25543 is a full and irreversible GlyT2 inhibitor which also exhibits an excitotoxic 

phenotype that may mimic the GlyT2 knock out effects, and is likely a result of 

disrupted vesicle filling and therefore a decrease in glycine in the synapse in the long-

term20, 21. Conversely, partial reduction in GlyT2 expression using siRNA does not 

produce the hyperekplexia like symptoms generated by GlyT2 knock outs or full 

inhibitors. Additionally, targeted partial knock down of GlyT2 has been shown to be 

analgesic in neuropathic pain models in mice,22 validating the value of partial inhibitors 

of GlyT2. Partial non-competitive glycine transport inhibitors are likely to slow the 



clearance rate of glycine from the synapse, but not block it completely and thereby still 

allow accumulation of presynaptic glycine that is sufficient for recycling.  NAGly is also 

a partial non-competitive inhibitor of GlyT2, and does not generate any overt motor 

side effects10, 11, suggesting that compounds like NAGly have potential for the 

treatment of pain with minimal side effects.  

Although exogenous NAGly has been shown to be efficacious for the treatment of 

pain, its utility is limited by its rapid metabolism23, low potency at GlyT2 (IC50 9 µM)14 

and role as a non-specific signalling molecule9, 23. COX-2 is present in high 

concentrations in tissues rich in NAGly and inactivates the molecule through a 

cyclisation reaction at its ω6 polyunsaturated arachidonyl tail23. One strategy to 

circumvent, or slow the metabolism of a GlyT2 lipid inhibitor is to alter the lipid tail of 

the compound. Previously our group has reported the activity of N-oleoyl glycine 

(NOGly) as an inhibitor of GlyT224. NOGly similarly contains a glycine head group and 

has instead, an ω9 monounsaturated 18-carbon tail (Figure 1) which imparts a lower 

maximal level of inhibition at GlyT2 and may provide important clues for the future 

development of partial inhibitors. 

  

Figure 1. Structures of N-arachidonyl glycine (NAGly) (A, compound 1) and N-oleoyl glycine 

(NOGly) (B, compound 2). 

O

NH
-O

O

O

NH
-O

O

A

B



Previous attempts to improve potency at GlyT2 lead our group to test commercially 

available acyl-carnitines and identified oleoyl L-carnitine (OLCarn) as a GlyT2 inhibitor 

with an IC50 of 320 nM. Despite OLCarn having an increased potency compared to 

previous lipids its therapeutic effectiveness may be limited by its very slow offset as it 

has been suggested that irreversible inhibitors of GlyT2 are implicated in excitotoxicity. 

Furthermore, OLCarn is widely used as a shuttling molecule in the metabolism of 

lipids25 and at high concentrations can cause disruptions to the integrity of cell 

membranes24. It is anticipated that modifying a scaffold of a known reversible inhibitor 

may produce more potent and partial inhibitors whilst maintaining reversibility and 

minimizing membrane disruption. 

We have previously reported that compounds containing saturated or polyunsaturated 

tails are either inactive or have a much lower potency24. This is in contrast to N-acyl 

ethanolamine derivatives of anandamide where 3 or 4 double bonds were required to 

impart significant activity at CB receptors12, 26, 27. The tail group of the compounds 

contribute to the mechanism of inhibition, but the extent of its influence is unknown. In 

this study, we report the synthesis of glycine conjugated monounsaturated 14-, 16- or 

18-carbon lipids and their potency in inhibiting glycine transport by GlyT2 and the 

closely related GlyT1 transporter. 

  



RESULTS AND DISCUSSION 

NOGly (Figure 1) is comprised of a glycine head group covalently bonded to an 18 

carbon monounsaturated fatty acid (MUFA) tail bearing an ω-9 cis-double bond 

(denoted in this paper as C18ω9 gly). To examine the influence of double bond 

position on GlyT2 inhibition, a series of NOGly analogues were synthesised in which 

the alkene bond was located at the ω-11, 7, 5 or 3 position. We also prepared 

analogues with ω-12 and 6 double bonds, which are common motifs in natural fatty 

acids, as well as both cis- and trans- isomers. In addition, acyl glycine compounds with 

14- and 16-carbon MUFA tails were synthesised to assess the impact of chain length 

on potency.  

Chemistry 



 

Scheme 1. Synthesis of monounsaturated fatty acids (MUFAs). Reagents and conditions: (a) 

ethanol, AcCl, rt, 4h; (b) NaCN, rt, 18h; (c) Raney Ni, NaH PO, 40 C, 2h; (d) ethanol, AcCl, rt, 4h; (e) 

PCC, 2h; (f) NaN(TMS)2, -78 C to rt, 2h; (g) NaOH, rt, 3 h. 

 



MUFAs are key intermediates in the preparation of acyl glycine compounds 3 – 20. 

Non-commercially available MUFAs were synthesised using our previously reported 

synthetic strategy28 that utilizes the Wittig reaction of oxo-fatty acids with alkyl 

triphenylphosphonium bromide compounds (Scheme 1). The Wittig reaction provided 

excellent cis-stereoselectivity (cis:trans ≥ 97:3) and the flexibility to prepare MUFAs 

with different carbon chain lengths and double bond positions. For example, reaction 

of ethyl 12-oxododecanoate with the hexyl triphenylphosphonium bromide yielded, 

after removal of the ester protecting group, cis-octadec-12-enoic acid (a C18 ω-6 

MUFA).  

The procedure used to prepare the intermediate oxo-fatty acids was dependent on the 

commercial availability of starting materials (see Supporting Information for full 

details). The more facile synthesis utilized ω-hydroxy fatty acids, which were first 

esterified with acetyl chloride and ethanol (Scheme 1, step d) and then oxidised using 

pyridinium chlorochomate (PCC, step e).  Due to the limited commercial availability of 

several hydroxy fatty acids, a second route to the oxo-fatty acids was developed 

whereby ω-bromo fatty acids were esterified (step a) and then reacted with NaCN 

(step b) to generate ω-nitrile intermediates. Selective reduction of the nitrile groups to 

aldehyde groups without concurrent reduction of the ester groups was achieved using 

Raney nickel and sodium hypophosphite (step c). Wittig reaction of the oxo-fatty acids 

with alkyl triphenyl phosphonium bromide compounds gave the MUFA esters (step f). 

The reactions were carried out in tetrahydrofuran with sodium bis(trimethylsilyl)amide 

at -78 oC to promote cis-stereoselectivity. Base-catalysed hydrolysis of the resulting 

MUFA-esters (step g) yielded the desired MUFAs.  



 

Scheme 2 Synthesis of acyl glycine compounds 3 - 20. Reagents and conditions: (a) EDCI, HOBt, 

glycine ethyl ester, NEt 3 , rt, 18h; (b) NaOH, rt, 3 h. 

 

The acyl glycines 3 - 20 were prepared from the corresponding MUFAs in a two-step 

synthesis (Scheme 2). In the first step, amide bonds between the MUFAs and ethyl 

ester protected glycine were formed using the peptide coupling reagent N-ethyl-N′-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDCI). Subsequent base-catalysed 

removal of the ester protecting group afforded compounds 3 - 20.   

Critical Micelle Concentrations of acyl-glycines 

The synthesized lipids are amphipathic with a hydrophobic aliphatic tail and a polar 

head group and have the propensity to spontaneously form micelles in solution at a 

characteristic critical micelle concentration (CMC). Thus, concentrations of lipids 

higher than the CMC may not freely diffuse to interact with proteins and thereby limit 

its biological activity. The CMC for OLCarn is approximately 7 µM 24 and 100 µM for 

NAGly29. Given the reduced charge of the acyl-glycines compared to the acyl-



carnitines, the CMCs of our novel lipids are likely to be significantly greater than that 

of OLCarn and so in all studies we limited the maximum concentration of lipids used 

to less than 30 µM, to minimise the possibility that partial inhibition is a consequence 

of lipid micelle formation limiting the available concentration and access of the lipid to 

the transporter. Thus, we suggest that for each of the novel acyl-glycine inhibitors 

that the degree of partial inhibition is a reflection of the way that the lipid interacts 

with the transporter.  However, it should be noted that for NAGly (1), a true plateau 

of inhibition was not reached for concentrations less than its CMC. Curve fitting of 

this partial concentration response predicts full inhibition at higher concentrations. In 

the case of NAGly, the solubility of the compound could be limiting the level of 

inhibition reached in both in vitro and in vivo assays.  

