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Abstract. We analyze the governing partial differential equations of a model of pole-to-pole
oscillations of the MinD protein in a bacterial cell. The sensitivity to extrinsic noise in the parameters
of the model is explored. Our analysis shows that overall, the oscillations are robust to extrinsic
perturbations in the sense that small perturbations in reaction coefficients result in small differences
in the frequency and in the amplitude. However, a combination of analysis and simulation also
reveals that the oscillations are more sensitive to some extrinsic time scales than to others.
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1. Introduction. Mathematical models are now essential to the way biological
scientists understand single cells [12, 17, 25]. Chemical reactions and transport of
chemical species are often described by deterministic models, for example, by par-
tial differential equations (PDEs) and the law of mass action. However, noise plays
a fundamental role in many cellular processes [1, 6, 28] such as switching between
stable modes of gene expression [5, 20, 33, 34]. For such processes, a discrete and
stochastic modeling framework is more appropriate than a deterministic continuum
model, especially when a single cell contains only a small number of molecules of a
particular chemical species [1, 6, 36]. Such a framework is provided by the chemical
master equation [8, 36], which is increasingly applied in systems biology.

When formulating a stochastic model of a process, we may distinguish between
external or extrinsic noise that is independent of the system being modeled and in-
ternal or intrinsic noise that is inherently part of the system itself. Van Kampen
discusses this issue in his classic text. He emphasizes the importance of making this
distinction at a conceptual level during the process of model formulation [36, Chap-
ters IX.5, XVII.7]. Biologists also employ the terminology of intrinsic and extrinsic
noise when describing stochastic phenomena in relation to models of gene expression,
although identifying and measuring intrinsic and extrinsic contributions to dynamic
systems can be challenging [3, 14, 32]. A common interpretation is that intrinsic noise
arises from the inherently discrete nature of a collision theory of chemical reactions, in
which there is randomness associated with the chance collisions of molecules, whereas
extrinsic noise arises from all of the other processes that we do not explicitly include in
the mechanistic steps of our mathematical model but which we do believe exert influ-
ence. The stage of the cell cycle, ambient temperature, a dynamic microenvironment,
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1158 HELLANDER, KLOSA, LÖTSTEDT, AND MACNAMARA

or the number of ribosomes in a cell all affect cellular processes but they are usually
not explicitly included in models; instead their effects may be regarded as extrinsic
noise. For example, temperature affects chemical reaction rates and also biological
oscillations [11, 35, 37].

We are interested in a mathematical model of MinD oscillations in bacteria
[5, 19, 26, 37] and the robustness of the model to extrinsic spatial and temporal
fluctuations in the coefficients. The model is a system of nonlinear PDEs with dif-
fusion for the mean values of the concentrations of the species. If the copy number
of the molecular species is large, then the relative intrinsic fluctuations are small and
a deterministic PDE system without intrinsic noise is a good approximation. This
is often the case for the MinD oscillations [16, 37] but not in all situations [5]. The
question of robustness is certainly important specifically in the context of models of
MinD oscillations [13, 19], but it is also important more generally in the field of un-
certainty quantification and in systems biology, where parameters are often poorly
characterized [38]. Moreover, oscillations in biology have a rich literature, in which
robustness of oscillations is an important theme, e.g., [22, 39]. With our approach
combining analysis with simulations we find that overall, the MinD model is robust to
fluctuations in the coefficients, in the sense that small fluctuations in the coefficients
lead to only small changes in the period or to small changes in the amplitude of the
oscillations. However, our results also reveal that the oscillations are more sensitive
to some time scales of the extrinsic fluctuations than to others.

The outline of the paper is as follows. The PDE model of the Min oscillations
is found in section 2. The model is linearized, first expanded in a cosine series, and
then expanded in a small parameter ε in section 3. The extrinsic perturbations of the
parameters of the model are scaled by ε and the influence of the perturbations on the
frequency and the amplitude of the oscillations is analyzed. Section 4 is a brief review
of the properties of an Ornstein–Uhlenbeck (OU) process for the colored temporal
noise and how the spatial noise is generated. The autocorrelations for the changes in
frequency are derived in section 5 assuming that the perturbations are as in section 4.
Comparison is made in section 6 between the solutions of the nonlinear model and
the linearized model used in the analysis. Some conclusions are drawn in section 7.

2. MinD proteins oscillate in a single cell. Experimental observations of a
single bacteria cell reveal that MinD proteins oscillate from one pole of the cell to the
other, with a period of about 1 minute [5, 18, 19, 21, 26, 37]. During these oscillations,
Min proteins spend most of the time at the poles of the cell and much less time at the
middle of the cell, so that a time-averaged profile shows MinD concentration lowest
in the middle of the cell and highest at the poles of the cell. These oscillations in
space and time are associated with correct functioning of cell division. The time-
averaged MinD concentration profile can be thought of as a potential function that
repels key cellular machinery (such as FtsZ proteins and assembly of the Z-ring) from
the poles of the cell, and instead pushes the machinery to the middle of the cell, where
MinD concentration is lowest. This allows the cell to correctly locate and divide at
approximately the middle, which is important for producing two equal-sized daughter
cells. Disruptions of these oscillations are associated with cells that divide unevenly
or that exhibit other problematic phenotypes [5] so robustness is an important issue
[13, 30, 31].

A system of reaction-diffusion PDEs is a popular macroscopic model for the os-
cillations of the Min protein [15, 19]. It includes five species with concentrations
that vary in space and time: three species in the cytosol of the cell, and two species
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ANALYSIS OF MODELS WITH EXTRINSIC FLUCTUATIONS 1159

that are membrane-bound. Let the concentrations of MinD:ADP, MinD:ATP, and
MinE in the cytosol be ρDD(x, t), ρDT (x, t), and ρE(x, t). Let ρd(x, t) and ρde(x, t)
be the concentrations of MinD:ATP and MinE:MinD:ATP, which are complexes on
the membrane. The volume of the domain (the cytosol in a single cell) is denoted by
Ω with the boundary (the membrane of the cell) ∂Ω and an outward normal n.

The equations for the concentrations of the species in the model of Huang, Meir,
and Wingreen [15] are

∂tρDD = σdeρde − σDT ρDD + γD∆ρDD,

∂tρDT = σDT ρDD − (σD + σdD(ρd + ρde))ρDT + γD∆ρDT ,

∂tρE = σdeρde − σEρdρE + γE∆ρE ,(2.1)

∂tρd = (σD + σdD(ρd + ρde))ρDT − σEρdρE ,

∂tρde = σEρdρE − σdeρde.

The time derivative is denoted by ∂t and the diffusion operator by ∆. Reactions
involving ρd and ρde take place only on the cell membrane. The boundary conditions
for the species in the cytosol are reflective at ∂Ω, i.e., n·∇ρ = 0. A reaction propensity
a in (2.1) is linear or quadratic in ρ and linear in a reaction coefficient σ.

Other models of the Min system are reviewed in [19]. The model of Fange and
Elf [5] has diffusion also on the membrane and the term σdDρdeρDT is missing in the
second and fourth equations in (2.1). The change of MinD from ADP to ATP form
is ignored and there is an upper bound on the number of membrane binding sites in
the model of Meacci and Kruse [21].

The geometry of the cell Ω is modeled as cylindrical, with spherical caps at both
ends. The cell radius is 0.5µm, the cylindrical part is 3.5µm, and the volume V is
3.2725µm3. The typical reaction parameters in (2.1) are

σde = 0.7s−1, σDT = 1s−1, σD = 0.025s−1,

σdD = 1.6 · 10−3s−1, σE = 0.093s−1, or(2.2)

σdD = 9.6 · 105M−1s−1, σE = 5.60 · 107M−1s−1.

The diffusion coefficients are γ = γD = γE = 2.5µm2s−1. The cell length is assumed
to be constant although the length is varying during the cell cycle and has an influence
on the oscillations [7].

