
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 

all other uses, in any current or future media, including reprinting/republishing this material for 

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Online Heterogeneous Transfer by Hedge Ensemble
of Offline and Online Decisions

Yuguang Yan, Qingyao Wu, Mingkui Tan, Michael K. Ng, Huaqing Min, and Ivor W. Tsang

Abstract— In this paper, we study the online heterogeneous
transfer (OHT) learning problem, where the target data of
interest arrive in an online manner, while the source data and
auxiliary co-occurrence data are from offline sources and can
be easily annotated. OHT is very challenging, since the feature
spaces of the source and target domains are different. To address
this, we propose a novel technique called OHT by hedge ensemble
by exploiting both offline knowledge and online knowledge of dif-
ferent domains. To this end, we build an offline decision function
based on a heterogeneous similarity that is constructed using
labeled source data and unlabeled auxiliary co-occurrence data.
After that, an online decision function is learned from the target
data. Last, we employ a hedge weighting strategy to combine the
offline and online decision functions to exploit knowledge from
the source and target domains of different feature spaces. We also
provide a theoretical analysis regarding the mistake bounds of the
proposed approach. Comprehensive experiments on three real-
world data sets demonstrate the effectiveness of the proposed
technique.

Index Terms— Co-occurrence data, hedge weighting,
heterogeneous transfer learning (HTL), online learning.

I. INTRODUCTION

TRANSFER learning (TL) seeks to improve the learning
performance in a target domain by leveraging knowledge

from a source domain with a different data distribution or
feature space [1]–[3]. TL has been extensively explored in
situations where training data in the target domain of interest
are limited or too expensive to collect. To this end, in the past
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decade, a number of TL methods have been proposed [4]–[7].
Most of the methods are focused on homogeneous settings,
in which the source and target data share a common feature
space [8]–[10].

Recently, a new TL scheme, called heterogeneous
TL (HTL), has attracted great attention [11]–[14]. Unlike
in the homogeneous setting, the source and target data in
HTL come from two different feature spaces. HTL has been
applied in many applications in computer vision and machine
learning [15]–[17]. For example, for the image classification
task, it is common to have a limited number of annotated
images but with much labeled text information as auxiliary
source knowledge. The image and text data are represented
by different kinds of features. Therefore, determining how to
exploit the labeled text data to boost the prediction perfor-
mance over images is very challenging.

Fortunately, as will be shown in this paper, it is possible
to collect some text data related to images as co-occurrence
data, such as image captions or text from documents con-
taining images. In this case, the knowledge from text data
could be appropriately transferred, which will help improve
the performance of image classification [11]. It is worth
mentioning that, in contrast to the expensive cost of image
labeling, the unlabeled text-image co-occurrence data can be
easily collected from many sources. For example, the website
Flickr 1 contains a tremendous number of images with tags,
and some social networks include a large number of pictures
with text comments posted by users.

While the effectiveness of HTL has been demonstrated by
many works [11], [14], [18]–[20], most existing studies are
focused on the offline/batch learning problem by assuming that
all the training instances from the target domain are accessible
in advance. However, this assumption may not conform
to real-world applications, where the target instances arrive
in an online manner. For example, users may chance upon
interesting pictures, and then post and share them occasionally.
As a result, the social-network platform receives and publishes
these images in an online/sequential manner. Motivated by
this, we focus on the online heterogeneous transfer (OHT)
learning problem, where the target data of interest arrive in
an online manner, while the source data are collected offline
and annotated, with the co-occurrence data given as auxiliary
information.

There are two main challenges for OHT. First, the fea-
ture spaces of the source and target domains are completely

1http://www.flickr.com
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Fig. 1. Overall schematic of the proposed OHTHE scheme that exploits
knowledge from source and target domains of different feature spaces,
where the text and image data are considered as the source and target
domains, respectively. The ⊕ marker means that we combine the source and
co-occurrence data to obtain the offline decision function, and the ⊗ marker
means that we measure the difference between the true label and the predicted
label to update the classifier. At each round, the classifier receives an instance
from the target domain and predicts its label by exploiting both offline and
online decision functions. After that, the classifier receives the true label to
evaluate whether the prediction is correct, and updates itself according to the
suffered loss.

different; thus, we cannot directly use the source data to boost
the learning performance in the target domain. Second, since
the labeled training data of the target domain are limited, it is
difficult to build a precise correspondence map to bridge the
source and target domains.