Biological Activity 

Glycine transport by GlyT2a and GlyT1b is coupled to the co-transport of 3Na+/1Cl- 

and 2Na+/1Cl- respectively17, creating an electrogenic process that can be measured 

electrophysiologically. Application of glycine to Xenopus laevis oocytes expressing 

GlyT2, clamped at -60 mV, results in inward currents with an EC50 of 21.6 ± 1.6 µM, 

which is consistent with previously reported values30. The inhibitory profiles of each of 

the synthesised compounds was assayed by measuring glycine dependent (EC50) 

currents in the presence of increasing concentrations of lipid to determine IC50 values 

at GlyT2a and GlyT1b (herein referred to as GlyT2 and GlyT1). 

NAGly (1) and NOGly (2) have previously been shown to be non-transportable, non-

competitive inhibitors of GlyT2 with little or no activity on GlyT114, 24, 31. The newly 

synthesized acyl-glycines do not generate any currents when applied to oocytes at 

concentrations up to 10 µM for 5 minutes, which are conditions that lead to a 



substantial destabilising inward current when 3 µM OLCarn is applied24. The lack of 

any acyl-glycine induced current suggests that these compounds are not substrates 

for the transporter and also that the compounds are unlikely to induce any chaotropic 

effects on the cell membrane. Application of the EC50 concentration of glycine 

produced robust inward currents (Figure 2), which were reduced in the presence of 

lipid inhibitors (representative current traces are shown for C16ω6 gly (15) and C18ω8 

gly (7) inhibition of glycine transport). Following inhibition, glycine and inhibitor were 

washed from the bath by continuously perfusing recording buffer over the oocyte. Re-

application of glycine five minutes post-inhibition results in currents comparable to pre-

exposure glycine transport, indicating that binding of the inhibitors is reversible. 

Concentration inhibition curves were generated for each compound with the % max 

inhibition, and relative IC50 values at GlyT2 and GlyT1 presented in Table 1. Whilst 

many compounds showed marked inhibition of transport by GlyT2, none of the 

compounds tested showed any appreciable inhibitory activity on the closely related 

glycine transporter GlyT1. 

 

Figure 2. Example current traces from oocytes expressing GlyT2 and clamped at -60 mV. 30µM 

glycine was applied (open bars) and produced inward currents which were inhibited (closed bars) by 1 

µM C16ω6 gly (15) and B. C18ω8 gly (7). Five minutes following inhibition the EC50 of glycine was 

reapplied to show reversibility of inhibition and restoration of glycine currents to pre-exposure levels. 
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Table 1: Structure-activity relationships of C14-, C16- and C18 glycine 

compounds at GlyT2 and GlyT1 

 

IC50 (µM) (95 % CI) % max 

Inhibition of 

GlyT2c 

GlyT2a GlyT1b 

Compound R 

1 

NAGlya 

C20 cis 

ω6,9,12,15 

9.1 

(4.5-18) 
>10b 79.6 ± 2.08 

2 

NOGlya 
C18 cis ω9 

0.50 

(0.23-1.1) 
>10 66.8 ± 2.79 

3 C18 cis ω3 >10 >10 - 

4 C18 cis ω5 >10 >10 - 

5 C18 cis ω6 >10 >10 - 

6 C18 cis ω7 >10 >10 - 

7 C18 cis ω8 
0.32 

(0.18-0.57) 
>10 61.3 ± 1.69 

8 C18 cis ω10 
0.34 

(0.14-0.84) 
>10 52.4 ± 2.21 

9 C18 cis ω11 >10 >10 - 

10 C18 cis ω12 >10 >10 - 

11 C18 trans ω7 >10 >10 - 

12 C18 trans ω9 >10 >10 - 

13 C16 cis ω3 
0.81 

(0.46-1.4) 
>10 65.3 ± 1.94 

14 C16 cis ω5 
3.5 

(2.8-4.4) 
>10 92.3 ± 2.06 

15 C16 cis ω6 
1.7 

(1.4-2.2) 
>10 85.2 ± 1.00 

16 C16 cis ω7 
1.5 

(1.3-1.8) 
>10 92.5 ± 1.55 

17 C16 cis ω9 
3.2 

(2.7-3.9) 
>10 88.2 ± 2.57 

18 C16 cis ω11 
3.4 

(2.5-4.8) 
>10 97.9 ± 2.32 

19 C16 cis ω12 
0.93 

(0.41-2.2) 
>10 48.5 ± 1.41 

20 C14 cis ω5 
9.2 

(7.3-12) 
>10 100 ± 7.21 

Compounds were tested for inhibition of 30 µM glycine transport by GlyT2 and GlyT1, expressed in 

Xenopus laevis oocytes.. Measurements were taken from 2 batches of oocytes and at least 3 cells from 

each batch. Data presented are mean with 95% confidence intervals for each measurement (CI).   



aCompounds are commercially available and have been previously described as GlyT2 inhibitors. 

bWhere significant inhibition was not reached, IC50 are presented as greater than the maximum 

concentration of each compound applied.  

cWhere a plateau in concentration-inhibition did not occur at the maximal concentration used the % max 

response given is the inhibition at the max concentration. 

 

Activity of C18 acyl-glycines 

Maintaining the 18-carbon chain and positioning the double bond more than two bonds 

from the ω9 position (in compounds 3 – 6, 9 and 10), produced inactive compounds. 

To further probe this apparent strict requirement for double bond position we 

synthesised C18ω8 gly (7) and C18ω10 gly (8), in which the double bond is shifted by 

only one bond. Both analogues had slightly increased potencies compared to NOGly 

(0.32 for 7 and 0.34 µM for 8 compared to 0.50 µM for NOGly). It is notable that shifting 

the position of the double bond by one further carbon (C18ω7 (6) or C18ω11 (9)) to 

either end of the lipid chain abolished inhibitory activity (Figure 3). For the C18- 

compounds it is apparent that compounds with double bonds in this “goldilocks zone” 

are selective for GlyT2. It is also notable that these C18 acyl-glycine are partial 

inhibitors of GlyT2, with the maximal level of inhibition observed being 52-66% (Table 

1). 



 

Figure 3. Monounsaturated C18 acyl-glycines inhibit glycine transport currents of GlyT2 and 

GlyT1 transporters expressed in Xenopus laevis oocytes. 30 µM glycine transport currents were 

measured in the presence of lipids (compounds 2-10 in Table 1) in the range of 10 nM to 10 µM for 

GlyT2 (A), GlyT1 (B). Concentration-dependent inhibition of GlyT2 and GlyT1 for compounds 11 and 

12. The responses are normalised mean values ± SEM (n ≥ 3 cells) fit using least squares analysis. 

Flexible monounsaturated lipids can exist in a number of different conformations. If the 

tail was not directly interacting with GlyT2, and instead sticking in the membrane or 

adjacent to hydrophobic regions of the transporter, a large number of subtle binding 

positions could be accommodated. To further probe the importance of the double 
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bond, trans- isomers of the ω7 and ω9C18- compounds were synthesised and 

screened on GlyT2 and GlyT1. The minimum energy conformation of a hydrocarbon 

tail with a cis- double bond approximately medial has a substantial kink, which has 

been shown to distort the packing of membrane lipids31. However, trans- double bonds 

would constrain the geometry of the tail to adopt a similar conformation as saturated 

lipids, which have been previously shown to be inactive at GlyT224. In contrast to the 

cis- isomers, C18trans- ω9 gly (12) and C18trans- ω7 gly (11) were both inactive which 

suggests there is a selective pocket on GlyT2 which can only accommodate cis- 

conformations of the lipid tail moiety. 

Activity of the C16 and C14 acyl-glycines 

Substitution of the lipid tail in NAGly with C16-MUFAs and a double bond at any of the 

ω3, ω5, ω6, ω7, ω9, ω11, or ω12 positions, produced compounds which were active 

at GlyT2 with IC50 values ranging from 0.81 to 3.5 µM (Figure 4). As can be seen by 

the % max inhibition (Table 1), a majority of the C16- compounds inhibited glycine 

transport currents to a greater extent than previously reported lipid inhibitors of GlyT2. 

C16- compounds with double bonds in the ω5 through ω11 positions inhibited GlyT2 

in the range of 85 – 98% (Table 1). Shortening the chain also appeared to reduce the 

affinity of the acyl-glycines (C14ω5 gly IC50 9.2 µM).  

