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ABSTRACT 22 

Reverse vaccinology has the potential to rapidly advance vaccine development against 23 

parasites, but it is unclear which features studied in-silico will advance vaccine development. 24 

Here we consider Neospora caninum which is a globally distributed protozoan parasite 25 

causing significant economic and reproductive loss to cattle industries worldwide. The aim of 26 

this study was to use a reverse vaccinology approach to compile a worthy vaccine candidate 27 

list for N. caninum, including pathogen-associated molecular patterns (PAMPs). The in silico 28 

approach essentially involved obtaining protein characteristics from public databases or 29 

computationally predicting them for every known Neospora protein. A wide range of data on 30 

features or attributes of the genes or proteins were collected and analysed using an automated 31 

high-throughput process.  The final vaccine list compiled was judged to be the optimum 32 

within the constraints of available data, current knowledge, and existing bioinformatics 33 

programs.  We consider and provide some suggestions and experience on how ranking of 34 

vaccine candidate lists can be performed. This study is therefore important in that it provides 35 

a valuable resource for establishing new directions in vaccine research against neosporosis 36 

and other parasitic diseases of economic and medical importance. 37 

 38 

Keywords: Neospora caninum, in silico vaccine discovery, reverse vaccinology,  machine 39 

learning,  pathogen-associated molecular patterns.  40 
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1. Introduction 42 

 Previous studies (Goodswen et al., 2015; Goodswen et al., 2013b, 2014a) have 43 

proposed that subunit vaccine candidates against target eukaryotic pathogens can 44 

theoretically be discovered using an in silico approach based on the principle of reverse 45 

vaccinology. Many publications describe reverse vaccinology in detail (Davies and Flower, 46 

2007; Donati and Rappuoli, 2013; Jones, 2012). An in silico approach in essence predicts 47 

protein antigens using biological data pertinent to the target pathogen. This is in direct 48 

contrast to the traditional culture-based approach that identifies protein antigens by 49 

cultivating and dissecting the pathogen in the laboratory. Candidacy validation in appropriate 50 

assays, animal models, and ultimately hosts is still nevertheless a mandatory requirement for 51 

both approaches. The foremost advantage of the in silico approach, however, is that 52 

theoretically every single pathogen protein can be computationally analysed for its vaccine 53 

candidacy potential; whereas the traditional approach is limited to those proteins captured 54 

during the laboratory process. Furthermore, predicting a list of potential antigens for 55 

laboratory validation is relatively inexpensive and takes only weeks of computing time in 56 

comparison to the more labour intensive and expensive traditional approach.  57 

 The primary biological data for the in silico approach are protein sequences from the 58 

target pathogen. Such sequences contain information/signals for predicting informative 59 

protein characteristics. For example, predicting whether a protein is typically found on cell 60 

membranes or secreted. As yet there is no bioinformatics program to predict that a protein 61 

will induce the desired protective immune response in a host. This is mainly due to not 62 

knowing the target characteristic to predict. In other words, no distinguishing signal within a 63 

protein sequence has so far been detected that clearly indicates a protein is immunogenic. 64 

Consequently, the primary in silico strategy is to predict and/or gather known protein 65 



characteristics that suggest a protein might be immunogenic and worthy of laboratory 66 

validation.  67 

 As a case study we consider the application of reverse vaccinology to vaccine 68 

development against Neospora caninum. This obligate intracellular parasite of the phylum 69 

Apicomplexa is of high veterinary importance and has been reviewed in detail recently 70 

(Dubey and Schares, 2011; Goodswen et al., 2013c; Monney and Hemphill, 2014). Infection 71 

by this parasite can cause the clinical disease neosporosis resulting in abortion in cattle. The 72 

worldwide accumulative financial loss due to abortions is estimated to exceed US$1 billion 73 

annually (Reichel et al., 2013). This loss presents a substantial burden to both the dairy and 74 

beef industries. A vaccine is considered one form of control.  75 

 As to date, there are just over 10,000 N. caninum protein sequences available through 76 

publicly accessible databases (Goodswen et al., 2013c).  It is unlikely this protein count truly 77 

represents every protein that can potentially be expressed by the N. caninum genome, but, in 78 

principle, the primary data to initiate reverse vaccinology exist. Determining which proteins 79 

out of the 10,000 that are worthy of laboratory validation was the end goal of this study. The 80 

foremost obstacle to a successful outcome is that it remains unclear what constitutes an ideal 81 

vaccine candidate for N. caninum. What is clear, and is well-supported by many studies 82 

(Andrianarivo et al., 2005; Rosbottom et al., 2008; Williams et al., 2007), is that the whole N. 83 

caninum organism in the form of tachyzoites induces both humoral (antibodies) and cell-84 

mediated immunity (CMI) responses by the host in an attempt to control infection. What is 85 

not known is the type of antigen that mediates the protective immune response and whether 86 

only a limited or a large number of various antigen types are involved. Nevertheless, a 87 

possible vaccine formulation could potentially entail a cocktail of recombinant protein 88 

antigens fused with adjuvants containing appropriate pathogen-associated molecular patterns 89 



(PAMPS). Ideally, the protein antigens will be from tachyzoites and bradyzoites as both these 90 

life cycle stages occur in cattle.  91 

 To achieve the desired immunological response and subsequent memory to N. caninum, 92 

dendritic cells (DCs) must present immunogenic peptides, originating from protein antigens 93 

in a vaccine, on major histocompatibility complex (MHC) class II molecules. The concept 94 

behind a PAMP-based adjuvant is to initiate DC uptake of synthetically linked protein 95 

antigens. Only a few PAMPs have been reported for apicomplexans, but this may be because 96 

protozoan PAMP identification is at an early stage in comparison to identification of bacterial 97 

and viral PAMPs (Gazzinelli and Denkers, 2006). The PAMPs identified for bacteria and 98 

viruses are not commonly found in eukaryotic organisms and are predominantly lipids and 99 

lipoproteins e.g. lipopolysaccharide (LPS), peptidoglycan, and flagellin (Kawai and Akira, 100 

2010). The apicomplexan PAMPs most described in the literature are agonists to Toll-like 101 

receptors (TLR), for example, T. gondii profilin-like protein (Plattner et al., 2008). This 102 

protein was shown to activate TLR11 in mouse cells (Yarovinsky et al., 2005), but there is no 103 

known equivalent TLR11 in cattle. Another potential PAMP, observed on T. gondii to 104 

activate TLR4 and TLR2, is a heat-shock protein (Aosai et al., 2002; Del Rio et al., 2004). 105 

The role of these TLR agonists in phagocytosis is unclear (Kerrigan and Brown, 2009).  106 

 Cattle DCs have innate receptor molecules (Seabury et al., 2010)  and it is reasonable to 107 

assume they have evolved to recognise PAMPs that are common to broad classes of 108 

pathogens including apicomplexans.  Immature DCs express a large array of 109 

endocytic/phagocytic receptors (Banchereau et al., 2000) with the expectation that some will 110 

recognise and bind to conserved portions on foreign  proteins. Moreover, the contribution of 111 

several receptor types is likely to be involved in this recognition. The proteins sought for a 112 