To address these challenges, we propose a novel technique
called OHT by hedge ensemble (OHTHE) by exploiting both
source knowledge and target knowledge to boost the learning
performance in the target domain. Taking an image classifica-
tion task for example, the general scheme of OHTHE is shown
in Fig. 1, where the text information is adopted to boost the
performance.

In this paper, we make the following contributions.
1) To connect the source and target domains, we build

an offline decision function based on a heterogeneous
similarity that is constructed using both the labeled
source data and the unlabeled co-occurrence data.

2) We employ a hedge weighting strategy to exploit
both offline and online decision functions to boost the
learning performance. Specifically, OHTHE adaptively
adjusts the weights of two kinds of decision functions
according to the differences between the true labels and
the decision values.

3) We justify the proposed technique by providing theo-
retical mistake bounds of the proposed algorithms and
conducting comprehensive empirical studies on three
real-world data sets.

The rest of this paper is organized as follows. First, we dis-
cuss related works in Section II. After that, we present the
proposed OHTHE technique in Section III and conduct the

theoretical analysis in Section IV. We present the experimental
study in Section V and conclude this paper in Section VI.

II. RELATED WORKS

A. Transfer Learning

Pan and Yang [1] categorized TL into three classes: induc-
tive transfer [4]–[6], [21], transductive transfer [22], and
unsupervised transfer [23], [24]. Shao et al. [3] summa-
rized that three kinds of knowledge are useful for transfer:
1) source domain features; 2) source domain features and
the corresponding labels; and 3) parameters of the source
domain models. Based on this, the knowledge transferred in
our proposed technique consists of source domain features and
the corresponding labels.

TL can also be divided into two categories according
to the feature spaces of the source and target domains,
namely, homogeneous transfer and heterogeneous transfer.
Homogeneous TL addresses the situation where the source
and target data are in the same feature space, and it has been
widely applied in many real-world applications, such as text
mining [6], [7], [21], image classification [4], [25], and face
recognition [26]. References [25] and [26] used a boosting
strategy to adjust the weights of source and target data.
References [25] and [26] studied feature learning models
involving low-rank constraints. Pan et al. [8] proposed transfer
component analysis, a feature extraction method for TL.
Cheng and Pan [9] addressed a semisupervised setting by
learning on manifolds. Li et al. [10] reweighted the predictions
of a source classifier for target test data.

For HTL, Shi et al. [27] employed spectral transformation
to map source and target data into a common subspace.
Wei and Pal [28] applied restricted Boltzmann machine to
perform HTL tasks. Pan and Yang [29] proposed to leverage
binary ratings (e.g., like or dislike) in a source domain
to alleviate the sparsity issue in target numerical ratings.
A deep learning technique was introduced into HTL in [30].
Zhou et al. [31] proposed a method to perform HTL for
multiclass problems based on the compressed sensing theory.
Reference [32] studied HTL in the framework of reinforcement
learning. Niu et al. [14] leveraged heterogeneous Web sources
to assist in action and event recognition in videos.

Co-occurrence data have been used to address OHT prob-
lems. Dai et al. [18] constructed a translator to connect
two different feature spaces by exploiting co-occurrence data.
Yang et al. [33] leveraged text data for image clustering.
Zhu et al. [15], Wang et al. [19], and Qi et al. [34] utilized
text-image co-occurrence data to perform image classification
tasks. Ng et al. [16], Wu et al. [17], and Tan et al. [20] used a
transition probability matrix to address a classification task in
a target domain. Recently, Yang et al. [11] studied a scheme to
evaluate the relatedness among given source domains through
transferred weights, which are learned from co-occurrence
data. Yang et al. [12] developed a robust matrix factorization
model for heterogeneous transfer from text data to image data.