The Min system is simulated stochastically in three dimensions with a mesoscopic
model and Gillespie’s SSA [9] implemented in [2] in Figure 1. The domain V is

partitioned into voxels Vi, i = 1, . . . ,N , such that V =
⋃N
i=1 Vi. Suppose that the

number of molecules of species A in Vi is mAi and let mT
i = (mDDi,mDTi,mEi,mdi,

mdei). Then the concentration ρAi of A in Vi is mAi/Vi and ρTi = (ρDDi, ρDTi, ρEi,
ρdi, ρdei). A mesoscopic reaction propensity in the SSA in Vi is Via(mi/Vi) if a(ρ) is
the corresponding macroscopic propensity in (2.1). An explanation of the diffusion
propensities for the SSA is found in [4]. Parameters are not perturbed in the left
column of the figure, so the noise is intrinsic there. In the right column, one parameter,
σdD in (2.1), is perturbed in space and time and we have both intrinsic and extrinsic
noise. The MinD oscillations are affected by the extrinsic noise in the upper right
panel but the average concentration profile is less sensitive.

Figure 2 shows the deterministic solution of the system (2.1) for the parameters
(2.2) in one dimension. As can be seen, periodic oscillations of MinD from pole to
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1160 HELLANDER, KLOSA, LÖTSTEDT, AND MACNAMARA

Fig. 1. Stochastic simulations in three space dimensions and time of the oscillations of the
number of MinD proteins at one pole (top). The time-averaged concentration profile along an E.
coli bacterium with the position in m on the abscissa (bottom). Unperturbed parameters (left) and
with temporal and spatial perturbations (right).
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Fig. 2. Solution of the deterministic PDE model, in one space dimension and time, of MinD
oscillations (2.1). (a) Temporal variation of ρd shown at the left boundary at x = 0 (solid blue)
and at the right boundary x = 4.5 (dashed red). (b) Top: Kymographs of the dynamics of the
concentration show regular oscillations (high concentration: red, low concentration: blue). Most
time is spent at the poles, with a relatively fast transition from one pole to the other. Middle: Power
spectrum confirms strong periodic components of the solution. The maximal peak corresponds to a
period of about 40 s. Bottom: The time-averaged concentration profile is at a minimum near the
middle of the cell.

pole (top) work to establish a relative temporal average concentration profile in which
MinD has a higher concentration in the regions near the polar caps and a minimum
in the middle of the cell (bottom). For these values of the parameters, the power
spectrum (middle pane) has its main peak at approximately 0.025 Hz, corresponding
to a period of approximately 40 seconds. The solution is similar to the stochastic
realization in Figure 1 with unperturbed parameters. The steady state solution ρ∞
of (2.1) agrees very well with the average values in space and time of the stochastic
simulations. The time period T of the oscillations is about 40 seconds in both the
deterministic equations and the stochastic simulations for the parameters in (2.2).
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3. Analysis of the macroscopic model. The deterministic PDE model
switches between a spatially homogeneous equilibrium and unstable periodic oscilla-
tions, via stable oscillations when parameters σ are varied. The oscillatory behavior
can be compatible with the suppression of Z-ring formation at the bacterium’s poles
only if the oscillations are reliable enough in space and of large enough amplitude.
We are interested in oscillatory solutions of (2.1) and where in the parameter space
they appear. Small perturbations around a steady state solution ρ∞ (or a fixed point)
are introduced. The small perturbations satisfy linearized equations with a constant
system matrix. The eigenvalues of this matrix tell us where the perturbations are
stable, are unstable, or oscillate. The coefficients σ are perturbed in space and time
about a constant mean value. In this way, the uncertainty in the parameters is intro-
duced. The amplitude and the frequency of the oscillations in the MinD system are
changed by the perturbations which are assumed to be small such that linearization is
possible.

The analysis developed in this section is applied to the model in (2.1) and [15] but
is generally applicable to the models in, e.g., [5] and [21] and other similar, oscillatory
systems.

3.1. Invariants in the deterministic model. Since∫
Ω

∆ρdΩ =

∫
∂Ω

n · ∇ρdS = 0,

it follows from (2.1) that the total number of MinD and MinE molecules, MD and
ME , defined by

MD =

∫
Ω

ρDD + ρDT + ρd + ρde dΩ, ME =

∫
Ω

ρE + ρde dΩ,(3.1)

are constant and ∂tMD = ∂tME = 0. The total number of molecules in our examples
are MD = 4500 and ME = 1575.

The conclusion from (3.1) for a constant steady state solution

ρT∞ = (ρDD∞, ρDT∞, ρE∞, ρd∞, ρde∞)(3.2)

is that the quantities ρDtot and ρEtot in

ρDtot = MD/V = ρDD∞ + ρDT∞ + ρd∞ + ρde∞,(3.3)

ρEtot = ME/V = ρE∞ + ρde∞

are conserved in all solutions. Then ρd∞ and ρde∞ can be eliminated from the station-
ary equation of (2.1) using (3.1) yielding three nonlinear equations for ρDD∞, ρDT∞,
and ρE∞. The constants ρDtot and ρEtot are 1375 and 481 in our examples. Only
one fixed point has been found in the neighborhood of the σ-values in (2.2) and it
depends smoothly on the parameters.

3.2. Model with variable parameters. In order to investigate the influence
of a variation in the σ-parameters, a one-dimensional (1D) simplification of the model
in (2.1) is introduced in the interval [0, L] with L = 4.5µm and

∂tρ = f(ρ) + κ(x, t)g(ρ) + γD∂2
xρ, ∂xρ = 0 at x = 0, L.(3.4)

Here f and g contain the reaction terms and D is diagonal with Djj = 1, j = 1, 2, 3,
and Djj = 0, j = 4, 5, in the MinD model, and ∂x denotes ∂/∂x. A 1D model is
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1162 HELLANDER, KLOSA, LÖTSTEDT, AND MACNAMARA

found to be sufficient to study Min oscillations in [19]. See also Figures 1 and 2. The
parameters (2.2) in (2.1) are constant in f and are multiplied by the same factor κ
varying in space and time in g. The assumption is that the perturbed parameters
appear linearly in the right-hand side of (3.4). The factor is assumed to have the
expansion

κ(x, t) = (1 + εκt(t) +O(ε2))(1 + εκx(x) +O(ε2))(3.5)

= 1 + εκt(t) + εκx(x) +O(ε2)

in a small parameter ε. If there are no extrinsic fluctuations, then ε = 0 and κ(x, t) = 1
and f and g can be merged in (3.4). The perturbations are such that

lim
t→∞

1

t

∫ T

0

κt(s) ds = 0,
1

L

∫ L

0

κx(x) dx = 0.(3.6)

Thus, the mean values of the σ-parameters in space and time are not changed. The
unperturbed constant steady state ρ∞ with κ = 1 satisfies

f(ρ∞) + g(ρ∞) = 0.(3.7)

A perturbation of ρ∞ is denoted by

δρ(x, t)T = (δρDD(x, t), δρDT (x, t), δρE(x, t), δρd(x, t), δρde(x, t)).(3.8)

Insert ρ∞ + δρ into (3.4) and linearize the system of equations. Terms of O(‖δρ‖2)
are ignored and the Jacobians of f and g at ρ∞ are denoted by F = ∂f/∂ρ and
G = ∂g/∂ρ. Then δρ(x, t) satisfies

∂tδρ = Fδρ+ κ(x, t)Gδρ+ γD∂2
xδρ(3.9)

= Jδρ+ γD∂2
xδρ+ εκt(t)Gδρ+ εκx(x)Gδρ+O(ε2),

where J = F + G. The constant Jacobian matrix J depends on the steady state
solution ρ∞ and the unperturbed reaction coefficients. The expansion of δρ in the
small parameter is

δρ = δρ0 + εδρ1 + ε2δρ2 +O(ε3).(3.10)

This expansion will be inserted into (3.2) to derive equations for δρ0 and δρ1 but first
the stability of the lowest order term in the expansion is investigated.

3.3. Stability analysis of the lowest perturbation mode. An equation for
the unperturbed solution δρ0(x, t) is obtained by letting ε = 0 in (3.2)

∂tδρ0 = Jδρ0 + γD∂2
xδρ0,(3.11)

satisfying the constraints obtained from (3.1)

δρDD + δρDT + δρd + δρde = 0, δρE + δρde = 0.(3.12)

The stability of the constant steady state is first investigated by letting δρ0 be
constant in space in (3.11), δρ0 = δρ0(t). Then the equation for δρ0 is

∂tδρ0 = Jδρ0,(3.13)
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with the solution

δρ0(t) = exp(Jt)δρ0(0).(3.14)

The eigenvalues λj(J) of J determine the stability properties of the solution. If
max<λj < 0, then a spatially constant perturbation will vanish, but suppose that
max<λj > 0 and δρ0(0) 6= 0. Then there are growing perturbations violating the
assumption of small perturbations. Furthermore, in order to satisfy (3.12) at least
one component must approach −∞ breaking the nonnegativity constraint on the
concentrations. Therefore, we let the constant steady state be unperturbed initially
with δρ0(0) = 0 and δρ0(t) = 0.