 



 

Figure 4.  Monounsaturated C16 and C14 acyl-glycines inhibit glycine transport currents of 

GlyT2 and GlyT1 transporters expressed in Xenopus laevis oocytes. 30 µM glycine transport 

currents were measured in the presence of lipids in the range of 10 nM to 10 µM.  A. Concentration-

inhibition curves for partial inhibitors (compounds 13 and 19 (see Table 1)) on GlyT2 B. 

Concentration-inhibition curves for full inhibitors (Compounds 14-18, and 20) on GlyT2. C. 

Concentration-dependent effects of compounds 13-20 on glycine transport currents of GlyT1. The 

responses are normalised mean values ± SEM (n ≥ 3 cells) fit using least squares analysis.  
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Acyl-Glycines Inhibit 3H-Glycine uptake by oocytes expressing GlyT2. 

Whilst it has been previously demonstrated that glycine-induced currents are directly 

related to the rate of glycine transport, we also checked that representative lipids also 

inhibit the rate of 3H-glycine uptake by oocytes expressing GlyT2. A time course of 3H-

Glycine uptake was measured in the absence of inhibitors and also in the presence of 

10 µM C18ω8 Gly and 10 µM C16ω3 Gly and also compared to 1 µM ALX1393. Both 

lipids caused ~50% reductions in the rate of 3H-Glycine transport over 10 minutes 

(Figure 5), which are comparable to the effects observed for inhibition of glycine 

transport currents. It is notable that uninjected oocytes allowed ~15% of uptake 

compared to oocytes expressing GlyT2 and that this background level of uptake was 

not affected by the acyl-glycines. Thus, the lack of any substantial change in the rate 

of background 3H-Glycine uptake also confirms that there is minimal, if any, chaotropic 

effects of the lipids on the cell membrane. 
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Figure 5: Rates of 3H-Glycine uptake in the presence and absence of acyl-glycine inhibitors. 

Oocytes expressing GlyT2 and uninjected control oocytes were preincubated with 10 µM C16ω6 Gly, 

10 µM C18ω8 or buffer for 2 minutes and then the rate of 10 µM 3H-glycine transport measured as 

described in the methods.  

There is a preferred double bond position and chain length for conferring affinity 

and extent of inhibition 

It appears that when the double bond is in the centre of the carbon chain, the 

inhibitors are active (in the case of C18) or show a greater level of maximal inhibition 

(in the case of C16). However, as the properties imparted by a medial double bond 

differ between C16- and C18- compounds it cannot be ascertained whether the trend 

is connected. The order of potency was C18 > C16 > C14 for the monounsaturated 

compounds tested, which suggests tail length is governing activity of the inhibitors. 

While C18- compounds were the most potent, the placement of the double bond 

within the tail was limited to a stringently defined zone in the middle of the chain. The 

lower affinity C14- and C16- compounds were all active as GlyT2 inhibitors, with 

generally increased maximal level of inhibition. Whilst the C18 compounds are more 

potent than their C16 counterparts, the maximal level of inhibition was reduced (52-

67% for C18ω8, 9, 10, and 88-92% for C16ω5, 6, 7, 9, 11).  We speculate that there 

is an optimal size and/or shape of tails which can be accommodated in the allosteric 

inhibitor binding pocket. Whilst lipids with C14, C16 and C18 tails with glycine head 

group can fit into a binding pocket, lipids with larger C18 tails are likely to have the 

potential to form more hydrophobic interactions causing increased potency of 

inhibition, but also creating partial inhibitors. In the case of NAGly, its longer 

polyunsaturated tail would be more condensed than the shorter monounsaturated 

lipids, allowing it to fit in the lipid binding site. The observed lower affinity of NAGly 



could be due to the number of kinks in the tail which restrict the ideal binding mode 

and reduce the capacity for intermolecular interactions.  

 

The majority of mammalian cell membranes are composed of phosphatidylcholine 

(PC), with phosphatidylethanolamine (PE), sphingomyelin, and cholesterol also 

abundantly present32. Unsaturated C18- or saturated C16- are the most common 

lipid chains present in PC and PE. The most efficacious of the lipid inhibitors in this 

study contain similar tails and therefore may be capable of inserting into the bilayer 

and interacting with or displacing membrane lipids at the protein membrane 

interface. It has been suggested that ligands may access the binding site of CB 

receptors via the cell membrane7. Molecular dynamics simulations of the 

endogenous cannabinoid sn-2-arachidonylglycerol (2-AG) with a typical PC bilayer 

observe the 2-AG lipid first associating with the membrane phospholipids, followed 

by migration of 2-AG to interact with the CB2 receptor6. 2-AG then enters the ligand 

binding site by moving through an opening between membrane exposed helices VI 

and VII. In the recent crystal structure of the antagonist bound CB1 receptor34, 

hydrophobic residues in helices II, III, VI, and VII comprised part of the antagonist 

binding site which was also the site of hydrophobic tail interactions with anandamide 

and 2-AG in subsequent docking. The lipid inhibitors of GlyT2 may also sit in the 

membrane parallel to the membrane phospholipids spanning the depth of one leaflet. 

The predilection for certain tail lengths and configurations may also reflect the 

capacity for the acyl-glycines to associate with the membrane and form a lipid-bound 

pool. Acyl-glycines could then inhibit GlyT2 by channelling through membrane-

exposed transmembrane helices in a similar manner predicted for the cannabinoid 



ligands and the lipid inhibitor ML056 on the sphingosine-1-phosophate receptor 

(S1P1R)35. 

Other arachidonyl lipids have been shown to modulate ion channels either by 

increasing function36 or as an inhibitor3; for example, arachidonic acid is an open 

channel blocker of hKv1.5 with an IC50 of 6.1 µM3. Studies of the structure-activity 

relationship for lipid ligands of CB receptors have also revealed that small changes 

can impart inactivity7, 26, 27, 37. NAGly and anandamide differ only by a carboxylic acid 

in the head group and yet this difference is sufficient to prevent binding of NAGly. The 

acyl-glycines in this study have a preferred double bond position and chain length 

which, in addition to the well characterised importance of the head group, establishes 

the coinciding influence of the tail in conferring the activity of lipid ligands. 

Potency is not driving the reversibility of inhibition 

Following a 5 minute washout of each of the active inhibitors, glycine transport currents 

were comparable to the pre-lipid exposure transport currents (Figure 2). Despite the 

differences in lipid tail, and large variation in relative potency (0.32-9.2 µM), all 

inhibitors in this study were reversible. These observations are in contrast to oleoyl L-

carnitine inhibition of GlyT2 which is very slowly reversible24. This suggests that the 

head group is more important in determining the rate of reversibility. The IC50 of oleoyl 

L-carnitine is similar to the most potent acyl-glycine inhibitor (~320 nM) and so 

reversibility is not simply a reflection of the binding and unbinding rates from the 

transporter, and must be governed by some other mechanism. In the case of oleoyl L-

carnitine, application of β-cyclodextrin accelerates washout24 which suggests that it is 

a lipid membrane-mediated mechanism of inhibition. Thus, we speculate that the head 

group influences the stability of the lipid in the membrane, which can influence the time 

course of washout of the lipid. 



Since neither potency at the binding site nor hydrophobic interactions of the tail in the 

membrane are driving reversibility, we propose that reversibility is related to how 

compounds can access or leave the site and therefore is another independent property 

of the compound that must be considered when designing an optimal GlyT2 lipid 

inhibitor. A carnitine head group has a positive charge and is significantly larger than 

the glycine head group, so perhaps the charge and/or size is capturing the compounds 

in a membrane reservoir, such as the negatively charged phosphate groups of the lipid 

bilayer, for longer periods impeding washout. 

In addition to full inhibition, reversibility is another potential problem which is hindering 

the pursuit of GlyT2 as a molecular target. The excitotoxicity of ORG-25543 is 

associated with both its full and irreversible inhibition21 and it has been suggested that 

instead a reversible inhibitor may be used to avoid adverse side effects. As all 

inhibitors identified in this study are readily reversible within 5 minutes it is promising 

that they will be efficacious and without side effects. 

CONCLUSIONS 

A number of crystal structures of neurotransmitter transporters with the conserved 

LeuT-like fold show lipids interacting with the protein2,38, but the extent that lipid 

interactions may impact on the function of the transporters is not well understood. 