PAMP-based adjuvant will need to possess the typical properties of known molecules 113 

containing PAMPs. That is, proteins should be naturally exposed to DCs, conserved among 114 



many apicomplexans, perform survival essential but non-virulent functions, and be dissimilar 115 

to host proteins. 116 

 The aim of this study was to use an in silico approach to compile a worthy vaccine 117 

candidate list for N. caninum including PAMPs. This involves collecting both existing and 118 

computationally predicted protein characteristics for every known N. caninum protein, 119 

irrespective of current annotation. Candidate choice is based on assessing each collated 120 

protein characteristic for its evidence contribution potential but primarily using antigen 121 

properties as selection criteria. The approach used is an automated high-throughput process 122 

as it is impractical to perform a case-by-case examination of each protein. The final vaccine 123 

list is judged to be the optimum candidates within the constraints of available data, current 124 

knowledge, and existing bioinformatics programs.  We also consider the method of ranking 125 

of vaccine candidates and provide some suggestions on methodologies. 126 

  127 



2. Materials and methods 128 

 The following sections describe the specific N. caninum protein characteristics that 129 

were collected and how these characteristics were obtained or computationally predicted. All 130 

collected characteristics are recorded in Supplementary data S1. 131 

 132 

2.1. Neospora caninum annotation 133 

 Protein sequences for NC-Liverpool were downloaded from UniProtKB (Apweiler et 134 

al., 2004) in a FASTA format. Pertinent characteristics about each protein were also 135 

downloaded from UniProtKB and recorded. This included UniProt ID; Length (number of 136 

amino acids); Protein name; Annotation (a score from one to five that provides a heuristic 137 

measure of the annotation content of a UniProtKB entry (a five implies a well-annotated 138 

protein); Protein existence (indicates the type of evidence that supports the existence of the 139 

protein. Five types: experimental evidence at protein level, experimental evidence at 140 

transcript level, protein inferred from homology, protein predicted, and Protein uncertain); 141 

Gene Ontology (GO) term for biological process; GO term for molecular function; GO term 142 

for cellular component; Gene names; Date of last modification (date that the annotation was 143 

last modified not including the sequence); Subcellular location (description of the location of 144 

the mature protein); Post-translational modification (PTMs); and Function (describes the 145 

general function(s) of a protein). Note that in this work flow only the UniProt ID is 146 

guaranteed to have a value. 147 

2.2. Evidence to support protein existence 148 

 Almost 99% of the NC-Liverpool protein sequences provided by UniProtKB come 149 

from the translations of predicted coding sequences (CDS). Three different gene prediction 150 

methods were utilised to provide supporting evidence that a protein exists: Ab initio (or 151 



intrinsic) (Fickett, 1996), evidence based (or extrinsic) (Borodovsky et al., 1994) using ESTs, 152 

and genome sequence comparison (van Baren et al., 2002). 153 

 Two ab initio gene finder programs were used: AUGUSTUS (Stanke et al., 2004; 154 

Stanke et al., 2006) and GlimmerHMM (Majoros et al., 2004; Pertea and Salzberg, 2002). 155 

Both use a variation of hidden Markov models (HMMs) (Sleator, 2010) to statistically model 156 

structure of DNA sequences and each gene finder has its own complex internal algorithm to 157 

decode the HMM into gene predictions (Brent, 2007). A training dataset comprising validated 158 

genes is required for both gene finders to train HMMs. The dataset here was created with all 159 

genes from the T. gondii genome that have evidence for protein expression based on mass 160 

spectrometry analyses. These genes (3,432 in total) were downloaded from ToxoDB version 161 

12. The ab initio gene finders predicted the genes within each of the 14 NC-Liverpool 162 

chromosomes. These chromosomes were from assembly # ASM20886v2 and downloaded 163 

from ToxoDB version 12. 164 

 The nucleotide sequences for ESTs were downloaded in a FASTA format from dbEST 165 

release 130101 (http://www.ncbi.nlm.nih.gov/dbEST/). There were 25094 ESTs for N. 166 

caninum. Two evidence based gene finders called BLAT (Kent, 2002) and GMAP (Wu and 167 

Watanabe, 2005) aligned the ESTs to the N. caninum chromosomes and predicted exon 168 

locations (including a prediction of the number of exons per gene). Both programs output the 169 

exon information in a PSL format (a format specific to BLAT). An in-house Perl script 170 

extracted the relevant data from the PSL files and concatenated nucleotide sequences from 171 

each exon member of a gene. 172 

 The genome sequence comparison method works on the principle that conserved 173 

regions between related organisms are more likely to be coding, and conversely divergent 174 

regions more likely to be non-coding. N-SCAN (Gross and Brent, 2006) was used to perform 175 



the sequence comparison, which requires a target genome and an informant genome to help 176 

identify coding regions and splice sites. The informant genome used was the combination of 177 

T. gondii chromosomes downloaded from ToxoDB version 12. The output file from N-SCAN 178 

is a Gene Transfer Format (GTF).  179 

 The predicted gene sequences derived from the ab initio gene finders, N-SCAN, and 180 

the concatenated sequences from BLAT and GMAP were aligned to existing NC-Liverpool 181 

gene sequences using BLASTN (a program that is part of the Basic Local Alignment Search 182 

Tool (BLAST) suite of applications (Camacho et al., 2009)). The NC-Liverpool gene 183 

sequences were downloaded from ToxoDB version 12. A score was computed based on: 184 

query coverage * sequence percentage similarity – where query coverage is the percent of the 185 

predicted sequence that overlaps the existing sequence; and sequence percentage similarity is 186 

the nucleotide similarity at the same positions between the predicted and existing sequence 187 

over the length of the coverage area. The scores were reported as a value between 0 and 1, 188 

where a 1.0 represents a maximum score i.e. 100% query coverage and 100% sequence 189 

percentage similarity. Note that the concatenated sequences are in effect equivalent to mRNA 190 

sequences. The query coverage previously described was therefore computed differently to 191 

account for possible intron regions on the existing gene i.e. query coverage = (query length – 192 

number of matches) / query length. 193 

 The ab initio gene finders and N-SCAN also predicted exon locations. An in-house Perl 194 

script concatenated the exons to create mRNA sequences. All predicted mRNA sequences, 195 

including those from the RNA-Seq experiment (see section 2.3), were translated to amino 196 

acids. BLASTP (a program that is also part of the BLAST suite of applications (Camacho et 197 

al., 2009) was used to compare the predicted amino acid sequences with the existing NC-198 

Liverpool proteins. A score was computed in a similar manner to that previously described 199 

for the gene comparison. 200 



 A final evidence score for each existing NC-Liverpool protein was computed by 201 

averaging the scores obtained from the three methods. In summary, these scores were 202 

obtained from BLAST comparisons from predicted AUGUSTUS genes and mRNAs; 203 

GlimmerHMM genes and mRNAs; N-SCAN genes and mRNAs; BLAT mRNAs; and 204 

GMAP mRNAs. The final score was recorded and represents a confidence level between 0 205 

and 1 that the protein exists. For instance, a value of 1 indicates that the predicted gene and 206 

protein sequences, computed by all three methods, significantly matches the existing gene 207 

and protein sequences, and subsequently strongly supports a protein’s existence. 208 