Another perturbation mode satisfying the boundary conditions in (3.4) is

δρ0(x, t) = δρ0(t) cos(πx/L).(3.15)

The solution to (3.11) with this ansatz is

δρ0(x, t) = exp(H1t) cos(πx/L)δρ0(0), H1 = J − (γπ2/L2)D.(3.16)

The stability of this perturbation is determined by the eigenvalues λj(H1), j = 1, . . . , 5.
In the neighborhood of the σ-values in (2.2), there is an oscillatory mode with
<λj(H1) = 0, j= 1, 2, and <λj(H1) < 0, j = 3, 4, 5, in numerical computations of
the eigenvalues.

Let sTj = (sjDD, sjDT , sjE , sd, sde) be the eigenvector of H1 corresponding to λj
and let sjA = exp(µjA + iνjA), A = DD,DT,E, d, de. The oscillatory eigenvalue
λ1 = iθ1 has the eigenvector s1. The eigenvector of λ2 = iθ2 = λ∗1 = −iθ1 is s2 = s∗1.
Then with initial data δρ0(0) = s1 + s∗1, the oscillatory perturbation is derived from
the solution of (3.11),

δρ0A(x, t) = (s1A exp(iθ1t) + s∗1A exp(−iθ1t)) cos(πx/L)

= 2|s1A| cos(ν1A + θ1t) cos(πx/L),(3.17)

A = DD,DT,E, d, de.

The oscillations in time have the period T = 2π/θ1 with different phase angles ν1A

for the species. The period will change when L increases due to cell growth. In the
analysis here, we let L be constant.

The spatial mode in (3.15) and (3.3) has two peaks in space, one at x = 0 and
one at x = L with alternating sign and oscillates in time. The time average of the
square of the species concentration in (3.3) is

1

T

∫ T

0

(δρ0A(x, t))2 dt = |s1A|2 cos2(πx/L)

with a dip at the center of the cell in the MinD concentration as observed in Figures 1
and 2. Similar analyses for related model equations can be found in [18, 21].

The sensitivity in the oscillatory eigenvalue of H1 in (3.16) to changes in the
reaction parameters is evaluated in Figure 3. The isolines for max<λj = 0 are drawn
in the σdD − σE plane for different σde and σDT . The eigenvalues are insensitive to
σD. This is confirmed in [35]. In the stable regions in the lower and left parts of the
figures with <λj(H1) < 0, δρ0(x, t) will decay in (3.16) and ρ(x, t) will approach the
steady state ρ∞. The perturbation is mildly unstable in the upper right part of the
figures and will grow there until nonlinear effects, nonnegativity, and the bounds on
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Fig. 3. The perturbations of the steady state solution are oscillatory on the lines in the σE−σdD
plane. The curves represent different values of σde (left) and σDT (right).
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Fig. 4. The isolines of the period of the oscillations for the perturbations of the steady state
solution in the σE − σdD plane. The curves represent different values of T .

the total number of MinD and MinE molecules (3.1) will limit the amplitude. For
these parameters and the two oscillatory eigenvalues, <λj is small compared to =λj .

The dependence of the period on the σ parameters is displayed in Figure 4. The
isolines of T are computed as 2π/=λj for the oscillatory eigenvalues. The period
varies quickly when σdD is changed around the base values of σ but is insensitive to
perturbations in σE there.

The sensitivity to larger deviations in the parameters from the set point (2.2)
is explored in Figure 5 for the mesoscopic model in Figure 1 with intrinsic noise
in the model. The oscillations are regular and the spatiotemporal average has the
right U shape in the lower right corner of the parameter space. The oscillations are
more erratic for smaller σE and larger σdD and the average no longer has a distinct
minimum in the middle of the cell.

3.4. Perturbation analysis. Equations for the space and time dependent per-
turbation δρ of the steady state in (3.8) and (3.10) when ε > 0 will be derived from
(3.2) using separation of variables.

The solution is first expanded in a cosine series in space

δρ(x, t) =

∞∑
ω=1

δρ̂ω(t) cos(ωπx/L), x ∈ [0, L], t ≥ 0.(3.18)

Then the boundary conditions in (3.4) are satisfied. The initial condition is taken to be

δρ(x, 0) = δρ̂1(0) cos(πx/L).(3.19)
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ANALYSIS OF MODELS WITH EXTRINSIC FLUCTUATIONS 1165

Fig. 5. Realizations of the mesoscopic model with intrinsic noise at points in the parameter
plane with σE on the x-axis and σdD on the y-axis. The isoline (red line) with σDT = 1, where
undamped oscillations are obtained in the deterministic model, is included for comparison with the
right panel of Figure 3.

Let Hω = J − (γω2π2/L2)D and insert δρ in (3.18) into (3.2) to obtain

∂t

∞∑
ω=1

δρ̂ω(t) cos(ωπx/L) =

∞∑
ω=1

Hωδρ̂ω cos(ωπx/L)(3.20)

+ ε(κt + κx)

∞∑
ω=1

Gδρ̂ω cos(ωπx/L) +O(ε2).

Introduce a change of variables δρ̂ω = Sδûω, where S = (s1, s2, s3, s4, s5) is
the eigenvector matrix of H1. The corresponding transformations of Hω and G are
Ĥω = S−1HωS and Ĝ = S−1GS. When ω = 1, H1 is a diagonal matrix with the
eigenvalues λj = λj(H1) on the diagonal. The eigenvalues of Hω, ω ≥ 2, are λωj . For
the linearized system of equations (3.2), we assume

1. Dii ≥ 0, i = 1, . . . , 5, Djj > 0 for at least one j,
2. λ1 = iθ1, λ2 = iθ2 = −iθ1, <λj < 0, j = 3, 4, 5,
3. <λωj < 0, j = 1, . . . , 5, ω ≥ 2.

(3.21)

In the assumptions, at least one species has to be diffusive (1). The parameters are
such that at the stationary solution ρ∞ there is an oscillatory mode and the other
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1166 HELLANDER, KLOSA, LÖTSTEDT, AND MACNAMARA

modes are damped (2). The modes of the higher spatial wave numbers ω are damped
(3) to simplify the analysis. The third assumption concerning λωj is not necessary if
the diffusion is the same in all components with D = I. Then λωj = λj − γ(ω2 − 1)
π2/L2 and

<λωj = <λj − γ(ω2 − 1)π2/L2 < <λj ≤ 0, j = 1, . . . , 5, ω ≥ 2.(3.22)

The following analysis is also simplified considerably if D = I.
The equations satisfied by the coefficients δûωj(t) for δρ̂ω in the eigenvector di-

rections are for j = 1, . . . , 5,

∂t

∞∑
ω=1

δûωj cos(ωπx/L) =

∞∑
ω=1

5∑
k=1

Ĥωjkδûωk cos(ωπx/L)(3.23)

+ ε(κt + κx)

∞∑
ω=1

5∑
k=1

Ĝjkδûωk cos(ωπx/L) +O(ε2).

A Lindstedt–Poincaré transformation of time

t = s(1 + εψj1(s) + ε2ψj2(s) + . . .)(3.24)

is introduced for the jth equation to avoid secular solutions later with terms in δûωj
growing linearly in time; see, e.g., [23]. Then the time derivative is transformed to

∂sδûωj = ∂tδûωj
dt

ds
= (1 + εsψ′j1 + εψj1 +O(ε2))∂tδûωj .(3.25)

Consequently, the equation in s is

∂s

∞∑
ω=1

δûωj cos(ωπx/L) = (1 + ε(sψ′j1 + ψj1))

∞∑
ω=1

5∑
k=1

Ĥωjkδûωk cos(ωπx/L)(3.26)

+ ε(κt + κx)

∞∑
ω=1

5∑
k=1

Ĝjkδûωk cos(ωπx/L) +O(ε2).