We have demonstrated that the lipid constituent of acyl-glycine compounds is 

essential in their specific interactions and mechanism of inhibition of the LeuT-like 

transporter, GlyT2, and not merely a non-selective, “sticky” adjunct. The data 

presented here establishes there is an ideal chain length and double bond 

conformation, and that potency and maximal level of inhibition are influenced by the 

lipid tail. Conservative differences between compounds are sufficient to impart or 



remove inhibitory activity which validates highly specific binding to a subtype 

selective allosteric pocket. In order to better understand the structural basis for lipid-

protein interactions and provide a working hypothesis for the requirements of double 

bonds in the acyl-tail, the specificity of acyl-head group interactions, and the 

molecular determinants for partial inhibition a comprehensive mutagenesis approach 

and/or structural studies will be required.   

In this study we have synthesized a number of acyl-glycine compounds which are 

GlyT2 inhibitors and contain novel synthetic tails which may be less susceptible to 

enzymatic degradation than the parent compound NAGly. We have identified a 

relatively potent (320 nM), reversible, and partial (61 ± 1.7 %) novel inhibitor of 

GlyT2 which has low activity on GlyT1 and is ~28-fold more potent than the 

endogenously produced ligand, NAGly. We suggest that partial inhibitors may have 

an advantage over full inhibitors by slowing the rate of clearance of glycine from the 

synapse rather than stopping it completely. Whilst this mechanism of inhibition 

should allow prolonged signalling through postsynaptic and extrasynaptic glycine 

receptors, it should not disrupt the equilibrium cytosolic glycine concentration and 

thereby allow maintenance of glycine vesicle filling and subsequent synaptic glycine 

release19.  A greater understanding of what governs the inhibitory properties of acyl-

glycine compounds may spur the development of effective GlyT2 inhibitors with 

desired maximal inhibition and reversibility characteristics, a complication which has 

hampered the progress of GlyT2 inhibitors as therapeutics. 

 

  



METHODS 

General Chemistry 

(Z)-hexadec-13-enoic acid and (Z)-octadec-15-enoic acid were prepared by our 

previously reported procedures 39,40. (E)-octadec-9-enoic acid was purchased from 

Chemsupply (Gillman, SA, Australia).  (Z)-hexadec-9-enoic acid, (Z)-octadec-11-enoic 

acid, (E)-octadec-11-enoic acid, (Z)-octadec-6-enoic acid and all other reagents and 

anhydrous solvents were purchased from Sigma Aldrich (Castle Hill, NSW, Australia). 

Non-commercially available MUFAs were synthesised as described in the supporting 

information. The purity of all test compounds (3 – 20) was confirmed by elemental 

analysis carried out in the Campbell Microanalytical Laboratory at the Department of 

Chemistry, University of Otago. All values were within ±0.4% of the calculated values. 

Dry Column Vacuum Chromatography (DCVC) was used to purify reaction products 

on silica gel with gradient elutions. TLC was performed on silica gel 60 F254 plates. 1H 

and 13C NMR spectra were recorded on an Agilent 500 MHz NMR. Spectra were 

referenced internally to residual solvent (CDCl3; 1H  7.26, 13C  77.10. d6-DMSO; 1H 

 2.49, 13C  39.52). High resolution mass spectra were recorded on Agilent 6510 Q-

TOF LC/MS.  

General procedure for EDCI coupling reaction 

To a solution of MUFA (2.0 mmol) in anhydrous DMF (10 mL) was added 

hydroxybenzotriazole hydrate (2.40 mmol), and EDCI (2.80 mmol). The mixture was 

stirred at room temperature for 1 h, then glycine ethyl ester hydrochloride (1.0 mmol) 

and triethylamine (0.607 g, 6.0 mmol) were added. The reaction mixture was stirred 

for 18 h, then diluted with water (50 mL). The crude product was extrated with ethyl 



acetate (3 x 25 mL) and purified on silica gel by stepwise gradient elution with 

chloroform/isopropanol (100:0 to 90:10), yielding the products as white solids.  

ethyl 2-[[(Z)-octadec-15-enoyl]amino]acetate. Yield = 93%, white powder. Mp. = 49 

- 51 oC. 1H NMR (500 MHz, CDCl3) δ 5.92 (s, 1H),  5.40–5.30 (m, 2H), 4.22 (q, 

J=7.0Hz, 2H), 4.04 (d, J=5.5Hz, 2H), 2.24 (t, J=7.5Hz, 2H), 2.08-1.95 (m, 4H), 1.65 (p, 

J=7.0Hz, 2H), 1.35-1.20 (m, 23H), 0.89 (t, J=7.5Hz, 3H). 13C NMR (100 MHz, CDCl3): 

δ 173.20, 170.17, 131.40, 129.32, 61.50, 41.31, 36.44, 29.76, 29.59, 29.57, 29.51, 

29.44, 29.39, 29.33, 29.30, 29.27, 29.21, 27.10, 25.60, 20.46, 14.39, 14.12. HRMS 

(ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; found, 368.3162. 

ethyl 2-[[(Z)-octadec-13-enoyl]amino]acetate. Yield = 90%, white powder. Mp. = 46 

- 47 oC. 1H NMR (500 MHz, DMSO-d6) δ 8.18 (t, J=6.0Hz, 1H),  5.32–5.30 (m, 2H), 

4.06 (q, J=7.0Hz, 2H), 3.76 (d, J=6.0Hz, 2H), 2.10 (t, J=7.5Hz, 2H),1.99-1.95 (m, 4H), 

1.46 (p, J=7.0Hz, 2H), 1.30-1.23(m, 20H), 1.17(t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 3H). 

13C NMR (100 MHz, DMSO-d6): δ 172.92, 170.19, 129.83, 129.79, 60.48, 40.81, 

35.19, 31.56, 29.28, 29.19 (3C), 29.17, 29.12, 29.04, 28.99, 28.76, 28.73, 26.75,26.50, 

25.37, 21.91, 14.25, 14.00. HRMS (ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; 

found, 368.3157. 

ethyl 2-[[(Z)-octadec-12-enoyl]amino]acetate. Yield = 76%, white powder. Mp. = 48 

- 49 oC. 1H NMR (500 MHz, DMSO-d6) δ 8.19 (t, J=6.0Hz, 1H),  5.35–5.33 (m, 2H), 

4.21 (q, J=7.0Hz, 2H), 3.76 (d, J=5.5Hz, 2H, 2H), 2.20 (t, J=7.5Hz, 2H), 2.04-1.99 (m, 

4H), 1.46 (p, J=7.0Hz, 2H), 1.30-1.23 (m, 20H), 1.17 (t, J=7.0Hz, 3H), 0.88 (t, J=7.0Hz, 

3H) . 13C NMR (100 MHz, DMSO-d6): δ 173.23, 170.16, 129.91, 129.88, 61.52, 41.34, 

36.46, 31.53, 29.77, 29.57,.29.52, 29.46, 29.48, 29.34, 29.30, 29.25, 27.20, 27.17, 



25.58, 22.58, 14.14, 14.08. HRMS (ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; 

found, 368.3153. 

ethyl 2-[[(Z)-octadec-11-enoyl]amino]acetate. Yield = 77%, white powder. Mp. = 48 

- 49 oC. 1H NMR (500 MHz, DMSO-d6) δ 8.18 (t, J=6.0Hz, 1H),  5.32–5.30 (m, 2H), 

4.06 (q, J=7.0Hz, 2H), 3.76 (d, J=6.0Hz, 2H, 2H), 2.10(t, J=7.5Hz, 2H), 2.00-1.95(m, 

4H), 1.46 (p, J=7.0Hz, 2H), 1.30-1.23(m, 20H), 1.17(t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 

3H) . 13C NMR (100 MHz, DMSO-d6): δ 175.81, 173.11, 132.76(2C), 63.39, 43.73, 

38.12, 34.25, 32.24, 32.21, 32.05, 31.97, 31.92, 31.72, 31.67, 31.39, 29.72, 29.70, 

28.30, 25.21, 17.18, 17.05. HRMS (ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; 

found, 368.3159. 

ethyl 2-[[(Z)-octadec-10-enoyl]amino]acetate. Yield = 72%, white powder. Mp. = 48 

- 49 oC. 1H NMR (500 MHz, DMSO-d6) δ 8.18 (t, J=6.0Hz, 1H),  5.32–5.30 (m, 2H), 

4.05 (q, J=7.0Hz, 2H), 3.76 (d, J=6.0Hz, 2H, 2H), 2.10 (t, J=7.5Hz, 2H), 2.00-1.95 (m, 