 209 

2.3. RNA-Seq evidence 210 

 RNA-Seq data was obtained from a previous study (Goodswen et al., 2015). In brief, 211 

RNA-Seq reads were generated from three biological replicates of cultured NC-Liverpool 212 

tachyzoite populations. Tophat2 (Trapnell et al., 2012) mapped NC-Liverpool reads to the 213 

NC-Liverpool reference genome. Cufflinks (Trapnell et al., 2012) assembled the aligned 214 

RNA-Seq reads into transcripts in a General Transfer Format (GTF). An in-house Perl script 215 

was used to extract exon base pair (bp) locations and mRNA sequences from the GTF file. 216 

Furthermore, day three and four Illumina paired-end RNA-Seq reads from the original 217 

annotation study (Reid et al., 2012) were downloaded from ArrayExpress (accession number 218 

E-MTAB-549) at https://www.ebi.ac.uk/arrayexpress/. These reads were used to obtain exon 219 

locations and mRNA sequences as previously described in this section (referred to henceforth 220 

as Sanger RNA-Seq).   221 

2.4. Identifying homologs 222 

 A stand-alone BLASTP was used to search the National Center for Biotechnology 223 

Information (NCBI) protein database called ‘nr’ to find the nearest homolog to every NC-224 



Liverpool protein. The nr database was downloaded from NCBI FTP site. This database 225 

contains all non-redundant GenBank CDS translations, NCBI RefSeq proteins, proteins from 226 

Protein Database (PDB), UniProt, International Protein Sequence Database (PIR), and 227 

Protein Research Foundation (PRF). The BLASTP ‘hit’ with the highest bitscore determined 228 

the nearest homolog. Seven characteristics per protein pertaining to the nearest homolog were 229 

recorded: name, weight, protein length, source organism, source gene, NCBI GI number, and 230 

percentage sequence similarity. These characteristics provided clues to the identity of 231 

uncharacterised Neospora proteins and/or supported or opposed current annotation. The 232 

‘weight’ characteristic was a devised score from 0 to 7 to indicate the reliability of the 233 

homolog protein name as source of evidence.  A protein name with the single word ‘none’ is 234 

designated the least reliable with a score of 7. All other scores are based on the word(s) 235 

contained within the name: unnamed protein product = 6, hypothetical protein = 5, conserved 236 

hypothetical protein = 4, hypothetical protein, conserved = 4, putative = 3, PREDICTED = 2, 237 

partial = 1 and all other protein names = 0 (most reliable). 238 

 239 

2.5. Identifying immune-exposed proteins 240 

 Vacceed (Goodswen et al., 2014c) was used to determine the probability that a NC-241 

Liverpool protein is naturally exposed to the immune system. The probability was computed 242 

within Vacceed by a set of machine learning algorithms trained on known exposed and non-243 

exposed proteins (Goodswen et al., 2013a). Vacceed is essentially a configurable framework 244 

of linked programs and for this study was configured using SignalP 4.0 (Petersen et al., 2011) 245 

(predicts presence and location of signal peptide cleavage sites); WoLF PSORT 0.2 (Horton 246 

et al., 2007) and TargetP 1.1 (Emanuelsson et al., 2007) (predict subcellular localization); 247 



TMHMM 2.0 (Krogh et al., 2001) (predicts transmembrane domains in proteins); and 248 

Phobius (Kall et al., 2004) (predicts transmembrane topology and signal peptides).  249 

 250 

2.6. Identifying proteins containing MHC binding peptides 251 

 NetMHCIIpan (version 2.1) from the Center for Biological Sequence Analysis (CBS) 252 

was used to predict MHC binding peptides for a set of 92 BoLA-DRB3 molecules (Nielsen et 253 

al., 2010). NetMHCIIpan by default computes an IC50 (nM) peptide-MHC binding affinity 254 

score for 15 amino acids at a time sequentially moving one amino acid along the protein (i.e. 255 

a sliding window). NetMHCIIpan makes the distinction that an IC50 score greater than 50 but 256 

less than 500 indicates a weak binding bond; and an IC50 score less than 50 a strong bond. 257 

Affinity scores to all 92 BoLA-DRB3 alleles were computed. This resulted in thousands of 258 

individual peptide-MHC binding scores per protein. Two methods were devised in an attempt 259 

to encapsulate the thousands of scores. The first involved counting the number of binding 260 

peptides. In effect there were three counts per protein for the total number of weak, strong, 261 

and weak or strong binders. The second method involved adding the IC50 scores of binding 262 

peptides. Similarly, there were three totals per protein for weak, strong, and weak or strong 263 

binders. There was a strong positive correlation between the counts or IC50 totals and protein 264 

length. The counts and IC50 totals were therefore divided by the length. A single probability 265 

score was determined for each total and count using random forest (a supervised machine 266 

learning algorithm) as an indicator that the protein contains appropriate peptides that bind to 267 

BoLA-DRB3 alleles (method described in a previous study (Goodswen et al., 2014b). A 268 

caveat here is that random forest was trained on proteins expected to be immune-exposed or 269 

unexposed proteins and not on known vaccine and non-vaccine proteins.  270 

 271 



2.7. Mapping immunological ‘hotspots’ within a protein  272 

 An in-house Perl script was written to implement the following method of mapping 273 

immunological ‘hotspots’. Consecutive IC50 (nM) affinity scores, computed along a protein 274 

by NetMHCIIpan (see previous section 2.6), were grouped if the score was less than 500. 275 

More than one member in a group defined an island of epitopes and the number of members 276 

indicated epitope density. High density islands are thought of as immunological ‘hotspots’. 277 

The grouping was performed for each of the 92 BoLA-DRB3 alleles (i.e. 92 sets per protein 278 

were generated defining the number of islands and the number of epitopes per island). The 92 279 

sets were summed and four density characteristics were recorded per protein: total number of 280 

islands divided by length of protein, average number of epitopes per island, maximum 281 

number of epitopes in the island with the highest density that was specific to one BoLA-282 

DRB3, and the BoLA-DRB3 allele that bound to the highest density island. 283 

 284 

2.8. Calculating transcript expression levels  285 

 Two separate estimates of the expression level of each NC-Liverpool transcript 286 

expressed were generated by the programs RobiNA (Lohse et al., 2012) and Cuffdiff (a part 287 

of the Cufflinks package) (Trapnell et al., 2012). The estimates were normalised as RPKM 288 

values (reads per kilobase of transcript per million mapped reads). The NC-Liverpool 289 

transcripts were those derived from the RNA-Seq experiment described above. 290 

 NC-Nowra is considered an attenuated strain in comparison to NC-Liverpool. Live 291 

vaccination utilising tachyzoites of NC-Nowra has been shown to prevent abortions when 292 

challenged with NC-Liverpool (Williams et al., 2007). As part of the RNA-Seq experiment 293 

described above, expression levels of NC-Nowra transcripts were generated by RobiNA. A 294 



‘yes’ or ‘no’ indication of significant differential gene expression between NC-Liverpool and 295 