Insert the ε-expansion of δûωj

δûωj = δûωj0 + εδûωj1 +O(ε2)(3.27)

into (3.4) and collect terms multiplied by εk, k = 0, 1, 2 . . . . For ε0 we arrive at an
equation for δûωj0,

∂sδûωj0 =

5∑
k=1

Ĥωjkδûωk0, ω ≥ 1.(3.28)

By (3.19), the initial conditions are

δû1j0(0) = δû1j00 =

5∑
k=1

(S−1)jkδρ̂1k(0), j = 1, . . . , 5,(3.29)

δûωj0(0) = 0, ω ≥ 2, j = 1, . . . , 5.
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By assumption (3.21) for ω = 1, the solution for large s is

δû110(s) = exp(iθ1s)δû1100, δû120(s) = exp(−iθ1s)δû1200,(3.30)

δû1j0(x, s) ≈ 0, j = 3, 4, 5,

and because of the initial conditions

δûωj0(s) = 0, ω ≥ 2, j = 1, . . . , 5.(3.31)

Since λj 6= ±iθ1 when j = 3, 4, 5, there is no secular term for these j and we let
ψji = 0, i ≥ 1, in (3.24) and s = t. With the approximations in (3.4) and assuming
that δû1100 = δû1200 = 1 to simplify the notation, the equations for δûωj1 follow from
terms proportional to ε1,

∂s

∞∑
ω=1

δûωj1 cos(ωπx/L) =

∞∑
k=1

5∑
k=1

Ĥωjkδûωk1 cos(ωπx/L)(3.32)

+ (κt(s) + κx(x)) cos(πx/L)(Ĝj1 exp(iθ1s) + Ĝj2 exp(−iθ1s))

+ (sψ′j1 + ψj1)iθj exp(iθjs) cos(πx/L), j = 1, 2,

∂t

∞∑
ω=1

δûωj1 cos(ωπx/L) =

∞∑
k=1

5∑
k=1

Ĥωjkδûωk1 cos(ωπx/L)

+ (κt(t) + κx(x)) cos(πx/L)(Ĝj1 exp(iθ1t) + Ĝj2 exp(−iθ1t)), j = 3, 4, 5.

Let κx have the cosine expansion

κx(x) =

∞∑
ω=2

κ̂xω cos(ωπx/L)(3.33)

such that (3.6) is fulfilled. The factor κx cos(πx/L) in (3.4) can be written

κx(x) cos(πx/L) =

∞∑
ω=1

κ̃xω cos(ωπx/L),

κ̃xω = 1
2 κ̂x,ω+1, ω = 1, 2, κ̃xω = 1

2 (κ̂x,ω−1 + κ̂x,ω+1), ω ≥ 3.

(3.34)

Using the expansion (3.34) in (3.4) we obtain the equations for ω = 1,

∂sδû1j1 = iθjδû1j1 + (κt + κ̃x1)(Ĝj1 exp(iθ1s) + Ĝj2 exp(−iθ1s))(3.35)

+ (sψ′j1 + ψj1)iθj exp(iθjs), j = 1, 2,

∂tδû1j1 = λjδû1j1 + (κt + κ̃x1)(Ĝj1 exp(iθ1t) + Ĝj2 exp(−iθ1t)), j = 3, 4, 5.

Choose ψj1(s) for j = 1, 2, in (3.24) such that

iθj(sψ
′
j1(s) + ψj1(s)) + (κt(s) + κ̃x1)Ĝjj = 0(3.36)

in (3.4). Then the equation for ω = 1 and j = 1 is

∂sδû111 = iθ1δû111 + (κt + κ̃x1)Ĝ12 exp(−iθ1s)(3.37)D
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1168 HELLANDER, KLOSA, LÖTSTEDT, AND MACNAMARA

with the initial condition δû111(0) = 0. The solution to (3.37) is

δû111(s) =

∫ s

0

exp(iθ1(s− v))(κt + κ̃x1)Ĝ12 exp(−iθ1v) dv(3.38)

= Ĝ12

(
κ̃x1

θ1
sin(θ1s) + exp(iθ1s)

∫ s

0

exp(−2iθ1v)κt(v) dv

)
.

The solution for j = 2 is obtained by replacing θ1 by −θ1 and switching the indices 1
and 2 in (3.4),

δû121(s) = Ĝ21

(
κ̃x1

θ1
sin(θ1s) + exp(−iθ1s)

∫ s

0

exp(2iθ1v)κt(v) dv

)
.(3.39)

The solution of (3.4) for ω = 1 and j ≥ 3 is

δû1j1(t) =

∫ t

0

exp(λj(t− v))(κt + κ̃x1)(Ĝj1 exp(iθ1v) + Ĝj2 exp(−iθ1v)) dv

=
κ̃x1Ĝj1
λj − iθ1

(exp(λjt)− exp(iθ1t))+
κ̃x1Ĝj2
λj + iθ1

(exp(λjt)− exp(−iθ1t))(3.40)

+ Ĝj1 exp(λjt)

∫ t

0

κt(v) exp((−λj + iθ1)v)) dv

+ Ĝj2 exp(λjt)

∫ t

0

κt(v) exp(−(λj − iθ1)v)) dv.

Since <λj < 0 by the assumption (3.21), exp(λjt) vanishes for large t.
The equations for ω ≥ 2 and j = 1, . . . , 5 are derived from (3.4) and (3.34),

∂tδûωj1 =

5∑
k=1

Ĥωjkδûωk1 + κ̃xω(Ĝj1 exp(iθ1t) + Ĝj2 exp(−iθ1t)).(3.41)

Transform back in (3.41) from δûω to δρ̂ω in (3.4) using S. The eigenvector matrix
of Hω is Sω = (sω1, sω2, sω3, sω4, sω5) and the eigenvalues λωj satisfy <λωj < 0 by
(3.21). Then change the variables such that δρ̂ω = Sωδũω. Let δũω1 be the term in
δũω multiplied by ε. The equation for the jth component of δũω1 is

∂tδũωj1 = λωjδũωj1 + κ̃xω(G̃ωj1 exp(iθ1t) + G̃ωj2 exp(−iθ1t)),(3.42)

where G̃ωj` =
∑5
k=1(S−1

ω S)jkĜk`, ` = 1, 2. Solving (3.42) for ω ≥ 2 using the initial
conditions (3.4) we arrive at a solution similar to (3.4),

δũωj1(t) =

∫ t

0

exp(λωj(t− v))κ̃xω(G̃ωj1 exp(iθ1v) + G̃ωj2 exp(−iθ1v)) dv

=
κ̃xωG̃ωj1
λωj − iθ1

(exp(λωjt)− exp(iθ1t))(3.43)

+
κ̃xωG̃ωj2
λωj + iθ1

(exp(λωjt)− exp(−iθ1t)).

For large t, exp(λωjt)→ 0 and δûωj1, ω = 1, 2, . . . , is simplified to

δũωj1(t) = −κ̃xωΘωj , Θωj =
G̃ωj1

λωj − iθ1
exp(iθ1t) +

G̃ωj2
λωj + iθ1

exp(−iθ1t).(3.44)
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ANALYSIS OF MODELS WITH EXTRINSIC FLUCTUATIONS 1169

The solution to the Euler equation (3.36) is

ψj1(s) = − Ĝjj
iθjs

(
κ̃x1s+

∫ s

0

κt(v) dv

)
.(3.45)

Introduce

κxt(t) = κ̃x1 +
1

t

∫ t

0

κt(v) dv.(3.46)

By (3.24) and (3.45) we conclude that

s = t

(
1 +

εĜjj
iθj

κxt(s)

)
+O(ε2) = t

(
1 +

εĜjj
iθj

κxt(t)

)
+O(ε2), j = 1, 2.(3.47)

Let δũω with components δũωj be defined as in (3.27). Combining (3.27), (3.4),
(3.4), and (3.44) with (3.47), the two lowest order terms in the ε-expansion of δû are

δû11(t) = δû110(t) + εδû111(t) +O(ε2) = exp
(
iθ1t+ εĜ11tκxt(t)

)(3.48)

+ εĜ12

(
κ̃x1

θ1
sin(θ1t) + exp(iθ1t)

∫ t

0

exp(−2iθ1v)κt(v) dv

)
+O(ε2)

δû1j(t) = εδû1j1(t) +O(ε2) = −εκ̃x1

(
Ĝj1

λj − iθ1
exp(iθ1t) +

Ĝj2
λj + iθ1

exp(−iθ1t)

)

+ εĜj1 exp(λjt)

∫ t

0

κt(v) exp((−λj + iθ1)v)) dv

+ εĜj2 exp(λjt)

∫ t

0

κt(v) exp(−(λj − iθ1)v) dv +O(ε2), j = 3, 4, 5,

δũωj(t) = εδũωj1(t) +O(ε2) = −εκ̃xωΘωj(t) +O(ε2), ω ≥ 2,

when the transient has disappeared for large t. The solution for the other oscillatory
mode δû12 is obtained from δû11 by replacing θ1 by −θ1 and switching the indices
1 → 2 and 2 → 1 in Ĝjk as in (3.39). If κx = 0, then (3.4) is simplified and
δũωj(t) = O(ε2).