4H), 1.47 (p, J=7.5Hz, 2H), 1.30-1.23 (m, 20H), 1.17 (t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 

3H) . 13C NMR (100 MHz, DMSO-d6): δ 172.68, 169.99, 129.64, 129.63, 60.27, 40.60, 

34.98, 31.27, 29.11, 29.10, 28.79, 28.59, 28.54, 28.53, 26.59, 26.56, 25.17, 22.07, 

20.76, 14.09, 14.06, 13.94. HRMS (ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; 

found, 368.3159. 

ethyl 2-[[(Z)-octadec-8-enoyl]amino]acetate. Yield = 73%, white powder. Mp. = 49 

- 50 oC. 1H NMR (500 MHz, DMSO-d6)  δ 8.19 (t, J=6.0Hz, 1H),  5.32–5.30 (m, 2H), 

4.07 (q, J=7.0Hz, 2H), 3.77 (d, J=6.0Hz, 2H, 2H), 2.10 (t, J=7.5Hz, 2H), 2.00-1.95 (m, 

4H), 1.47 (p, J=7.5Hz, 2H), 1.28-1.20 (m, 20H), 1.17 (t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 

3H) . 13C NMR (100 MHz, DMSO-d6): δ 172.66, 170.98, 129.65, 129.61, 60.26, 40.60, 

34.96, 31.27, 29.06, 29.04, 28.97, 28.86, 28.67(2C), 28.57, 28.41, 26.59, 26.56, 25.14, 



21.02, 14.06, 13.95. HRMS (ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; found, 

368.3158. 

 ethyl 2-[[(Z)-octadec-7-enoyl]amino]acetate. Yield = 84%, white powder. Mp. = 48 

- 49 oC. 1H NMR (500 MHz, DMSO-d6)  δ 8.20 (t, J=6.0Hz, 1H),  5.32–5.30 (m, 2H), 

4.06 (q, J=7.5Hz, 2H), 3.76 (d, J=6.0Hz, 2H, 2H), 2.10 (t, J=7.0Hz, 2H), 1.99-1.95 (m, 

4H), 1.48 (p, J=7.0Hz, 2H), 1.31-1.23 (m, 20H), 1.17 (t, J=7.0Hz, 3H), 0.88 (t, J=7.0Hz, 

3H) . 13C NMR (100 MHz, DMSO-d6): δ 174.06, 129.37 (2C), 60.18, 40.60, 34.39, 

29.93, 29.56, 29.52, 29.51(2C), 29.48, 29.39(2C), 29.25, 29.22, 29.11, 26.82, 26.75, 

24.96, 14.22, 14.05. HRMS (ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; found, 

368.3354. 

ethyl 2-[[(Z)-octadec-6-enoyl]amino]acetate. Yield = 64%, white powder. Mp. = 47 

- 48 oC. 1H NMR (500 MHz, DMSO-d6)  δ 8.19 (t, J=6.0Hz, 1H), 5.35–5.33 (m, 2H), 

4.06 (q, J=7.5Hz, 2H), 3.76 (d, J=6.0Hz, 2H, 2H), 2.10 (t, J=7.0Hz, 2H), 1.99-1.95 (m, 

4H), 1.48 (p, J=7.0Hz, 2H), 1.30-1.22 (m, 20H), 1.17 (t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 

3H) . 13C NMR (100 MHz, DMSO-d6): δ 173.07, 170.43, 130.24, 129.86, 60.73, 41.07, 

35.31, 31.75, 29.58, 29.49, 29.47, 29.45, 29.34, 29.15, 29.11, 29.08, 27.07, 26.90, 

25.29, 22.55, 14.52, 14.41. HRMS (ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; 

found, 368.3155 

ethyl 2-[[(E)-octadec-11-enoyl]amino]acetate. Yield = 90%, white powder. Mp. = 49 

- 50 oC. 1H NMR (500 MHz, DMSO-d6)  δ 8.18 (t, J=6.0Hz, 1H),  5.35–5.30 (m, 2H), 

4.06 (q, J=7.0Hz, 2H), 3.76 (d, J=6.0Hz, 2H, 2H), 2.09 (t, J=7.5Hz, 2H), 1.98-1.88(m, 

4H), 1.47 (p, J=7.0Hz, 2H), 1.32-1.20 (m, 20H), 1.17 (t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 

3H) . 13C NMR (100 MHz, DMSO-d6): δ 175.81, 173.11, 132.76 (2C), 63.39, 43.73, 

38.12, 34.25, 32.24, 32.21, 32.05, 31.97, 31.92, 31.72, 31.67, 31.39, 29.72, 29.70, 



28.30, 25.21, 17.18, 17.05. HRMS (ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; 

found, 368.3158. 

ethyl 2-[[(E)-octadec-9-enoyl]amino]acetate. Yield = 90%, white powder. Mp. = 62 

- 63 oC. 1H NMR (500 MHz, DMSO-d6)  δ 8.18(t, J=6.0Hz, 1H),  5.36–5.34 (m, 2H), 

4.06(q, J=7.0Hz, 2H), 3.76(d, J=6.0Hz, 2H, 2H), 2.09(t, J=7.5Hz, 2H), 1.94- 1.91 (m, 

4H), 1.47 (p, J=7.0Hz, 2H), 1.30-1.23(m, 20H), 1.17(t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 

3H) . 13C NMR (100 MHz, DMSO-d6): δ 172.86, 170.16, 130.23 (2C), 60.44, 40.78, 

35.15, 32.11, 31.43, 29.16 , 29.15, 28.98 (2C), 28.85, 28.80, 28.65, 28.56 (2C), 25.33, 

22.25, 14.23, 14.11. HRMS (ESI) m/z [M+H]+ calcd for C22H42NO3, 368.3159; found, 

368.3155. 

ethyl 2-[[(Z)-hexadec-13-enoyl]amino]acetate. Yield = 87%, colourless liquid.  1H 

NMR (500 MHz, CDCl3) δ 5.92 (s, 1H),  5.40–5.30 (m, 2H), 4.22 (q, J=7.0Hz, 2H), 4.02 

(d, J=5.5Hz, 2H), 2.23 (t, J=7.5Hz, 2H), 2.08-1.95 (m, 4H), 1.64 (p, J=7.0Hz, 2H), 1.35-

1.20 (m, 19H), 0.96 (t, J=7.5Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 173.21, 170.13, 

131.45, 129.33, 61.51, 41.33, 36.45, 29.76, 29.58, 29.57, 29.51, 29.44, 29.31, 29.27, 

29.24, 27.08, 25.56, 20.48, 14.38, 14.12. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2840. 

ethyl 2-[[(Z)-hexadec-11-enoyl]amino]acetate. Yield = 66%, colourless liquid. 1H 

NMR (500 MHz, DMSO-d6) δ 8.18 (t, J=6.0Hz, 1H),  5.33–5.31 (m, 2H), 4.07 (q, J-

7.0Hz, 2H), 3.76 (d, J-6.0Hz, 2H), 2.09 (t, J=7.5Hz, 2H), 1.98-1.95 (m, 4H), 1.46 (p, 

J=7.0Hz, 2H), 1.28-1.23 (m, 16H), 1.16 (t, J=7.0Hz, 3H), 0.88 (t, J=7.0Hz, 3H) . 13C 

NMR (100 MHz, DMSO-d6): δ 172.87, 170.16, 129.80, 129.77, 60.44, 40.78, 35.16, 

31.53, 29.28, 29.08, 29.00, 28.95, 28.75, 28.70, 26.74, 26.47, 25.34, 21.88, 14.23, 

13.98. HRMS (ESI) m/z [M+H]+ calcd for C20H38NO3, 340.2846; found, 340.2847. 



ethyl 2-[[(Z)-hexadec-10-enoyl]amino]acetate. Yield = 71%, colourless liquid.  1H 

NMR (500 MHz, DMSO-d6) δ 8.18 (t, J=6.0Hz, 1H),  5.35–5.33 (m, 2H), 4.06 (q, 

J=7.0Hz, 2H), 3.76 (d, J=5.5Hz, 2H), 2.09 (t, J=7.5Hz, 2H), 1.99-1.95 (m, 4H), 1.46 (p, 

J=7.0Hz, 2H), 1.30-1.23 (m, 16H), 1.17(t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 3H) . 13C 