NC-Nowra proteins was recorded. Three methods were used to support the differential gene 296 

expression ‘yes’ or ‘no’ indicator: EBSeq (Leng et al., 2013), Cuffdiff (Trapnell et al., 2013) 297 

with assembled reference, and Cuffdiff with the original NC-Liverpool reference from 298 

ToxoDB. 299 

 300 

2.9. Determining protein conservation 301 

 The UniProt Reference Clusters (UniRef) (Suzek et al., 2007) provided non-redundant 302 

clustered sets of sequences from the UniProtKB that had 100% similarity with a NC-303 

Liverpool protein sequence. Three cluster characteristics were recorded: UniRef cluster 304 

name, a list of UniProt IDs and associated organism name for each protein in the cluster, and 305 

the total number of proteins in cluster. These characteristics provided clues to the identity of 306 

uncharacterised Neospora proteins and/or supported or opposed the current annotation. It also 307 

highlighted redundant NC-Liverpool proteins. 308 

 Proteins with at least 50% sequence similarity to NC-Liverpool sequences were also 309 

obtained from UniRef. However, the output was filtered to only include proteins originating 310 

from apicomplexans. Four cluster characteristics were calculated and recorded: UniRef 311 

cluster name; a list containing the total number of proteins originating from specific 312 

apicomplexan species groups (the groups are Babesia, Besnoitia, Cryptosporidium, 313 

Cyclospora, Eimeria, Gregarina, Haemoproteus, Hammondia, Hepatocystis, Leucocytozoon, 314 

Neospora, Parahaemoproteus, Plasmodium, Sarcocystis, Theileria, and Toxoplasma); the 315 

total number of apicomplexan proteins in cluster; and the total number of proteins in cluster 316 

irrespective of its species origin. These characteristics indicated how well an NC-Liverpool 317 

protein is conserved among other species and, in particular, apicomplexans. Proteins 318 



containing PAMPs were predicted using the latter and other characteristics (method described 319 

later in section 2.12). 320 

 321 

2.10. Host similarity 322 

 BLASTP was performed between NC-Liverpool and Bos taurus protein sequences 323 

(downloaded from UniProtKB). The bovine protein associated with the highest bitscore and 324 

similarity was extracted from the BLASTP output. Two characteristics were recorded: 325 

UniProt ID of the bovine protein with the greatest similarity, and the percentage sequence 326 

similarity between the Neospora and Bos protein. 327 

 328 

2.11. Additional information 329 

 Additional information on N. caninum was extracted from ToxoDB version 12 and 330 

recorded: chromosome number encoding the gene of the protein, start and end genomic 331 

location of the gene including forward or reverse strand origin, relative location of gene start 332 

and end, number of exons, CDS length, molecular weight (a computed value from raw 333 

translations that do not take into account any protein or residue modifications), isoelectric 334 

point, and the number of transmembrane domains as predicted by TMHMM 2.0. The relative 335 

gene start and end was computed in-house and defines the location of the gene start and end 336 

position relative to the centre of the chromosome. The relative locations are defined as a 337 

percentage e.g. a gene located at the start of chromosome is -100% and indicates that it is 338 

located at the furthest distance from chromosome centre i.e. 0% is the centre of the 339 

chromosome; and a gene located at end of the chromosome is +100% and also indicates it is 340 

the furthest distance from chromosome centre (Fig. 1 and Supplementary data 2).  341 



 342 

2.12. Ranking vaccine candidates 343 

 There were eight forms of rank values associated with each protein as shown in Table 344 

1.  Each rank was computed using the same method but using different protein features 345 

selected from Supplementary data S1. The method involved first independently sorting raw 346 

values for each selected feature in ascending order (i.e. lowest value at top and largest at 347 

bottom of the sorted list) e.g. E_rank has 10 contributing features and therefore 10 348 

independent lists in value ascending order were calculated.  The assumption is that the larger 349 

the feature value, the greater its importance to candidacy selection (Homolog weight was an 350 

exception and ordered in descending order). Furthermore, each feature is assumed to have 351 

equal importance in rank determination because the relative accuracy of the feature value is 352 

unknown. The next ranking step was to divide the protein position in each ordered list by the 353 

number of proteins and then multiply by 100, for example: (1 / 7111) * 100 = 0.01% for 354 

protein with lowest value; and (7111 / 7111) * 100 = 100% for highest value protein. Each 355 

protein subsequently had a percentage rank for each feature selected (e.g. ten individual 356 

percentage ranks for E_rank computation). A single rank was then determined by reordering 357 

the proteins based on the magnitude of each individual rank. For example, the protein with 358 

the highest E-rank (100%) contained ten rank values that were greater than or equal to the ten 359 

rank values of the next highest E-rank, and so on. Note that proteins with exactly the same 360 

individual rank values were given the same final single rank. 361 

 The W_E_rank is based on the assumption that RNA-Seq evidence is a more reliable 362 

indicator of ‘protein existence’ than other available evidence. Therefore, W_E_rank was 363 

computed as per E-rank except only RNA-Seq and Sanger RNA-Seq features were included 364 

(i.e. only two features used as opposed to ten). However, if proteins were computed with the 365 



same rank then their final ordered positions were determined by the rank of other evidence 366 

i.e. a rank as per E-rank except RNA-Seq and Sanger RNA-Seq excluded. As a brief 367 

example, four proteins (x007, x002, x006, x003) have the ranks 100.0, 100.0, 100.0, 99.9 368 

respectively after an initial ranking using only RNA-Seq evidence i.e. three proteins (x007, 369 

x002, x006) have the same rank. The ranks for the four proteins when using other evidence 370 

that excludes RNA-Seq are x003 = 100.0, x006 = 99.8, x002 = 99.7, x007 = 99.4. The final 371 

rank positions as per W_E_rank for the four proteins would be x006 (highest ranked), x002, 372 

x007, and x003 (lowest ranked). That is, only the initial identical ranks were reordered (x003 373 

ignored in his case) based on other evidence ranks and so in effect, RNA-Seq evidence is 374 

weighted more than other ‘protein existence’ evidence. 375 

 376 

2.13. Feature selection 377 

Once ranking was done we investigated which features contributed most to the 378 

ranking. Consequently, using Supplementary Table S1, which ranks all proteins, we used the 379 

Random Forest algorithm to identify the most important features used to predict Final_rank. 380 

Random Forest (Breiman, 2001) is a robust machine learning algorithm able to learn the 381 

mapping from input features to a target value: either as a classification of a discrete value or 382 

regression to a floating point value. In this case, using a subset of Supplementary Table S1 as 383 

a training set, we learned the mapping from other features to the floating point Final_rank. 384 

One of the advantages of Random Forest compared to other machine learning algorithms is 385 

that it is able to infer the relative importance of input features towards the target prediction, 386 

assigning a Variable Importance Score, using various measures. This is helpful for 387 

interpreting datasets. We used the randomForest package in R, using default parameter 388 



settings. Variable importance is reported using two measures: percentage increase in Mean 389 

Square Error and increase in node purity. High values indicate strong variable importance. 390 