In the original variables, we have from (3.4) that

δρ = S1δû1 cos(πx/L) +

∞∑
ω=2

Sωδũω cos(ωπx/L)(3.49)

= (δû110(t)s11 + δû120(t)s12) cos(πx/L) +O(ε).

The main oscillatory mode given by s11 and s12 is perturbed by a term of O(ε) due
to the perturbed coefficients in the model.

The inverse of the eigenvector matrix S−1
ω , ω ≥ 1, has the properties

S−1
ω =


ςω1

ςω2

. . .
ςω5

 , S−1
ω Sω =

 ςω1sω1 ςω1s
∗
ω1 . . .

ςω2sω1 ςω2s
∗
ω1 . . .

. . .

 =

 1 0 . . .
0 1 . . .
. . .

 .

(3.50)
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1170 HELLANDER, KLOSA, LÖTSTEDT, AND MACNAMARA

The rows ςωj of S−1
ω are such that ςωjsωk = 0 when j 6= k and ςωjsωj = 1. We find

that ςω2 = ς∗ω1 by S−1
ω Sω in (3.50). The elements in the upper left corner of G̃ω and

Ĝ = G̃1 are then

Ĝω11 = ςω1Gsω1 = ς∗ω2Gs
∗
ω2 = Ĝ∗ω22, Ĝω12 = ςω1Gsω2 = ς∗ω2Gs

∗
ω1 = Ĝ∗ω21.(3.51)

Therefore, δû120 = δû∗110 in (3.4) and δρ in (3.4) is

δρ = (δû110s1 + δû∗110s
∗
1) cos(πx/L) +O(ε)(3.52)

= 2<{δû110(t)s1} cos(πx/L) +O(ε).

The argument in the exponential in the leading term of O(1) in δû110 in (3.4) is
denoted by (ξ + iη)t with

ξ(t) = εĜ11Rκxt(t), η(t) = θ1 + εĜ11Iκxt(t), Ĝ11R = <Ĝ11, Ĝ11I = =Ĝ11.(3.53)

Depending on the sign of ξ(t) in (3.53), there will be a slow growth or decay of the
main oscillatory mode. The frequency of the oscillations in η(t) will be perturbed
slightly depending on κxt(t). Thus, by (3.4) and as in (3.3)

δρA = 2<{exp
(
i(θ1 + εĜ11Iκxt(t))t

)
exp

(
εĜ11Rtκxt(t)

)
(3.54)

× cos(πx/L)|s1A| exp(iν1A)}+O(ε)

= 2|s1A| exp
(
εĜ11Rtκxt(t)

)
cos
(

(θ1 + εĜ11Iκxt(t))t+ ν1A

)
× cos(πx/L) +O(ε),

A = DD,DT,E, de, e.

The oscillations in all components are modified by εĜ11Iκxt(t) in (3.4) due to an
accumulation of the temporal perturbation κt in (3.46) and the constant spatial per-
turbation κ̃x1 = 1

2 κ̂x2 in (3.34) and (3.33) of the reaction coefficients. The temporal
perturbation vanishes for large t by the assumption in (3.6).

Partition the interval [0, t] into subintervals [tj−1, tj ], j = 1, . . . , J, with ∆tj =
tj − tj−1 and use (3.46). The dominant part of δû11 in (3.4) will evolve between tj−1

and tj as

δû110(tj) = exp

(
iθ1∆tj + εĜ11(κ̃x1∆tj +

∫ tj

tj−1

κt(v) dv)

)
δû110(tj−1) +O(ε).

(3.55)

Introduce the average

κtj =
1

∆tj

∫ tj

tj−1

κt(v) dv(3.56)

in (3.55). Then

δû110(tj) = exp
(
iθ1∆tj + εĜ11∆tj(κ̃x1 + κtj)

)
δû110(tj−1) +O(ε)(3.57)

= exp

(
iθ1tj + εĜ11(tj κ̃x1 +

J∑
k=1

∆tjκtj)

)
δû110(0) +O(ε),

D
ow

nl
oa

de
d 

06
/1

2/
18

 to
 1

38
.2

5.
16

8.
33

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ANALYSIS OF MODELS WITH EXTRINSIC FLUCTUATIONS 1171

and the frequency η(tj) in (3.53) at tj is

η(tj) = θ1 + εĜ11I

(
κ̃x1 +

1

tj

J∑
k=1

∆tkκtk

)
(3.58)

= θ1 + εĜ11I

(
κ̃x1 +

1

tj

∫ tj

0

κt(v) dv

)
.

The contribution to the oscillation in δû110(tj) locally in [tj−1, tj ] is iηj∆tj with

ηj = θ1 + εĜ11I(κ̃x1 + κtj).(3.59)

If Ĝ11I 6= 0, then the basic frequency θ1 is perturbed by κ̃x1 and κtj in (3.34) and
(3.56). The coefficient κ̃x1 is constant and modifies the frequency permanently in
(3.4) and (3.59). The perturbation due to κtj varies in time. Hence, the frequency
is changed in (3.59) locally in time but over long time in (3.4) the contribution van-
ishes because of (3.6). In a similar manner, intrinsic noise can change the mean
concentrations in a model compared to the deterministic counterpart; see [29].

The effects of the perturbations evaluated numerically in Figures 3 and 4 are
compared to (3.4). The σ values in the unperturbed f in (3.4) and its Jacobian F are
as in (2.2) with the frequency θ1 ≈ 2π/40. Perturbations are introduced in each one
of the σ parameters keeping the other ones constant. This defines G in (3.2). Then
Ĝ11 is computed with the results in Table 1.

If σdD is increased, then the frequency of the oscillations increases since Ĝ11I >
0 in the table and the amplitude of the linearization increases since Ĝ11R > 0 in
agreement with Figures 3 and 4. The sensitivity to perturbations in σdD is also
large in the stochastic simulations in Figure 1. When σde increases in the left panel
of Figure 3 the oscillations are damped and Ĝ11R < 0 in the table. The changes in
stability are small in the right panel of Figure 3 when σDT is varied because Ĝ11R ≈ 0.
Neither the frequency nor the amplitude is sensitive to changes in σD in section 3.3
and in Table 1. A perturbation in σE has little influence on the frequency in Figure 4
and Ĝ11I is small.

A short summary of the results in sections 3.2, 3.3, and 3.4 follows. A system
of reaction-diffusion equations (3.4) is linearized about a steady state solution ρ∞.
Different ρ∞ are obtained by varying the parameters σ. The properties of the lin-
earization and the influence of extrinsic perturbations in the reaction coefficients σ
are then investigated. The assumptions in (3.21) are such that the problem is dif-
fusive, there is an oscillatory mode without damping, and the remaining modes are
damped. Then the extrinsic perturbations of the coefficients in (3.5) satisfy (3.6) with
an amplitude proportional to a small parameter ε. With a Fourier representation in
space, the solution of the linearized equations is determined. The shift in the fre-
quency of the oscillations of the perturbed system locally in time in (3.59) depends on
ε, the Jacobian matrix of the propensities with perturbed coefficients G, the cosine
coefficients of the perturbations in space κx, and the perturbations in time κt. The

Table 1
Perturbations in Ĝ11 due to perturbations in the σ parameters of the model.

σA σDT σde σD σdD σE
Ĝ11R 0.0005 -0.0654 -0.0022 0.1327 0.0074

Ĝ11I 0.0343 0.2670 0.0021 0.1999 0.0611
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1172 HELLANDER, KLOSA, LÖTSTEDT, AND MACNAMARA

procedure to arrive at (3.59) is not restricted to the equations in (3.4) but is generally
applicable.