NMR (100 MHz, DMSO-d6): δ 172.87, 170.16, 129.64, 129.45, 60.44, 40.75, 35.13, 

31.50, 29.28, 29.08, 28.99, 28.95, 28.75, 28.70, 26.70, 26.43, 25.34, 21.85, 14.23, 

13.98. HRMS (ESI) m/z [M+H]+ calcd for C20H38NO3, 340.2846; found, 340.2846. 

ethyl 2-[[(Z)-hexadec-9-enoyl]amino]acetate. Yield = 65%, colourless liquid. 1H 

NMR (500 MHz, DMSO-d6) δ 8.15 (t, J=6.0Hz, 1H),  5.29–5.27 (m, 2H), 4.05 (q, 

J=7.0Hz, 2H), 3.74 (d, J=5.5Hz, 2H), 2.07 (t, J=7.5Hz, 2H), 1.96-1.92 (m, 4H), 1.45 (p, 

J=7.0Hz, 2H), 1.27-1.21(m, 16H), 1.15 (t, J=7.0Hz, 3H), 0.82 (t, J=7.0Hz, 3H) . 13C 

NMR (100 MHz, DMSO-d6): δ 172.78, 170.12, 129.75, 129.69, 60.41, 40.75, 34.78, 

31.43, 29.27, 29.10, 29.00, 28.84, 28.78, 28.37, 26.76, 26.72, 25.21, 22.24, 14.22, 

14.11. HRMS (ESI) m/z [M+H]+ calcd for C20H38NO3, 340.2846; found, 340.2850. 

ethyl 2-[[(Z)-hexadec-7-enoyl]amino]acetate. Yield = 63%, colourless liquid. 1H 

NMR (500 MHz, DMSO-d6)  δ 8.18 (t, J=6.0Hz, 1H),  5.32–5.30 (m, 2H), 4.06 (q, 

J=7.0Hz, 2H), 3.77 (d, J=6.0Hz, 2H), 2.09 (t, J=7.5Hz, 2H), 1.97-1.95 (m, 4H), 1.48 (p, 

J=7.5Hz, 2H), 1.30-1.23 (m, 16H), 1.17 (t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 3H) . 13C 

NMR (100 MHz, DMSO-d6): δ 172.78, 170.12, 129.79, 129.69, 60.41, 40.75, 35.10, 

31.43, 29.27, 29.10, 29.00, 28.84, 28.78, 28.37, 26.74, 26.71, 25.21, 22.24, 14.20, 

14.08. HRMS (ESI) m/z [M+H]+ calcd for C20H38NO3, 340.2846; found, 340.2850. 

ethyl 2-[[(Z)-hexadec-5-enoyl]amino]acetate. Yield = 50%, colourless liquid. 1H 

NMR (500 MHz, DMSO-d6)  δ 8.20 (t, J=5.5Hz, 1H),  5.34–5.30 (m, 2H), 4.06 (q, 

J=7.0Hz, 2H), 3.77 (d, J=6.0Hz, 2H), 2.10 (t, J=7.5Hz, 2H), 2.00-1.95 (m, 4H), 1.52 (p, 



J=7.0Hz, 2H), 1.28-1.23 (m, 16H), 1.17 (t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 3H) . 13C 

NMR (100 MHz, DMSO-d6): δ 172.73, 170.19, 130.34, 129.22, 60.45, 40.80, 34.70, 

31.47, 29.32, 29.22, 29.10, 29.08, 28.88, 28.83, 26.79, 2636, 25.51, 22.27, 14.24, 

14.13. HRMS (ESI) m/z [M+H]+ calcd for C20H38NO3, 340.2846; found, 340.2849. 

ethyl 2-[[(Z)-hexadec-4-enoyl]amino]acetate. Yield = 56%, colourless liquid. 1H 

NMR (500 MHz, DMSO-d6)  δ 8.23 (t, J=6.0Hz, 1H),  5.32–5.30 (m, 2H), 4.06 (q, 

J=7.0Hz, 2H), 3.77 (d, J=6.0Hz, 2H), 2.20 (t, J=7.0Hz, 2H), 2.15-2.12 (m, 2H), 1.99-

1.97 (m, 2H), 1.29-1.23(m, 16H), 1.17 (t, J=7.0Hz, 3H), 0.84 (t, J=7.0Hz, 3H) . 13C 

NMR (100 MHz, DMSO-d6): δ 172.08, 169.93, 130.21, 129.36, 60.29, 40.60, 34.98, 

31.28, 29.04, 29.02, 28.99, 28.91, 28.70, 26.64, 26.57, 23.01, 22.08, 20.74, 14.04, 

13.93. HRMS (ESI) m/z [M+H]+ calcd for C20H38NO3, 340.2846; found, 340.2848. 

ethyl 2-[[(Z)-tetradec-9-enoyl]amino]acetate. Yield = 70%, colourless liquid. 1H 

NMR (500 MHz, DMSO-d6): δ 8.19 (t, J=6.0Hz, 1H), 5.32–5.30 (m, 2H), 4.07 (q, 

J=7.0Hz, 2H), 3.77 (d, J=6.0Hz, 2H), 2.10 (t, J=7.5Hz, 2H), 2.05-1.90 (m, 4H), 1.47 (p, 

J=7.5Hz, 2H), 1.30-1.20 (m, 12H), 1.17 (t, J=7.0Hz, 2H), 0.85 (t, J=7.0Hz, 3H) . 13C 

NMR (100 MHz, DMSO-d6): δ 172.64, 169.97, 129.61, 129.58, 60.26, 40.60, 34.97, 

31.35, 29.09, 28.65, 28.52, 28.51, 26.58, 26.30, 25.15, 21.69, 14.04, 13.79. HRMS 

(ESI) m/z [M+H]+ calcd for C18H34NO3, 312.2533; found, 312.2529. 

 



General procedure for synthesis of 3 – 20 

To a solution of the ethyl ester (0.51 mmol) in ethanol (30 mL), was added 1M NaOH 

(10 mL). The solution was stirred at 40 oC for 3 h. The ethanol was removed under 

reduced pressure, and the aqueous residue was adjusted to pH 2 with 0.5 M HCl. The 

resulting suspension was filtered and the solid product washed with water (10 mL) and 

ethanol (5 mL).  

2-[[(Z)-octadec-15-enoyl]amino]acetic acid (3). Yield = 87%, white powder. Mp. = 

87 - 89 oC. 1H NMR (500 MHz, CDCl3) δ 6.02 (s, 1H),  5.40–5.30 (m, 2H), 4.09 (d, 

J=5.5Hz, 2H), 2.27 (t, J=7.5Hz, 2H), 2.10-1.95 (m, 4H), 1.65 (p, J=7.0Hz, 2H), 1.35-

1.20 (m, 20H), 0.96 (t, J=7.5Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.95, 

171.86, 131.71, 129.46, 40.97, 35.50, 29.56, 29.46, 29.44, 29.38, 29.32, 29.25, 29.05, 

29.04, 26.93, 25.63, 20.46, 14.69. HRMS (ESI) m/z [M+H]+ calcd for C20H38NO3, 

340.2846; found, 340.2847. Anal. Calcd for C20H37NO3.1/4H2O: C 69.83, H 10.99, N 

4.07. Found: C 69.95, H 11.17, N 4.03. 

 2-[[(Z)-octadec-13-enoyl]amino]acetic acid (4). Yield = 77%, white powder. Mp. = 

95 - 96 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.06 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.70 (d, J=6.0HZ, 2H), 2.09 (t, J=7.5Hz, 2H), 1.98-1.95 (m, 4H), 1.47 (p, J=7.0Hz, 2H), 

1.31-1.23 (m, 20H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.37, 

171.38, 129.63, 129.59, 40.82, 35.09, 31.36, 29.08, 29.00 (2C), 28.94, 28.85, 28.81, 

28.62, 28.57, 26.55, 26.30, 25.19, 21.70, 13.81. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2850. Anal. Calcd for C20H37NO3.1/4H2O: C 69.83, 

H 10.99, N 4.07. Found: C 69.88, H 11.03, N 4.15. 