Pan and Yang [1] provided a comprehensive survey of
TL. For more recent advances in visual TL, please refer
to [2] and [3].
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B. Online Transfer Learning

Online learning has been extensively studied in the machine
learning community [35], [36]. Perceptron [37] simply updates
a linear classifier when a new instance is classified incorrectly.
Freund and Schapire [38] proposed a hedge strategy to
combine several predicted results given by multiple decisions.
In [39] and [40], the maximum margin was
introduced into online learning. Zinkevich [41] and
Shalev-Shwartz et al. [42], [43] updated classifiers by
gradient-based algorithms, and then projected the results into
constrained spaces. Recently, the second-order information
was considered in [44]–[46], and a confidence-weighted
strategy was proposed to update the classifiers.

In the literature, a few approaches have been proposed
to address online TL problems. In [47], online TL was
studied in the multiarmed bandit framework. In [48] and [49],
online TL with online homogeneous source data was studied.
Zhao et al. [50], [51] used some offline data to assist in
an online task in a target domain. They used the ensemble
strategy to tackle online homogeneous TL problems, and
employed a multiview approach to handling OHT learning
problems. References [50] and [51] considered OHT under
the assumption that the feature space of the source domain is
a subset of that of the target domain.

Last, we highlight the difference between OHT and mul-
tiview learning [52]. For multiview learning, each instance
is associated with multiple views (sets) of features, while in
OHT, a target instance is represented by one set of features
and a source instance is represented by another set of features.

III. PROPOSED METHOD

A. Problem Definition

In the OHT learning problem, the target instances
{(xi , yi )}n

i=1 ∈ X × Y arrive in an online manner, while
the labeled source data {(xs

l , ys
l )}ns

l=1 ∈ Xs × Ys come from
an offline source domain, where n and ns refer to the
numbers of target and source data, respectively. Here, Ys =
Y = {+1,−1} denotes the common label space of the source
and target domains. Recall that in OHT, the source feature
space Xs = R

ds is different from the target feature space
X = R

d . In particular, the dimensions of the source and target
data are different, i.e., ds �= d .

1) Co-Occurrence Data: The unlabeled co-occurrence data
{(u j , v j )}nc

j=1 ∈ Xc are from offline sources, where u j ∈ Xs

and v j ∈ X . For example, in Flickr, users posted pictures and
added some tags to describe them. As a result, each image is
associated with some tags, which can be used as co-occurrence
data to connect text and image data. Fig. 2 shows the text-
image co-occurrence data that are collected from Flickr. In this
example, u j represents the text part of the j th co-occurrence
instance, while v j represents the image part of the j th
co-occurrence instance.

B. General Scheme

The objective of OHT is to learn a classifier f (x) to predict
the label of an unseen target instance x, which arrives in an

Fig. 2. Examples of text-image co-occurrence data collected from Flickr.

online fashion. Directly constructing an online decision func-
tion h(x) on the target data could be the most straightforward
approach to learning f (x), i.e., f (x) = sign (h(x)). However,
this approach is limited when the number of training samples
is limited, since the performance of an online decision function
is highly dependent on the number of training instances.

On the other hand, in the OHT problem, we have suffi-
cient source and unlabeled co-occurrence data, which may
provide additional information for the prediction for the target
data. As a result, by taking advantage of the source and
co-occurrence data, we may build an offline source decision
function hs(x) that reflects the knowledge from both source
and co-occurrence data, and then use it to boost the prediction
performance on the target data. Nevertheless, even though
hs(x) is given, determining how to exploit the knowledge of
hs(x) remains a critical issue.

Without loss of generality, we suppose that the offline source
decision function hs(x) is given and h(x) is updated in an
online fashion. To boost the performance on the target data,
we propose to combine the offline decision function hs(x) and
the online decision function h(x). Mathematically, we apply
a convex combination of hs(x) and h(x) to build the final
ensemble classifier f (x), which predicts the label for xi as
follows:

f (xi ) = sign

(
θ s

i φ(h
s(xi ))+ θiφ(h(xi ))− 1

2

)
(1)

where we constrain the mapping function φ(·) ∈ [0, 1].
θ s

i and θi are the weights with respect to the two kinds of
decision functions, where θ s

i , θi ∈ [0, 1], and θ s
i +θi = 1. As a

result,
(
θ s

i φ(h
s(xi))+ θiφ(h (xi))

) ∈ [0, 1], and the constant
1/2 can be considered as a threshold.

Note that the weights θ s
i and θi are also updated online.