Let us consider a special problem where all coefficients are perturbed in the same
way by κ(x, t) and G is such that it is diagonalized by S. Then Ĝjk = 0 when j 6= k
and the expressions in (3.4) are somewhat simplified with δû1j = δû1j1 = 0 in (3.4)
for j ≥ 3. With this assumption in (3.4)

δû11(t) = exp
(
iθ1t+ εĜ11tκxt(t))

)
+O(ε2).(3.60)

The effect on δρ of the higher order spatial modes with ω ≥ 2 in δûωj from (3.4) is

εh(x, t) =

∞∑
ω=2

5∑
j=1

sωjδũωj cos(ωπx/L)(3.61)

= −ε
∞∑
ω=2

κ̃xω cos(ωπx/L)

5∑
j=1

sωjΘωj(t).

The perturbation εh depends on the spatial perturbations in κ̃xω and Θωj(t) in (3.44)
which is time dependent but is independent of κx and κt. The expression for δρ is
obtained as in (3.4),

δρ = δu1s1 + δu∗1s
∗
1 + εh(x, t) +O(ε2) = 2<{δu1s1}+ εh(x, t) +O(ε2).(3.62)

The components of δρ are

δρA(x, t) = 2<{exp(iθ1t+ ε(Ĝ11R + iĜ11I)tκxt(t))|s1A| exp(iν1A)}(3.63)

× cos(πx/L) + εhA(x, t) +O(ε2)

= 2|s1A| exp(εĜ11Rtκxt(t)) cos
(

(1 + εĜ11Iθ
−1
1 κxt(t))θ1t+ ν1A

)
× cos(πx/L) + εhA(x, t) +O(ε2),

A = DD,DT,E, d, de.

By assuming a special structure of the perturbations, a simplified expression is
obtained for the amplitude of the oscillatory mode with frequency θ1. It is modified in
(3.4) by the temporal perturbations κt if <Ĝ11 6= 0 and by the spatial perturbations
in h(x) and κx. The term hA(x) in (3.4) oscillates in time with frequency θ1 but is
independent of κt.

The form of the perturbations κt and κx has been arbitrary so far. In the following
sections, they will be random variables having statistical properties modeling noise
and, consequently, (2.1) and (3.4) are systems of random differential equations.

4. Extrinsic noise. We now describe the model for fluctuations in the rate
constants. Briefly, the usual rate constant, σ, is replaced by σκ(x, t), where κ is an
independent stochastic process. The fluctuations are such that on average the rate
constant is not changed, i.e., σκ(x, t) averages to σ.

4.1. The Ornstein–Uhlenbeck process. An OU process [8, 10, 24, 36] is
a scalar, continuous-time, continuous-state Markov process X(t), that satisfies the
stochastic differential equation (SDE)

dX = −1

τ
X(t)dt+

√
cdW.(4.1)
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ANALYSIS OF MODELS WITH EXTRINSIC FLUCTUATIONS 1173

Here W (t) is a Wiener process. It is an almost surely continuous function, with
W (0) = 0, increments W (t)−W (s) = ∆W that have a normal distribution with mean
0 and variance |t−s|, and that are independent on nonoverlapping time intervals. The
positive constant τ > 0 is the relaxation time, which is a measure of the average time
it takes the OU process to revert back to the long-term mean of 0 after a fluctuation
away from 0. For example, the autocorrelation of the OU process is e−t/τ . The
parameter τ is the time scale for how X(t) is correlated in time. The explicit solution
of this SDE (4.1), and thus a sample path representation of an OU process, is

X(t) = e−t/τ
(
X(0) +

∫ t

0

√
c es/τdW (s)

)
.

This is one way to see that, given a sure initial condition, X(0) = x0, X(t) has a
normal distribution with mean x0e

−t/τ , and variance cτ
2 (1− e−2t/τ ).

More generally, the associated PDF p(x, t) evolves according to the Fokker–Planck
PDE

∂tp(x, t) =
1

τ
∂x
(
xp(x, t)

)
+
c

2
∂2
xp(x, t),

given an initial distribution p(x, 0) for X(0). The diffusion constant c > 0 controls
the spread of the distribution. For example, as t → ∞ the process tends to the
stationary distribution p∞(x), which is normally distributed N (0, cτ2 ) with mean 0
and variance cτ

2 . If we choose the initial distribution to be the same as the stationary
distribution, then the distribution of X(t) is always the same: p(x, 0) ≡ p∞(x) =
p(x, t) = N (0, cτ2 ). As a consequence, the OU process is ergodic, i.e., for a sure initial
condition, X(0) = x0, and a suitably smooth function f we have

lim
t→∞

1

t

∫ T

0

f
(
X(s)

)
ds =

∫ ∞
−∞

f
(
X
)
dP(X) ≡ E (f(X)) = 〈f(X)〉,(4.2)

where the second integral is with respect to the probability measure P that is equal
to the stationary distribution p∞(x) and 〈 · 〉 denotes the mean value.

To mathematically model the effects of extrinsic noise, we replace the rate con-
stant σ by Y (t)σ. The extrinsic noise process Y (t) is modeled, up to a normalization
constant, by the exponential of the OU process Y (t) ∝ eX(t). One reason for this
choice of an exponential is that it ensures that the extrinsic process and the rate
Y (t)σ are always positive. We model X(t) in (4.1) as always at the stationary distri-
bution, which is N (0, cτ2 ). Then the autocorrelation of eX(t) is

Aexp(X)(s, t) =
E(eX(s)eX(t))− E(eX)2

Var(eX)
=

exp
(
cτ
2 e
− |s−t|τ

)
− 1

e
cτ
2 − 1

.(4.3)

Notice that Y has a lognormal distribution because X has a normal distribution.
When a normal distribution has mean µ and variance σ2, then the mean of the
corresponding lognormal distribution is eµ+σ2/2, and the variance is (eσ

2 − 1)e2µ+σ2

.
Since the stationary distribution for X is N (0, cτ2 ), E(eX) = ecτ/4 and the variance
Var(eX) is e

cτ
2 (e

cτ
2 − 1). We normalize so that the extrinsic noise process has mean

1 by letting

Y (t) = eX(t)/E(eX).
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1174 HELLANDER, KLOSA, LÖTSTEDT, AND MACNAMARA

Now with f(x) = ex in (4.2), the ergodic property tells us that the long time average
of the extrinsic noise process Y (t) is 1. Thus, by introducing extrinsic noise in this
way, on average, we do not change the original value of the rate constant E(Y (t)σ) =
σE(Y ) = σ.

4.2. Spatially correlated noise. The random perturbations at discrete points
in space εκx(xi), i = 1, . . . , N, are sampled from a multivariate normal distribution.
The mean value of the perturbations is 0. The elements of the symmetric, positive
definite covariance matrix C are Cij = E(κx(xi)κx(xj)), i, j = 1, . . . , N . The pertur-
bations are generated by multiplying a vector with independent, normally distributed
N (0, 1) components by the Cholesky factorization of C.

5. Random perturbations in time and space. The perturbations κt(t) and
κx(x) in time and space of the parameters in the model in (2.1) are assumed to be
random due to extrinsic noise. Equation (3.4) is then a random differential equation
with parameters depending on the realization of the process. The analysis of the
effect of the perturbations in section 3.4 is the same for deterministic and stochastic
perturbations but additional conclusions can be drawn from the distribution of the
stochastic perturbations. As in section 4, the temporal extrinsic noise κt(t) is here
assumed to be generated by an OU process as in [27], and the spatial extrinsic noise
κx(x) by a multivariate normal distribution.

5.1. Random perturbations in time. Assume that κt(t) in (3.5) and (3.46)
is a random variable generated by an OU process Y (t) as in section 4.1 with the
initial Y (0) sampled from the stationary distribution and let κt(t) = Y (t)− 1. Then
according to (4.2)

lim
T→∞

1

T

∫ T

0

κt(v) dv = lim
T→∞

1

T

∫ T

0

Y (v)− 1 dv = 0.(5.1)

The frequency in (3.53) is

η(t) = θ1 + δx + δt(t), δx = εĜ11I κ̃x1 =
1

2
εĜ11I κ̂x2,(5.2)

δt(t) = εĜ11I
1

t

∫ t

0

κt(v) dv.

The deviations from θ1 caused by the spatial and temporal perturbations are δx and
δt(t), respectively. It follows from (5.1) and (5.1) that limt→∞ δt(t) = 0 as required
in (3.6).