Random Forest is unable to deal with categorical features with a large number of values 391 

or with text features. So we also excluded the following features from analysis: >90%_Sim, 392 

Protein_names, Homolog_name, Homolog_Organism, Homolog_Locus_Tag, 393 

Cluster_name_for_50%_similarity, Apicomplexan_member_count_for_50%_similarity, 394 

Bovine_UniProtID, Gene_ontology_biological_process, Gene_ontology_molecular_function, 395 

Predicted_GO_Function_Term, Gene_ontology_cellular_component, Gene_names, 396 

Chromosome, Date_of_last_modification, Subcellular_location, 397 

Post_translational_modification, and Function. Clearly the features in S1 most useful for 398 

predicting Final_rank are the other ranking features from which they are calculated as they 399 

are the most strongly correlated. So, we also excluded the following features from the 400 

ranking: E_rank, W_E_rank, V_rank, W_Final_rank, P_rank, Final_P_rank, and 401 

W_Final_P_rank.  402 

  403 



3. Results 404 

3.1. Ranking of vaccine candidates 405 

 Neospora caninum consists of many diverse heterogeneous strains distributed 406 

throughout the world (Al-Qassab et al., 2010), but almost all publicly available N. caninum 407 

protein sequences are from the NC-Liverpool strain. Both the Universal Protein Resource 408 

knowledgebase (UniProtKB) and ToxoDB hold similar sets of NC-Liverpool protein 409 

sequences. Table 2 shows the extent of Neospora protein annotation in UniProtKB. The 410 

deduced protein sequences result from predicting genes using various ab initio gene 411 

predictors supported by expressed sequence tags (ESTs). An NC-Liverpool genome 412 

containing 14 pseudo-chromosomes was constructed using supercontigs aligned to 14 413 

publicly available, albeit draft, Toxoplasma gondii ME49 chromosomes based on predicted 414 

protein sequence similarity (Reid et al., 2012). mRNA sequencing (RNA-Seq) was also used 415 

to improve the annotation, but only for genes for which mRNAs were expressed from 416 

tachyzoites during experimental laboratory conditions.  417 

 Table 3 shows a breakdown of how the N. caninum protein sequences were derived. 418 

Most sequences have ‘predicted’ for their ‘evidence for existence’ annotation in UniProtKB. 419 

Furthermore, over 5600 sequences are annotated with ambiguous protein names. Table 4 lists 420 

the types of annotated names. This current annotation state raises uncertainty in its reliability 421 

given the fact that the majority of sequences remain unverified and uncharacterised. An 422 

unknown percentage of invalid or inaccurate sequences will inevitably exist that can lead to 423 

erroneously predicted protein characteristics. 424 

  Various protein characteristics were obtained from public resources or computationally 425 

predicted for every known NC-Liverpool protein and compiled in a Microsoft Excel 426 

worksheet (Supplementary data S1). It was important that every protein was included to 427 



avoid introducing preconceived notions of candidates. Considering all proteins is one of the 428 

guiding principles of reverse vaccinology. In the Supplementary data S1 there are 79 columns 429 

and 7111 rows. Each column contains a specific protein characteristic and each row holds the 430 

collection of characteristics per protein. The columns are grouped with coloured headers to 431 

denote associated characteristics.  432 

 The aim of this study was to select the N. caninum vaccine candidates most worthy of 433 

laboratory validation as it is unfeasible to validate all proteins.  This entailed using the 434 

collection of protein characteristics to make an informed selection of candidacy potential. 435 

The large number of proteins under consideration made it impractical for such a selection to 436 

be a manual process. Hence the ideal strategy sought was automation based on specific 437 

selection criteria. However, the first imposing challenge was that there is no one or even a 438 

group of protein characteristics that clearly distinguish a vaccine candidate. Consequently, 439 

the selection strategy relied, in the current absence of clearly defined target proteins, on 440 

exploiting subtle tendencies of known antigen characteristics. The predicament here is that 441 

not all proteins with a particular tendency will necessarily be worthy candidates. Conversely, 442 

vaccine candidates that do not follow trends will be missed in the selection. As an example, 443 

known vaccine candidates have a tendency to be naturally exposed to the immune system, but 444 

not all immune-exposed proteins are immunogenic and there are some instances (Tan et al., 445 

2010) of non-exposed proteins observed to induce immune responses. The second major 446 

challenge was the unknown reliability of the protein characteristics to the extent that some 447 

predicted proteins may not even exist. 448 

 In an attempt to address these challenges we ranked and presented all proteins in 449 

preference to specifically selecting a subset of vaccine candidates. Fig. 2 shows an overview 450 

of the ranking process (a detailed description is in section 2.12). The understanding is that the 451 

optimum candidates within the constraints of the protein characteristics are at least identified 452 



among those available. Furthermore, a researcher can select the desired percentage of top 453 

ranked proteins for validation centred on laboratory capability and budget. In Supplementary 454 

data S1 there are five columns denoting ranking: 1) E_rank – indicates the likelihood that a 455 

protein exists and its sequence is correct as compared with other proteins i.e. represents a 456 

protein’s data reliability potential. For example, 100% indicates the protein with the best data 457 

reliability from the list of proteins. All evidence was considered equal when computing 458 

E_rank; 2) W_E_rank – similar to E_rank except RNA-Seq evidence is more favourably 459 

weighted than any other evidence; 3) V_rank – represents a protein’s antigenic potential and 460 

the likelihood that a protein will make a more worthy candidate when compared with other 461 

proteins in the list; 4) Final_rank – takes into account both E_rank and V_rank. For example, 462 

a 100% indicates the most promising vaccine candidate with the most supportive evidence for 463 

its existence when compared to all other proteins in the list; and 5) W_Final_rank –similar to 464 

Final_rank except W_E_rank and V_rank are used (W_Final_rank defines the current protein 465 

order in Supplementary data S1). It is difficult to imply with any great certainty that the top 466 

ranked proteins will prove to be worthy vaccine candidates. Nevertheless, higher ranked 467 

proteins are considered more likely to be worthy than lower ranked proteins.  468 

 To substantiate the ordered list of proteins, other than laboratory validation, we checked 469 

the rank of known  Neospora vaccine candidates from published studies. The majority of 470 

known candidates are composed of one or a combination of surface, rhoptry, dense granule, 471 

and microneme proteins. These candidates could theoretically be grouped into the ‘expected’ 472 

category based on current knowledge. That is, it is well-documented that an apicomplexan 473 

pathogen invades a host cell first by, recognising host-cell surface receptors via antigens on 474 

its cell membrane, and then secreting proteins from specialized secretory organelles 475 

(rhoptries, micronemes and dense granules) (Chen et al., 2008; Roos, 2005). Table 5 shows a 476 

list of known candidates and how they rank. Of the 14 unique proteins, seven were in the top 477 



1% and eight in top 10% (see W_Final_rank column in Supplementary data S1 (sheet 2)). 478 

Two of the six proteins not in the top 10% are from the ‘expected’ category (gene names are 479 

ROP2 and MIC1 ranked 81.3% and 80.6% respectively). These proteins were highly ranked 480 

as vaccine candidates (i.e. V_rank) but were lowly ranked for their likelihood to exist 481 