Here, we employ the Hedge(β) strategy [38] to update them
dynamically. Specifically, at the i th round, the Hedge(β)
strategy predicts the label for xi by the predictor function (1)
and then updates the two weights by the following rules:

θ s
i+1 = θ s

i β
ψ (yi hs (xi )), θi+1 = θiβ

ψ (yi h(xi )) (2)

where β ∈ (0, 1) is a decay factor, and ψ is some loss function
to determine the degree of decay. Equation (2) implies that a
larger loss incurred by ψ will result in a larger degree of
decay. In other words, the better decision function will have
a relatively greater contribution in the combination. Once θ s

i
and θi are updated, we perform normalization, such that θ s

i+1+
θi+1 = 1 by

θ s
i+1 := θ s

i+1

θ s
i+1 + θi+1

, θi+1 := θi+1

θ s
i+1 + θi+1

. (3)
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The mappings φ and ψ play important roles in the ensemble.
For convenience, we leave the detailed discussions of them
later.

Suppose the offline source decision function hs(x) is given
and h(x) is a linear function, i.e., h(x) = w�x. The scheme
of the proposed OHTHE is presented in Algorithm 1.

Algorithm 1 OHTHE

Input: The heterogeneous source data {xs
i , ys

i }ns
i=1, co-

occurrence data {(u j , v j )}nc
j=1, the regularization parameter

c > 0, the decay factor β ∈ (0, 1).
Initialize: w1 = 0, θ s

1 ∈ (0, 1) and θ1 ∈ (0, 1) with θ s
1 +θ1 =

1.
1: for i = 1 to n do
2: Receive a new instance xi ∈ X .
3: Make the prediction:

Compute hs(xi ) from Eq. (9).
Compute h(xi ) = w�

i xi .
Calculate prediction according to

ŷi = sign

(
θ s

i φ(h
s(xi ))+ θiφ(h(xi ))− 1

2

)
.

4: Obtain the true label yi .
5: Update the online target decision function h(xi ):

Compute �∗i = max{0, 1 − yi (w�
i xi )}.

Compute τi = min{c, �∗i
‖xi ‖2 }.

Compute wi+1 from Eq. (5).
6: Update the weights:

Compute θ s
i+1 and θi+1 from Eq. (2).

Perform normalization such that θ s
i+1 + θi+1 = 1 by

Eq. (3).
7: end for

Note that in Step 5 of Algorithm 1, we need to update the
online decision function h(x). Here, we apply the PA scheme
to update wi by

wi+1 = arg min
w∈Rd

1

2
||w − wi ||2 + cξ

s.t. �∗(xi , yi ; w) ≤ ξ and ξ ≥ 0 (4)

where c > 0 is a regularization parameter, �∗(x, y; w) =
max{1−y (w�x), 0} is the hinge loss, and ||·|| is the Euclidean
norm. Problem (4) requires wi+1 to correctly classify the
current instance xi with a sufficiently large margin and to stay
as close as possible to wi . This problem has a closed-form
solution

wi+1 = wi + τi yi xi (5)

where τi = min
{

c, �
∗(xi ,yi ;wi )

||xi ||2
}

.

C. Learning the Source Decision Function

Now, we are ready to detail the construction of the source
decision function hs(x), which should reflect the knowledge
in the source and co-occurrence data. In order to leverage
the label information of the heterogeneous source data, we
use the labels of the k nearest neighbors of a target instance

from the source data to assist in the prediction. To this
end, we need a heterogeneous similarity that measures the
relationship between a target instance and a heterogeneous
source instance. The principal issue is that the standard sim-
ilarity measures the relationship between two homogeneous
instances; thus, it cannot be used directly to measure the
relationship between two heterogeneous instances xi and xs

l .
To address this, we propose to use the co-occurrence data
{(u j , v j )}nc

j=1 to connect xi and xs
l so that the heterogeneous

similarity between xi and xs
l can be calculated. The main idea

is to calculate two kinds of similarities between homogeneous
instances: one is between xi and v j , and the other one is
between u j and xs

l . After that, the heterogeneous similarity
can be obtained by combining these two kinds of similarities.
In the following, we discuss the calculation method in detail.