2-[[(Z)-octadec-12-enoyl]amino]acetic acid (5). Yield = 78%, white powder. Mp. = 

94 - 95 oC. 1H NMR (500 MHz, DMSO-d6): δ 7.90 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.61(d, J=5.5HZ, 2H), 2.08(t, J=7.5Hz, 2H), 1.99-1.95(m, 4H), 1.46 (p, J=7.0Hz, 2H), 

1.30-1.22 (m, 20H), 0.84 (t, J=7.0Hz, 3H) . 13C NMR (100 MHz, DMSO-d6): δ. 172.33, 

171.35, 129.62, 129.61, 40.84, 35.08, 30.85, 29.07, 28.92, 28.84 (2C), 28.80, 28.79 

(2C), 28.61, 28.56, 26.54, 25.18, 21.95, 13.91. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2850. Anal. Calcd for C20H37NO3.1/2H2O: C 68.92, 

H 10.99, N 3.92. Found: C 68.61, H 11.03, N 3.96. 

2-[[(Z)-octadec-11-enoyl]amino]acetic acid (6). Yield = 87%, white powder. Mp. = 

92 - 93 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.00 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.65 (d, J=6.0Hz, 2H), 2.07 (t, J=7.5Hz, 2H), 1.99-1.95(m, 4H), 1.46 (p, J=6.5Hz, 2H), 

1.30-1.22(m, 20H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.53, 

171.61, 129.80 (2C), 41.03, 40.20, 35.27, 31.30, 29.28, 29.26, 29.11, 29.04, 28.99, 

28.81, 28.77, 28.44, 26.76, 25.37, 22.26, 14.10. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2840. Anal. Calcd for C20H37NO3.1/4H2O: C 69.83, 

H 10.99, N 4.07. Found: C 69.84, H 11.01, N 3.94. 

2-[[(Z)-octadec-10-enoyl]amino]acetic acid (7). Yield = 92%, white powder. Mp. = 

85 - 86 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.04 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.70 (d, J=6.0HZ, 2H), 2.08 (t, J=7.5Hz, 2H), 1.99-1.95 (m, 4H), 1.47 (p, J=7.0Hz, 2H), 

1.30-1.23 (m, 20H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.06, 

171.00, 129.25, 129.24, 40.96, 34.67, 30.87, 28.72, 28.70, 28.40, 28.20 (2C), 28.14 

(2C), 28.12 26.20 26.16, 24.78, 21.67, 13.55. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2851. Anal. Calcd for C20H37NO3.1/2H2O: C 68.92, 

H 10.99, N 3.92. Found: C 68.90, H 10.64, N 3.94. 



2-[[(Z)-octadec-8-enoyl]amino]acetic acid (8). Yield = 96%, white powder. Mp. = 91 

- 92 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.02 (t, J=5.0Hz, 1H), 5.32–5.30 (m, 2H), 

3.70 (d, J=6.0HZ, 2H), 2.09(t, J=7.5Hz, 2H), 1.98-1.95 (m, 4H), 1.46 (p, J=7.0Hz, 2H), 

1.31-1.23 (m, 20H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.44, 

171.44, 129.64, 129.62, 40.68, 35.06, 31.28, 29.10, 29.07, 28.98, 28.87, 28.68, 28.58, 

28.50, 28.44, 26.61, 26.57, 25.17, 22.09, 13.95. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2847. Anal. Calcd for C20H37NO3.1/2H2O: C 68.92, 

H 10.99, N 3.92. Found: C 68.84, H 11.02, N 3.97. 

2-[[(Z)-octadec-7-enoyl]amino]acetic acid (9). Yield = 92%, white powder. Mp. = 86 

- 87 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.10 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.70 (d, J=6.0HZ, 2H), 2.10 (t, J=7.0Hz, 2H), 1.97 (m, 4H), 1.48 (p, J=7.0Hz, 2H), 1.31-

1.23 (m, 20H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.63, 

171.60, 129.84, 129.75, 40.75, 35.20, 31.47, 29.28, 29.19, 29.16, 29.13, 29.05, 28.87, 

28.77, 28.45, 26.76, 26.74, 25.25, 22.27, 14.13. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2851. Anal. Calcd for C20H37NO3: C 70.75, H 10.98, 

N 4.13. Found: C 70.75, H 11.16, N 4.18. 

2-[[(Z)-octadec-6-enoyl]amino]acetic acid (10). Yield = 89%, white powder. Mp. = 

90 - 91 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.04 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.70 (d, J=6.0Hz, 2H), 2.10 (t, J=7.0Hz, 2H), 1.98-1.95 (m, 4H), 1.48 (p, J=7.5Hz, 2H), 

1.30-1.23 (m, 20H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.34, 

171.38, 129.75, 129.43, 40.67, 34.91, 31.28, 29.11, 29.02, 28.99, 28.98, 28.87, 28.70, 

28.69, 28.61, 26.59, 26.44, 24.83, 22.08, 13.95. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2845. Anal. Calcd for C20H37NO3: C 70.75, H 10.98, 

N 4.13. Found: C 70.56, H 11.28, N 4.01. 



2-[[(E)-octadec-11-enoyl]amino]acetic acid (11). Yield = 82%, white powder. Mp. = 

98 - 99 oC. 1H NMR (500 MHz, DMSO-d6): δ 7.94 (t, J=5.5Hz, 1H), 5.36–5.34 (m, 2H), 

3.65 (d, J=6.0Hz, 2H), 2.08 (t, J=7.0Hz, 2H), 1.93-1.92 (m, 4H), 1.46 (p, J=6.5Hz, 2H), 

1.28-1.22(m, 20H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.57, 

171.55, 130.25, 40.96, 35.27, 32.11, 31.27, 29.17, 29.14 (2C), 29.11, 29.01, 28.96 

(2C), 28.79, 28.64, 28.30, 25.36, 22.25, 14.11. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2852. Anal. Calcd for C20H37NO3.1/4H2O: C 69.83, 

H 10.99, N 4.07. Found: C 69.84, H 11.01, N 3.94. 

2-[[(E)-octadec-9-enoyl]amino]acetic acid (12). Yield = 93%, white powder. Mp. = 

105 - 106 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.04(t, J=5.5Hz, 1H), 5.36–5.40 (m, 

2H), 3.70 (d, J=6.0Hz, 2H), 2.10 (t, J=7.0Hz, 2H), 1.94-1.91 (m, 4H), 1.48 (p, J=7.0Hz, 

2H), 1.30-1.23 (m, 20H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 

172.67, 171.60, 130.24, 40.73, 40.20, 35.22, 32.11, 31.44, 29.17, 28.99 (4C), 28.86, 

28.77, 28.65, 28.59, 25.34, 22.25, 14.12. HRMS (ESI) m/z [M+H]+ calcd for 

C20H38NO3, 340.2846; found, 340.2851. Anal. Calcd for C20H37NO3: C 70.75, H 10.98, 

N 4.13. Found: C 70.42, H 11.24, N 4.00. 

2-[[(Z)-hexadec-13-enoyl]amino]acetic acid (13). Yield = 88%, white powder. Mp. = 

84 - 86 oC. 1H NMR (500 MHz, DMSO-d6) δ 8.06 (t, J=5.5Hz, 1H), 5.35–5.25 (m, 2H), 

3.76 (d, J-5.5Hz, 2H), 2.08 (t, J=7.5Hz, 2H), 2.00-1.90 (m, 4H), 1.46 (p, J=7.0Hz, 2H), 

1.30-1.10 (m, 16H), 0.88 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.95, 

171.86, 131.71, 129.46, 40.97, 35.50, 29.56, 29.46, 29.44, 29.38, 29.32, 29.25, 29.05, 

29.04, 26.93, 25.63, 20.46, 14.69. HRMS (ESI) m/z [M+H]+ calcd for C18H43NO3, 

312.2533; found, 312.2529. Anal. Calcd for C18H33NO3: C 69.41, H 10.68, N 4.50. 

Found: C 69.33, H 10.71, N 4.34. 



2-[[(Z)-hexadec-11-enoyl]amino]acetic acid (14). Yield = 65%, white powder. Mp. = 

85 - 86 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.07 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.70 (d, J=5.5Hz, 2H), 2.09 (t, J=7.5Hz, 2H), 1.98-1.95 (m, 4H), 1.46 (p, J=7.0Hz, 2H), 

1.31-1.23(m, 16H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.56, 

171.44, 129.65, 129.61, 40.60, 35.06, 31.37, 29.11, 28.93, 28.84 (2C), 28.800, 28.61, 

28.59, 26.58, 26.31, 25.10, 21.71, 13.82. HRMS (ESI) m/z [M+H]+ calcd for 

C18H34NO3, 312.2533; found, 312.2534. Anal. Calcd for C18H33NO3: C 69.41, H 10.68, 

N 4.50. Found: C 69.57, H 10.87, N 4.32. 