(E_rank and W_E_rank). This low existence rank was due to either no gene being predicted 482 

by any prediction method or no consensus between methods. Notwithstanding the existence 483 

rank, two candidates, BAG1 (UniProt ID F0VGW4) and IMP1 (F0V754), were clearly 484 

shown not to have vaccine potential. The IMP1 immune mapped protein 1 (IMP1) is an 485 

‘unexpected’ candidate. In this study IMP1 was computed to be a non-exposed protein (.i.e. 486 

its sequence revealed neither a classical signal peptide nor transmembrane region) but has 487 

strong evidence of containing peptides that bind to bovine MHC molecules. Interestingly, a 488 

study (Cui et al., 2012) demonstrated that IMP1 was found to localize to the membrane of N. 489 

caninum tachyzoites and speculated that this membrane targeting was instigated by N-490 

myristoylation and palmitoylation. It is unclear how many other N. caninum proteins 491 

experience similar protein sorting. The protein BAG1 (a small heat shock protein) is 492 

expressed during the bradyzoite stage and was computed here as a non-exposed protein. 493 

Other bradyzoite stage proteins in the known candidate list are MAG1 (a similar antigen to 494 

NcGRA1, NcGRA2, and NcGRA7 (Uchida et al., 2013) and SAG4. Both these antigens were 495 

predicted to be exposed with appropriate peptide-MHC binders.  496 

 497 

3.2. Pathogen-associated molecular patterns (PAMPS) 498 

 Proteins containing PAMPs are considered equally important as antigens in the overall 499 

vaccine design strategy. Specific ranks (P_Final_rank or W_P_Final_rank) were assigned to 500 

every protein indicating the likelihood they contained PAMPs, supported by existence 501 



evidence, when compared to other proteins. Two types of proteins known to harbour PAMPs 502 

are profilin-like (UniProt ID F0V772) and heat shock (F0VMT0). Both were ranked in the 503 

top PAMP 5%. Also, protein disulfide isomerase (PDI) is a known candidate and was the top 504 

ranked PAMP protein. Interestingly, the known candidates ranked the lowest for vaccine 505 

candidacy (V_rank) were all highly ranked PAMP candidates. These candidates were Cyp 506 

(cyclophilin), BAG1, and IMP1. The cyclophilin protein has 61% sequence similarity to the 507 

bovine cyclophilin protein and therefore maybe involved in molecular mimicry. A known 508 

possible mimic, MIF (FOVC39), was nevertheless lowly ranked as a vaccine candidate. 509 

 510 

 511 

3.3. Feature selection and vaccine selection 512 

Features were investigated for their importance in predicting Final_rank using 513 

Random Forest. There was general agreement between the two measures of variable 514 

importance (Fig. 3). Most significant features included Exposed, estimating the probability 515 

that a protein is exposed to the immune system excluding the MHC binding contributions; 516 

Existence, estimating the probability that the protein exists and which incorporates evidence 517 

from ab initio gene predictors, ESTs and comparative genomics; and Homolog Similarity, 518 

which is the percentage sequence similarity between the protein and its closest homolog in 519 

the NCBI nr database. Also important were measures of protein abundance (Abundance_1 520 

and Nowra_Abundance) and counts of the number of the peptides in the protein predicted to 521 

bind to BoLA-DRB3 (ML_Sum_Count).  522 

 Highly ranked proteins (as per V_rank, Final_rank or W_Final_rank) were investigated 523 

for their antigenicity potential. Firstly, no close correlation was detected between high 524 



epitope density and vaccine candidacy potential. The data and correlation analysis are shown 525 

in Supplementary data S3. Secondly, no significant correlation was found between vaccine 526 

candidacy potential and either the number of homologs, apicomplexan homologs, orthologs, 527 

paralogs, and molecular weight, isoelectric point, number of exons, and transcript expression 528 

levels. Thirdly, no correlation was detected between gene chromosomal location and vaccine 529 

candidacy potential. Figure 1 shows the genomic location for genes from chromosome Ia 530 

along with an ortholog gene count (Supplementary data S2 shows similar figures for all 531 

chromosomes). Genes that encode highly ranked proteins are distributed throughout the 532 

chromosome including the extremities and are equally likely to have large or small ortholog 533 

counts. 534 

  535 



4. Discussion 536 

 To address the urgent need for vaccines against a wide range of parasitic diseases 537 

including  N. caninum, we have pursued reverse vaccinology including the development of 538 

the tool Vacceed (Goodswen et al., 2014c).  For many parasitic diseases, it is unknown what 539 

will constitute an effective vaccine or the factors providing or contributing to effective 540 

protective immunity. Consequently we studied N. caninum as an example where reasonable 541 

data exists to investigate the application of reverse vaccinology. It is pleasing to note that 542 

Vacceed has been rapidly adopted by others involved in vaccine development (Palmieri et al., 543 

2017).    544 

 We ranked every known publicly available NC-Liverpool protein corresponding to its 545 

potential for vaccine candidacy. The top ranked proteins are those that are naturally exposed 546 

to the immune system and contain peptide binders to bovine MHC II alleles. This typical 547 

target profile was driven by common characteristics of known N. caninum candidates. 548 

Although strict adherence to such a profile may poorly rank uncharacteristic candidates, it 549 

was deemed appropriate for high-throughput ranking in the current absence of clearly defined 550 

target proteins. Furthermore, in this study, no significant correlation was found between any 551 

compiled protein characteristic and vaccine candidacy potential other than those in the target 552 

profile.  553 

 To our knowledge, this is the first time that an attempt has been made to identify N. 554 

caninum candidates using an in silico approach. The alternative traditional culture-based 555 

approach has so far only identified a few candidates and is conceivably too time-consuming 556 

to fulfil the urgency. Whether the top ranked proteins in the list prove to be worthwhile will 557 

only be known following challenge trials in cattle. However, this ultimate validation 558 

requirement for an in silico-derived candidate is not any different to that required for culture-559 



based derived ones. As a minor endorsement for the in silico approach, eight of 14 known 560 

candidates were ranked in the top 10% as potential vaccine candidates (11 in top 20%). 561 

 The ranked proteins are provided in the Supplementary Table S1 file. This file is a 562 

valuable resource for N. caninum vaccine researchers as it provides an informed starting point 563 

for laboratory testing. The desired percentage of top ranked proteins for validation can be 564 

selected according to laboratory capability and budget. Moreover, the different forms of ranks 565 

provide options to a researcher during selection that can govern the tolerated number and type 566 

of false candidates. For example, selecting highest ranked vaccine candidates (V_rank) 567 

without evidence for existence is expected to reduce false negative and increase false positive 568 

rates. This is because the majority of NC Liverpool proteins are predicted and unverified. The 569 

Final_rank combines V_rank and E_rank in an attempt to balance true and false prediction 570 

outcomes. This rank form also has the potential to identify candidates that are expressed only 571 

at a specific time point or at undetectable levels i.e. a protein unsupported by RNA-Seq but 572 

unanimously predicted by gene predictors. Conversely, the W_Final_rank form unfavourably 573 

ranks proteins unsupported by RNA-Seq under the assumption that gene prediction is 574 

inaccurate. The rank form ultimately used is at the discretion of the laboratory researcher. 575 