Define as in (3.55) and (3.56)

ηj = θ1 + δx + δtj , δtj = εĜ11Iκtj = εĜ11I
1

∆tj

∫ tj

tj−1

κt(v) dv,(5.3)

in a time interval [tj−1, tj ]. In a short interval, we have the approximate instantaneous
value ηj of the frequency with the contribution

δtj ≈ εĜ11Iκt(tj)(5.4)

from the variation of σ in time. The autocorrelation for δtj with a small ∆tj is by (4.3)
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At(tj , tk) = 〈δtjδtk〉 =
ε2Ĝ2

11I

∆tj∆tk

∫ tj

tj−1

∫ tk

tk−1

〈κt(u)κt(v)〉dudv(5.5)

≈ ε2Ĝ2
11I〈κt(tj)κt(tk)〉

= ε2Ĝ2
11I

(
exp

(
cτ

2
e−
|tj−tk|

τ

)
− 1

)
.

When ∆tjk = |tj − tk| is small compared to τ in (5.1), then

exp

(
cτ

2
e−

∆tjk
τ

)
− 1 ≈ exp

(cτ
2

)(
1− c∆tjk

2

)
− 1,(5.6)

and when it is large

exp

(
cτ

2
e−

∆tjk
τ

)
− 1 ≈ cτ

2
exp

(
−∆tjk

τ

)
.(5.7)

5.2. Random perturbations in space. Assume that the spatial perturbation
κx has the cosine expansion with nonzero even coefficients in (3.33)

κx(x) =

∞∑
ω=2,4,...

κ̂xω cos(ωπx/L) =

∞∑
µ=1

κ̂x,2µ cos(2µπx/L), x ∈ [0, L].(5.8)

Then κx(x) is L-periodic, κx(x+L) = κx(x). The correlation function in space ax(ξ)
is defined by

ax(ξ) =
1

L

∫ L

0

κx(x+ ξ)κx(x) dx(5.9)

=
1

L

∞∑
µ=1

∞∑
ν=1

κ̂2
x,2µ

∫ L

0

cos(2µπ(x+ ξ)/L) cos(2νπx/L) dx, ξ ∈ [0, L].

This function is also L-periodic. Since∫ L

0

cos(2µπx/L) cos(2νπx/L) dx =

{
0, µ 6= ν,

L/2, µ = ν,

ax(ξ) can be written

ax(ξ) =
1

2

∞∑
µ=1

κ̂2
x,2µ cos(2µπξ/L), ξ ∈ [0, L].(5.10)

The coefficients in the cosine expansion of ax(ξ) are κ̂2
x,2µ/2.

When κx in (3.5) is a random variable, the autocorrelation is

Ax(ξ) = 〈ax(ξ)〉 =
1

2

∞∑
µ=1

〈κ̂2
x,2µ〉 cos(2µπξ/L), ξ ∈ [0, L].(5.11)

The mean values of κ̂2
x,2µ are the coefficients in the expansion of Ax(ξ) in a cosine

series such that

〈κ̂2
x,2µ〉 =

4

L

∫ L

0

Ax(ξ) cos(2µπξ/L) dξ ≡ Âxµ(5.12)
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1176 HELLANDER, KLOSA, LÖTSTEDT, AND MACNAMARA

as in the Wiener–Khinchin theorem.
As an example take

Ax(ξ) =

 (1− ξ/α)/α, ξ ∈ [0, α],
(1 + ξ/α)/α, ξ ∈ [−α, 0),

0 otherwise,
(5.13)

with α ∈ (0, L) which is L-periodic Ax(ξ + L) = Ax(ξ). When α is small there is a
correlation between the perturbations only in the vicinity. The function in (5.13) is

scaled such that
∫ L

0
Ax(ξ) dξ =

∫ L/2
−L/2Ax(ξ) dξ = 1. The Fourier coefficients are

Âxµ = 2 · 4

L

∫ α

0

Ax(ξ) cos(2µπξ/L) dξ =
4L

(µπα)2
sin2(µπα/L) > 0.(5.14)

The coefficients decay as µ−2 for increasing µ and when α is small then Ax(ξ) ap-
proaches the Dirac measure and Âxµ = 4/L+O(α2).

There is a shift in the random frequency η in (5.1) caused by δx. With a δx
independent of x, the autocorrelation of δx is

Ax(ξ) = 〈δx(x+ ξ)δx(x)〉(5.15)

= 〈δ2
x〉 = ε2Ĝ2

11I〈κ̃2
x1〉 =

1

4
ε2Ĝ2

11I〈κ̂2
x2〉 =

1

4
ε2Ĝ2

11IÂx1,

and the deviation sx of the frequency from θ1 is

sx =
√
Ax(0) =

1

2
εĜ11I

√
Âx1.(5.16)

6. Comparison between analysis and simulations. The PDE in (2.1), which
is generalized to allow fluctuating coefficients σ(x, t) depending on the realization, is
solved numerically in one dimension in [0, L]. The space derivative is approximated
on a grid xi, i = 0, 1, . . . , N, with constant grid size ∆x = xi − xi−1 = L/N and
the usual difference formula of second order accuracy. All reaction coefficients σ are
perturbed in time or in space and by the same factor such that f = 0 in (3.4), J = G,
and H1 = G− (γπ2/L2)D in (3.16). The system in (2.1) is solved by a Runge–Kutta
method of fourth order accuracy with a constant time step and N = 21. This is
a slight abuse of a numerical method designed for an ordinary differential equation.
Fourth order temporal accuracy will not be achieved since Y (t) from the OU process
in section 4.1 is only continuous. An example of a solution is found in Figure 2(a)
with unperturbed coefficients. The peak of ρd alternates regularly between x = 0 and
x = L with the frequency θ1 ≈ 2π/40. The amplitude is approximately constant after
an initial transient. The computed eigenvalues of H1 and Hω satisfy the assumption
in (3.21). A typical cell cycle between the cell divisions of E. coli is about 1200 s.

The frequency of the oscillations is computed as in (5.3) in an interval [tj−1, tj+1]
of length ∆tj , where tj , j = 0, 1, . . . , are the time points of the consecutive extrema
(maxima and minima) of the computed oscillations. By (5.1) (and (5.3) where tj →
tj+1) we have

ηj = θ1 +
1

2
εĜ11I κ̂x2 + εĜ11I

1

∆tj

∫ tj+1

tj−1

κt(v) dv(6.1)

= θ1

(
1 + ε

Ĝ11I

θ1

(
1

2
κ̂x2 + κ̄tj

))
.
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For the coefficients in (2.2), Ĝ11I ≈ θ1. Consequently,

ηj ≈ θ1

(
1 + ε

(
1

2
κ̂x2 + κ̄tj

))
.(6.2)

The relative change in the frequency of the solution is ε( 1
2 κ̂x2 + κ̄tj).

The oscillatory frequency of the numerical ρd solution due to temporal perturba-
tions is compared at x = 0 with the analysis in section 3.4. The OU process (4.1)
generates κt(t) = Y (t)−1 following section 4.1. The diffusion c for different relaxation
parameters τ is chosen such that

cτ

2
= log 2.

Since

ηj∆tj = 2π = θ1(1 + δ̄t/θ1)∆tj

for some average δ̄t and θ1T = 2π, the relative perturbation in the computed frequency
in the nonlinear equations in [tj−1, tj+1] is approximated as

δt(tj)

θ1
≈ δ̄t(tj)

θ1
≡ 2π

θ1∆tj
− 1 =

T −∆tj
∆tj

, j ≥ 1.(6.3)

The frequency θ1 is given by the unperturbed oscillations between two maxima or two
minima. The effect of the OU perturbations on the frequency in the same interval is

δ̄OU (tj) = ε
θ1

∆tj

∫ tj+1

tj−1

Y (v)− 1 dv,(6.4)

according to the analysis and (6.2). The quantities δ̄t(tj)/θ1 and δ̄OU (tj)/θ1 are
compared in the right column of Figure 6 with good agreement.

The autocorrelation of the observed instantaneous frequency change in (5.1)
At(t1, tk) ≈ ε2θ2

1〈κt(t1)κt(tk)〉 is compared to the estimate in (5.1) in Figure 7 for
three different relaxations τ . The 〈 · 〉 average is taken over 200 trajectories and the
data are scaled by the initial At(t1, t1). Since exp(cτ/2) = 2, the correlation depends
only on the time scale τ . The estimate behaves as 1− log 2

2
∆t1k
τ for small ∆t1k/τ and

is very small for large ∆t1k/τ ; see (5.6) and (5.7). The transient phase is short for
τ = 1 and not over at 1000 s when τ = 1000.