2-[[(Z)-hexadec-10-enoyl]amino]acetic acid (15). Yield = 72%, white powder. Mp. = 

82 - 83 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.02 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.68(d, J=6.0Hz, 2H), 2.08 (t, J=7.5Hz, 2H), 1.99-1.95 (m, 4H), 1.46 (p, J=7.0Hz, 2H), 

1.30-1.22 (m, 16H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.64, 

171.58, 129.83 (2C), 40.83, 35.25, 31.04, 29.29, 28.98 (2C), 28.78 (2C), 28.76, 26.77, 

26.74, 25.17, 22.15, 14.11. HRMS (ESI) m/z [M+H]+ calcd for C18H34NO3, 312.2533; 

found, 312.2535. Anal. Calcd for C18H33NO3: C 69.41, H 10.68, N 4.50. Found: C 

69.45, H 10.92, N 4.35. 

2-[[(Z)-hexadec-9-enoyl]amino]acetic acid (16). Yield = 92%, white powder. Mp. = 

83 - 84 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.05 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.68 (d, J=6.0HZ, 2H), 2.09 (t, J=7.5Hz, 2H), 1.98-1.96(m, 4H), 1.46 (p, J=6.5Hz, 2H), 

1.28-1.23 (m, 16H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.49, 

171.41, 129.63 (2C), 40.56, 35.04, 31.11, 29.08, 29.07, 28.67, 28.58, 28.52 (2C), 

28.25, 26.58, 25.16, 22.07, 13.93. HRMS (ESI) m/z [M+H]+ calcd for C18H34NO3, 

312.2533; found, 312.2532. Anal. Calcd for C18H33NO3.1/4H2O: C 68.42, H 10.69, N 

4.43. Found: C 68.71, H 10.79, N 4.45. 



2-[[(Z)-hexadec-7-enoyl]amino]acetic acid (17). Yield = 78%, white powder. Mp. = 

82 - 83 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.02 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.67 (d, J=5.5Hz, 2H), 2.09 (t, J=7.5Hz, 2H), 1.97-1.96 (m, 4H), 1.47 (p, J=7.0Hz, 2H), 

1.30-1.23 (m, 16H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.44, 

171.42, 129.65, 129.58, 40.60, 35.02, 31.27, 29.11, 28.95, 28.84, 28.67, 28.61, 28.27, 

26.58, 26.56, 25.07, 22.08, 13.95. HRMS (ESI) m/z [M+H]+ calcd for C18H34NO3, 

312.2533; found, 312.2535. Anal. Calcd for C18H33NO3: C 69.41, H 10.68, N 4.50. 

Found: C 69.72, H 10.98, N 4.47. 

2-[[(Z)-hexadec-5-enoyl]amino]acetic acid (18). Yield = 66%, white powder. Mp. = 

88 - 89 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.00 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 2H), 

3.60 (d, J=5.5Hz, 2H), 2.10(t, J=7.5Hz, 2H), 1.97-1.95 (m, 4H), 1.51 (p, J=7.5Hz, 2H), 

1.28-1.23(m, 16H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.63, 

171.62, 129.84, 129.77, 40.79, 35.22, 31.47, 29.30, 29.14, 29.03 (2C), 28.87, 28.79, 

28.46, 26.75, 25.26, 22.28, 14.14. HRMS (ESI) m/z [M+H]+ calcd for C18H34NO3, 

312.2533; found, 312.2536. Anal. Calcd for C18H33NO3: C 69.41, H 10.68, N 4.50. 

Found: C 69.46, H 10.83, N 4.53. 

2-[[(Z)-hexadec-4-enoyl]amino]acetic acid (19). Yield = 60%, white powder. Mp. = 

116 - 117 oC. 1H NMR (500 MHz, DMSO-d6): δ 7.70 (t, J=5.5Hz, 1H), 5.32–5.30 (m, 

2H), 3.51 (d, J=5.0Hz, 2H), 2.20 (m, 2H), 2.10 (t, J=6.5Hz,2H), 1.98-1.95 (m, 2H), 

1.40-1.23 (m, 18H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.65, 

171.63, 129.82, 129.79, 40.68, 35.10, 31.42, 29.34, 29.24, 29.07 (2C), 28.86, 28.77, 

28.48, 26.72, 25.23, 22.27, 14.14.  HRMS (ESI) m/z [M+H]+ calcd for C18H34NO3, 

312.2533; found, 312.2535. Anal. Calcd for C18H33NO3.H2O: C 65.62, H 10.71, N 4.25. 

Found: C 65.77, H 10.36, N 4.23. 



2-[[(Z)-tetradec-9-enoyl]amino]acetic acid (20). Yield = 93%, white powder. Mp. = 

70 - 71 oC. 1H NMR (500 MHz, DMSO-d6): δ 8.09 (t, J=6.0Hz, 1H), 5.32–5.30 (m, 2H), 

3.69 (d, J=6.0Hz, 2H), 2.09 (t, J=7.5Hz, 2H), 2.05-1.90 (m, 4H), 1.45 (p, J=7.5Hz,2H), 

1.30-1.18 (m, 12H), 0.84 (t, J=7.0Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 172.58, 

171.44, 129.66, 129.62, 40.57, 35.8, 31.37, 29.11, 28.68, 28.60, 28.54, 26.60, 26.32, 

25.20, 21.72, 13.84. HRMS (ESI) m/z [M+H]+ calcd for C16H30NO3, 284.2202; found, 

284.2208. Anal. Calcd for C16H29NO3.3/4H2O: C 64.72, H 10.35, N 4.72. Found: C 

65.08, H 9.98, N 4.78. 

Oocyte harvesting and glycine transporter expression 

GlyT2a and GlyT1b cDNA were subcloned into pOTV (plasmid oocyte transcription 

vector), plasmids were linearised using SpeI (New England Biolabs (Genesearch) 

Arundel, Australia), and mRNA was transcribed using T7 RNA polymerase 

(mMessagemMachine kit, Ambion, TX, USA). Oocytes were surgically removed from 

Xenopus laevis frogs as previously described41 in accordance with the Australian 

Code of Practice for the Care and Use of Animals for Scientific Purposes. Defoliculated 

stage V-VI oocytes were injected with mRNA (Drummond Nanoinject, Drummond 

Scientific Co., Broomall, PA, USA), and stored in standard frog Ringer’s solution 

(ND96), supplemented with 2.5 mM sodium pyruvate, 0.5 mM theophylline, 50 µg/mL 

gentamicin and 100 µM/mL tetracycline until transporter expression levels were 

sufficient to measure transporter function. 

Electrophysiology 

2-5 days following injection, glycine transport currents were measured at -60 mV using 

Geneclamp 500 amplifier (Axon Instruments, Foster City, CA, USA) with a Powerlab 

2/20 chart recorder (ADInstruments, Sydney, Australia) using chart software 



(ADInstruments). Synthesised acyl-glycines were dissolved in DMSO (10 mg/mL) and 

co-applied with the EC50 concentration of glycine to the recording bath until transport 

current was reduced. ND96 was then perfused over the oocyte for five minutes to wash 

the bath and restore glycine transport. 

3H-Glycine Uptake assays 

Oocytes expressing GlyT2 as well as uninjected controls were pre-incubated with 3 

µM acyl-glycine lipids for 2 minutes at room temperature and then incubated with 10 

µM 3H-Glycine for 0.5, 1, 2, 5 and 10 minutes and then washed 3 times in ice cold 

ND96. Oocytes were then placed in 0.1 M NaOH for 30 minutes to lyse the oocytes. 

Scintillant was added and the 3H counted in a Trilux beta counter. The rate of uptake 

was estimated by fitting the linear portion of the time course to a straight line.     

Data analysis 

Data analysis was performed in GraphPad Prism 7.02 (GraphPad Software, San 

Diego, CA, USA). IC50 values were calculated using least-squares curve fitting 

analysis and presented as mean ± SEM.  Inhibition-concentration curves were 

generated using the equation: Y = Bottom + (Top-Bottom)/(1+10[I]-logIC50), where [I] is 

log[acyl-glycine] (µM), Y is current normalised to glycine without inhibitor present, and 

Top and Bottom are the maximal and minimal plateau responses respectively. This 

equation was constrained to have the bottom value > 0 and the standard hill slope -

1.0. .  

Materials 

All chemicals were obtained from Sigma Chemical Co. (Sydney, Australia) unless 

otherwise stated. 
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