Either way, the top ranked proteins are considered the optimum candidates given the current  576 

N. caninum data, knowledge, bioinformatics programs, and the level of confidence 577 

(Final_rank) or uncertainty (W_Final_rank) in gene prediction as perceived by the researcher. 578 

Furthermore, the PAMP rank (P_Final_rank or W_P_Final_rank) provides a useful indicator 579 

for PAMP-based adjuvants. 580 

 The Final_rank in effect was computed from 12 selected features. However, the 581 

Random Forest investigation for their importance revealed that only five features were major 582 

contributing predictors (Existence, Homolog_Similarity, Abundance_1, Exposed and 583 

ML_Sum_Count).  The importance of these five features, nevertheless, is specific to 584 



Neospora data. Their importance, and the importance of other features, will likely vary in 585 

accordance with feature reliability when applied to data from other species. Nevertheless, the 586 

approach described here on feature selection, is applicable more generally to other parasitic 587 

diseases. 588 

 The expectation is that validation in assays and animal models will initially provide 589 

indications of efficacy for highly ranked candidates. These indications can then help refine 590 

the search target to re-rank candidates. Fine-tuning of candidate rankings are anticipated 591 

following iterative cycles of computer analysis and laboratory validation. Moreover, 592 

researchers adopting a similar in silico approach to that described in this study can use 593 

validation feedback for prediction model refinement. Improving reliability of protein 594 

characteristics will ultimately lead to better candidate ranking accuracy. 595 
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Figure and Table legends 

Fig. 1. The genomic location on chromosome Ia for parental genes of predicted vaccine and 

PAMP candidates plotted against an ortholog gene count.  PAMP, pathogen-associated 

molecular patterns. Genomic location for each gene on chromosome Ia is represented by a 

black unfilled circle and is plotted relative to the centre of chromosome i.e. 0 on x-axis 

represents the exact centre, -100% is start of the chromosome (5' end) and 100% is end of 

chromosome (3' end). Chromosome extremities are highlighted by First and Last 10% 

delineated by vertical red dashed lines. Ortholog count (Y-axis) is the number of genes in 

different species that evolved from a common ancestral gene by speciation. Two black 

horizontal lines show the mean (solid line) and median (dashed line) of the ortholog count. 

 

Fig. 2. Overview of considerations made in ranking proteins as potential vaccine candidates.  

This schematic shows an overview of the feature collection process.  A selection of these 

protein features constitutes determinants for vaccine candidacy ranking. First, evidence 

features are gathered to support the existence of a protein as the majority of Neospora 

caninum proteins are predicted. Second, vaccine candidacy potential is predicted based on 

features encoded within the protein sequence. Features are collected for each of the 7111 

proteins available for Neospora caninum. The ranking method utilizing selected features is 

described in detail in section 2.12.  

 

Fig. 3.  Analysis by Random Forests of the features used to rank proteins from Neospora 

caninum as vaccine candidates. Variable importance is reported using two measures: 



 

 

 

percentage increase in Mean Square Error (%IncMSE) and increase in node purity 

(IncNodePurity). High values indicate strong variable importance. 
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Table 1 

Features selected for the study’s eight protein ranks.  

 

Data reliability Weighted 

data 

reliability 

Antigenic 

potential 

 

Combined 

data 

reliability 

and 

antigenic 

potential 

 

Combined 

weighted data 

reliability and 

antigenic 

potential  

PAMP 

potential 

 

Combined 

data 

reliability 

and PAMP 

potential  

Combined 

weighted data 

reliability and 

PAMP potential  

      E_rank W_E_rank V_rank Final_rank W_Final_rank P_rank Final_P_rank W_Final_P_rank 

1. Existence Existence Exposed E_rank W_E_rank Exposed E_rank W_E_rank 

2. RNA-Seq RNA-Seq
a
 ML_Sum_Count V_rank V_rank Api member 

count 

P_rank P_rank 

3. Sanger RNA- 

Seq 
Sanger RNA-

Seq
a
 

   Total 

member 

count 

  

4. EST_count EST_count    Ortholog 

count 
  

5. DE_min DE_min       

6. DE_Max DE_Max       

7. Abundance_1 Abundance_1       

8. Homolog  

similarity 

Homolog 

similarity 
      

9. Homolog  

Weight 

Homolog  

Weight 
      

10. Number in  

cluster 

Number in  

cluster 
      

 

Table 1



 
 
a
 RNA-Seq and Sanger RNA-Seq weighted more in ranking; Existence –probability score that protein exists using evidence from ab initio gene predictions 

(AUGUSTUS and GlimmerHMM), ESTs (BLAT and GMAP), comparative genomics (N-SCAN); RNA-Seq – probability score that RNA-Seq exons derived 

from RNA-Seq experiment overlap current N. caninum annotated exons e.g. if a known gene contains 6 exons and 5 are overlapped by RNA-Seq exons then 

probability score = 0.83 (.i.e. 5/6); Sanger RNA-Seq – as per RNA-Seq but with Sanger exons; EST_count – number of ESTs obtained from the Database of 

Expressed Sequence Tags (dbEST) overlapping the gene; DE_min – minimum differential expression (DE) percentile for orthologous tachyzoite genes 

differentially expressed between T. gondii VEG and NC-Liverpool (Reid et al., 2012). Data obtained from ToxoDB but based on pooled day three and four 

Sanger RNA-seq experiments with DESeq (Anders and Huber, 2010) computations; DE_Max – maximum DE percentile for orthologous tachyzoite genes 

differentially expressed; Abundance_1 – RNA-Seq derived abundance approximations for NC-Liverpool transcripts normalised using RPKM as computed by 

RobiNA (Lohse et al., 2012); Homolog similarity – percentage sequence similarity between protein and homolog; Homolog Weight – a 0 to 7 score to 

indicate reliability of the homolog protein name as a source of evidence; Number in cluster – number of proteins with 100% similarity in cluster as determined 

by UniRef; Exposed – probability score that protein is exposed to the immune system i.e. membrane-associated or secreted. Score was computed by Vacceed 

but peptide-MHC binding contributions excluded; ML_Sum_Count – probability score determined by random forest indicating protein contains appropriate 

peptides that bind to BoLA-DRB3 92 alleles; Api member count – total number of apicomplexan proteins with at least 50% sequence similarity as obtained 

from UniRef; Total member count – total number of proteins, irrespective of species, with at least 50% sequence similarity as obtained from UniRef; 

Ortholog count – number of orthologous genes as obtained from OrthoMCL DB version 5. 



Table 2 

Current Neospora protein annotation (derived from UniProtKB March 2017). 