The properties of the temporal perturbation κt generated by the OU process are
evaluated in Figure 8 for different τ . Averages of integrals of κt are taken over 400
trajectories. After a transient phase, a stationary distribution p∞ of κt is obtained;
cf. section 4.1. The transient is longer the larger τ is, as in Figure 7. In the upper left
figure, the integral tends to 0 as required in (3.6) but the convergence is fast when
τ = 1 and slow for τ = 1000. The response of the OU perturbations in the frequency
η(t) in (5.1) vanishes for large t but at different speeds depending on τ . The average
of the square of κt over a period in (6) in the upper right figure is small for τ = 1
and growing for increasing τ . This is also the trend in Figure 6 for the amplitude of
the frequency change. The average 〈κ2

t 〉 estimates the variance of κt after the tran-
sient phase since 〈κ̄t〉 ≈ 0 there. When τ = 1 the fast fluctuations in κt(t) (see, e.g.,
the left column of Figure 6), are averaged efficiently over T in κ̄t. The interval is
not sufficiently long for evaluation of the average for τ = 1000. The absolute value
of the integral in the lower panel causes part of the change in the amplitude of the
oscillations in (3.4). Also here there is an effect of the τ parameter in the OU process.
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Fig. 6. The temporal perturbations of the reaction coefficients are generated with ε = 0.01 by
different τ parameters in the OU process. Left column: The value of 1 + ε(Y (t) − 1) generated by
the OU process. Right column: The relative change in the instantaneous frequency δ̄t(t) in (6.3)
(solid blue) and δ̄OU (t) in (6.4) (dashed red).

The shift in the frequency caused by the spatial perturbations in (5.1) and (6.2)
is δx = 1

2εθ1κ̂x2. In the first experiment, the perturbations of the reaction coefficients
are smooth with 1 + εκx(x) = 1 + ε cos(ωπx/L), where ε = 0.02 and 0.1 and ω = 2.
The measured change in frequency is δ̄x in the solution of (2.1) and is computed as
in (6.3). For ε = 0.02, δ̄x/θ1 ≈ 0.01, and for ε = 0.1, δ̄x/θ1 ≈ 0.05. The expected
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Fig. 7. The scaled autocorrelation At(t1, t) of the perturbations in the frequency in (5.1) in the
PDE solution (solid blue) for different τ parameters in the OU process with ε = 0.01 compared with
the estimate in (5.1) (dashed red). Left: τ = 10. Middle: τ = 100. Right: τ = 1000.
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Fig. 8. Averaged integrals of κt(t) over 400 realizations for different τ (τ = 1: blue; τ = 10:

red; τ = 100: yellow; τ = 1000: purple). Upper row: 1
t

∫ t
0 〈κt(s)〉 ds for t ∈ [0, 2000] (left). 〈κ̄2

tj〉 =

〈( 1
∆tj

∫ tj+1
tj−1

κt(s) ds)2〉 in 50 intervals of length about 40 covering an interval of length about 2000

(right). Lower row: | exp(iθ1t)
∫ t
0 exp(−2iθ1s)〈κt(s)〉 ds| for t ∈ [0, 2000].

relative frequency shift in (6.3) is δx/θ1 = 1
2εκ̂x2 = 1

2ε, which is in good agreement
with the computed shifts. With ω = 6 and ε = 0.1, we have δ̄x/θ1 = 0.011 in a
numerical experiment which is 1/5 of the value at ω = 2.

In the next experiment, the perturbations in the coefficients are random in space
with zero mean. The perturbations at xi are sampled from a multivariate normal
distribution and they are correlated in neighboring grid points xi and xj as described
in section 4.2. The correlations are a discretization of the ones in (5.13) with a
symmetric, circulant, and Toeplitz covariance matrix C. For α < L, the elements of
C are

Cij = Ax(xi − xj) +Ax(xi − xj − L) +Ax(xi − xj + L), i, j = 1, . . . , N.

The procedure in section 4.2 generates κxi, i = 0, 1, . . . , N, for a given α in (5.13)
and their mean κx is computed. Then κx(xi) = κxi − κx such that κx(xi) has zero
mean as in (3.6). The relative perturbation δx/θ1 is compared to the predictions in
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Fig. 9. The spatial perturbations of the reaction coefficients are generated for x ∈ [0, 4.5] by
a multivariate normal distribution with α = 2 in (5.13). Left column: ε = 0.1. Right column:
ε = 0.01. Upper row: The εκx(x) value. Lower row: The measured relative change δx/θ1 (solid
blue) in the instantaneous frequency in the time interval and the prediction by linear theory (dashed
red).

(6.2). The coefficient κ̂x2 is determined by the discrete cosine transform of κx(xi). In
Figure 9, two examples of perturbations are found with α = 2 and the corresponding
change in frequency.

The frequency shifts are almost constant in time and the theory agrees well with
the experiments. Small oscillations are observed in the perturbed frequency due to
the sensitivity to the computed time interval ∆tj in (6.3). If the unperturbed interval
is ∆t = 2π/θ1 and the perturbed interval is ∆tj = ∆t(1 − µj) with the relative
perturbation µj , then δ̄t(tj) in (6.3) is

δ̄t(tj)

θ1
=

2π

θ1∆tj
− 1 =

1

1− µj
− 1 ≈ µj .

The relative precision in the numerical computations of ∆tj has to be much better
than µj , which is about 0.02 and 0.003 in the figures.

The autocorrelation in (5.2) is determined for ε = 0.1 by averaging (δx/θ1)2 over
200 realizations resulting in sx/θ1 = 0.0203. The corresponding theoretical value of
1
2ε
√
〈κ̂2
x2〉 is 0.0223 in a reasonable agreement between the nonlinear model and the

analysis of the linearization.
The amplitude of the extrinsic noise is small in the analysis and the numerical

results in Figures 6, 7, and 9. The effect of larger amplitudes on the robustness
of the oscillations is evaluated in the deterministic model (2.1) in Figure 10. The
amplitude ε in (3.5) is varied from 0.01 to 0.45 in the temporal and spatial noise. The
time intervals between the maxima and the maximum amplitude and their standard
deviation are displayed in the figure in a simulation in the time interval [0, 1000].
The distribution due to temporal noise in [0, 1000] is approximately normal for each
ε and the variation is measured by ±1.96 standard deviations. For a small ε in the
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Fig. 10. The mean and the variation of the period (left) and the maximum amplitude (right) of
the oscillations due to temporal (top) and spatial (bottom) perturbations of the reaction coefficients
for different perturbation amplitudes ε. The mean (blue) is enclosed by the mean ±1.96 standard
deviations (red).

temporal noise, the perturbations in the period and the amplitude are according to
the theory for the linearized problem but for larger ε the variation is more irregular
because of nonlinear effects. Since κx is independent of time, there is no variation of
the perturbation of the period and the amplitude in the time series for the spatial
perturbations; see Figure 9. The change in the period and the number of MinD
molecules are also here irregular for larger ε in the lower panels of Figure 10. The
period and the amplitude are fairly insensitive to spatial perturbations in σ. The
oscillations in the mesoscopic model in Figure 5 are also robust to relatively large
static modifications of σE and σdD in the lower right part of the figure.

7. Discussion. We have explored the robustness of spatiotemporal oscillations
using a complementary combination of analysis and simulation. All parameters in σ
in (2.1) and (2.2) are perturbed by εκt(t) in time and εκx(x) in space. Numerical
solutions of the nonlinear system of PDEs (2.1) with extrinsic noise in σ are com-
pared to the solution without noise. The changes in the oscillation frequency agree
well with the theoretical predictions for a linearized system satisfying certain assump-
tions. The MinD model in (2.1) fulfills these assumptions and is robust in the sense
that small perturbations in σ result in small differences in the frequency and the am-
plitude. Larger perturbations are evaluated numerically and also for them sustained
oscillations are observed for moderate changes of the coefficients.

The analytical approach is suitable for many other systems satisfying the assump-
tions on the eigenvalues of the Jacobian of the linearized system (3.2) and that the
parameters in the reaction rates should appear linearly in the equations. It is likely
that the conclusions concerning the OU perturbations in time and the correlated spa-
tial perturbations are much more general than just for the particular example that
we have studied here.
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