 

Taxonomy 

ID 

Mnemonic Taxonomy 

Name 

Reviewed
b
 Unreviewed

c
 Total 

37089  Neospora sp. 0 1 1 

761197  Neospora sp. 

A California 

sea lion 

0 1 1 

761198  Neospora sp. 

B California 

sea lion 

0 1 1 

29176
a
 NEOCA Neospora 

caninum  

6 92 98 

572307 NEOCL Neospora 

caninum 

(strain 

Liverpool) 

0 10,010 10,010 

83675 NEOHU Neospora 

hughesi 

0 7 7 

      
 

a 
Excludes lower taxonomic ranks; 

b 
manually annotated

 
by UniProtKB curators; 

c 
Computer-

annotated and not reviewed by UniProtKB curators. 

 

Table 2



Table 3 

Type of evidence that supports the existence of Neospora caninum Liverpool proteins 

(derived from UniProtKB March 2017). 

 

Evidence for existence
a
 Count 

Evidence at transcript level 0 

Evidence at protein level
b
 1 

Inferred from homology
c
 852 

Predicted
d
 6258 

Total 7111 
 

a 
The ‘protein existence’ evidence does not give information on the accuracy or correctness of 

the sequence(s) displayed; 
b 

Indicates that there is experimental evidence for the existence 

e.g. partial or complete Edman sequencing, identification by mass spectrometry, X-ray or 

NMR structure; 
c 
Indicates that the existence of a protein is probable because clear orthologs 

exist in closely related species; 
d 

Used by default if protein is without evidence at protein, 

transcript or homology level 

Table 3



 
 

Table 4 

Protein names for Neospora caninum Liverpool proteins (derived from UniProtKB March 

2017)
a
.
 

 

Protein name/description Count 

Uncharacterized protein 3387 

Putative uncharacterized protein 13 

Protein name begins with ‘Putative’ 846 

Protein name contains ‘Putative’ 493 

Protein name contains ‘Fragment’ 17 

Protein name contains ‘related’ 871 

Protein name contains ‘Probable’ 25 

  

SRS domain-containing protein 225 

Protein name contains ‘Microneme’ or 

‘MIC’ 

17 

Protein name contains ‘Dense granule’ or 

‘GRA’ 

8 

Protein name contains ‘Rhoptry’ or ‘ROP’ 30 

All other names 1179 

Total 7111 

 

a
The counts are based entirely on the protein name as assigned in UniProtKB and compiled 

using an in-house Perl script that parsed the Protein names of the 7111 proteins from NC-

Liverpool. 
 

 

Table 4



 
 

Table 5 

Published Neospora caninum subunit vaccine candidates and how they rank in the current study. 

Vaccine candidate
a
 Adjuvant Protection

d
  Gene 

name 

UniProt 

ID 

Existence 

Rank
i
 

(%) 

Vaccine 

Rank
j
 

(%) 

Final 

Rank
k 

(%) 

Ref. 

Different NcSRS2 iscoms Different 

types 

Reduced 

infection 

SRS2 F0VIH6
e
 95.32 99.93 99.89 (Pinitkiatisakul 

et al., 2007) 

Recombinant NcMIC1 Ribi Reduced 

infection 

MIC1 F0VCC5 53.03 96.30 80.64 (Alaeddine et 

al., 2005) 

Native NcSRS2 FIA Reduction in 

VT 

SRS2 F0VIH6
e
 95.32 99.93 99.89 (Haldorson et 

al., 2005) 

Recombinant NcSRS2 and 

NcDG1 

– 66.7% 

survival rate 

SRS2 

DG1 

F0VIH6
e 

F0VF82 

95.32 

96.65 

99.93 

96.65 

99.89 

99.92 

(Cho et al., 

2005) 

Recombinant strain RB51 

expressing N. caninum 

antigen
b
 

– Reduction in 

VT 

MIC1 

MIC3 

GRA2/6 

SRS2 

F0VCC5
 

F0VAA2 

F0VLB1
f 

F0VIH6 

53.03 

99.38 

96.70 

95.32 

96.30 

93.87 

95.36 

99.93 

80.64 

99.87 

99.90 

99.89 

(Ramamoorthy 

et al., 2007) 

Intra-nasal recNcPDI 

(Protein disulfide-

isomerase) 

Cholera toxin 90% PDI F0VAI6 99.85 88.67 99.68 (Debache et 

al., 2010) 

Recombinant proteins
c
 VSA-3 33% GRA1 

GRA2 

MIC10 

P24B
h
 

F0VF82 

F0VLB1 

F0VR52 

96.65 

96.70 

99.80 

96.65 

95.36 

96.75 

99.92 

99.90 

99.93 

(Ellis et al., 

2008) 

Recombinant NcROP2 FIA or 

saponin  

Reduced 

infection 

ROP2 F0V7L8 53.73 90.76 81.28 (Debache et 

al., 2008) 

Table 5



 
 

Recombinant NcIMP1 

(immune mapped protein 1) 

FIA Inhibited host 

cell invasion 

IMP1 F0V754 81.94 39.17 64.60 (Cui et al., 

2012) 

Recombinant NcCyP 

(cyclophilin)  

ImmuMax-

SR and CpG 

Immunity in a 

non-pregnant 

mouse model 

CyP F0V8G1
g
 95.22 61.33 87.64 (Tuo et al., 

2011) 

pNcGRA7 (plasmid DNA 

Coding for NcGRA7) 

 

CpG Reduced 

infection 

GRA7 F0VF82
h
 

 

96.65 

 

96.65 

 

99.92 

 

(Jenkins et al., 

2004) 

NcSAG1- and NcSRS2-

based recombinant 

antigens and DNA vaccines 

Ribi Reduced 

infection 

SAG1 F0VIH4 65.43 99.42 90.75 (Cannas et al., 

2003) 

Recombinant NcBAG1, 

NcMAG1, or NcSAG4  

Oil-in-water 

emulsion 

with bitter 

gourd extract 

Reduced 

infection 

BAG1 

MAG1 

SAG4 

F0VGW4 

F0VJE8 

F0VEM5 

85.40 

99.37 

49.59 

36.39 

88.75 

95.09 

61.41 

99.71 

77.16 

(Uchida et al., 

2013) 

 

Abbreviations: – = unknown; Ribi = Ribi Adjuvant System; FIA = Freund’s incomplete adjuvants; VT = vertical transmission. 
a
Vaccine candidates are 

from studies over the past 10 years that attempt to prevent infection, abortion or vertical transmission; 
b
MIC1, MIC3, GRA2, GRA6 and SRS2 antigens 

were expressed in Brucella abortus strain RB51; 
c
Four recombinant proteins of N. caninum (GRA1, GRA2, MIC10, and p24B), MIC10 and p24B 

provide best protection; 
d
Protection = measured or described protection towards type of challenge, 

e
UniProt F0VIH4 is an SRS domain-containing 

protein (Putative srs29b) but is not a complete sequence; 
f
GRA6 sequence is 100% similar to GRA2; P24B is a possible novel protein; 

g
Same protein 

as descrived in publication. The highest ranked N. caninum cyclophilin protein is F0VLE9 with 99.3%; 
h
100% sequence similarity to H6X1L4 

(GRA7); 
i
equivalent to W_E_rank (represents a protein’s weight data reliability potential); 

j
equivalent to V_rank (represents a protein’s antigenic 

potential); 
K
equivalent to W_Final_rank (a rank taking into account W_E_rank and V_rank). 
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