Note that the target data arrive in an online manner. When
a target instance xi arrives, we measure the similarity between
xi and v j , which is denoted by ρ(xi , v j ), using the Pearson
correlation

ρ(xi , v j ) =
∑d

p=1(xi,p − x̄i )(v j,p − v̄ j )

ε +
√∑d

p=1(xi,p − x̄i )2
√∑d

p=1(v j,p − v̄ j )2

(6)

where ε is a very small constant (e.g., ε = 1e−10), which is
used to avoid numerical issues. xi,p is the pth element of the
vector xi , x̄i = ∑d

p=1 xi,p ; and analogously for v j,p and v̄ j .
Similarly, the similarity �(u j , xs

l ) between u j and xs
l is

calculated as

�(u j , xs
l ) =

∑ds
p=1(u j,p − ū j )(xs

l,p − x̄ s
l )

ε +
√∑ds

p=1(u j,p − ū j )2
√∑ds

p=1(x
s
l,p − x̄ s

l )
2
.

(7)

Given ρ(xi , v j ) and �(u j , xs
l ), the similarity χ(xi , xs

l ) between
xi and xs

l can be obtained by using all the co-occurrence
instances as follows:

χ(xi , xs
l ) =

nc∑
j=1

ρ(xi , v j )�(u j , xs
l ). (8)

Consequently, based on the heterogeneous similarity
χ(xi , xs

l ), the offline decision function is able to make a
prediction for xi by using the label information of the source
data. Specifically, the offline decision function finds the k
nearest neighbors of xi from the source data and then com-
putes the weighted sum of the labels of these neighbors as
follows:

hs(xi ) =
∑
τ∈N

ys
τχ(xi , xs

τ )
/∑
τ∈N

χ(xi , xs
τ ) (9)

where the set N includes the indices of xi values
k nearest neighbors that are found from the source
instances.

D. Design of φ and ψ

Now, we discuss the mapping functions φ and ψ used in (1)
and (2), where φ maps a decision value into the range [0, 1]
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Fig. 3. Mapping functions φ(z) ∈ [0, 1], where z is the decision value. The
point p in the figure is attained with a large z value.

Fig. 4. Loss functions ψ(yz) ∈ [0, 1], where z is the decision value, and
y is the true label. For the point p in Fig. 3, if y = 1, we obtain a small
loss (see the point pT ); otherwise, if y = −1, we obtain a large loss (see the
point pF ).

and ψ generates a loss that determines the degree of decay.
For simplicity, let z be a decision value given by h(x) or hs(x),
whose absolute value measures the confidence we have in
this prediction. Rationally, the intuition is that the loss ψ(yz)
must highly depend on the correctness of the prediction and
the confidence we have. Consider a situation where we get a
decision value z with a large absolute value. If our prediction
is correct, we should obtain a small loss. In contrast, if our
prediction is incorrect, we should suffer a large loss. This
intuition motivates the design of functions φ and ψ and is
shown in Figs. 3 and 4.

Meanwhile, in order to obtain theoretical guarantees, which
will be given in Section IV, we seek pairs of φ and ψ that
satisfy the conditions φ(z) = ψ(−z) and φ(z) + ψ(z) = 1.
Since y ∈ {+1,−1}, we have ψ(yz) = ψ(z) or ψ(−z).
In the following, we present several examples, each of which
represents a version of OHTHE.

1) OHTHE-01

φ(z) =
{

1, if z > 0

0, if z ≤ 0
(10)

ψ(yz) =
{

0, if yz > 0

1, if yz ≤ 0.
(11)

2) OHTHE-CUBE

φ(z) = max

{
min

{
1

2
z1/3 + 1

2
, 1

}
, 0

}
(12)

ψ(yz) = max

{
min

{
1

2
(−yz)1/3 + 1

2
, 1

}
, 0

}
. (13)

3) OHTHE-SIG

φ(z) = 1

1 + exp{−z} (14)

ψ(yz) = 1

1 + exp{yz} . (15)

E. Computational Complexity

We first study the complexity of the offline computation,
and then analyze the complexity of each round of online
learning. Since the source and co-occurrence data come from
offline sources, we compute the similarity between each source
instance and each co-occurrence instance in (7) before the
online learning task begins. For each co-occurrence instance,
the complexity of (7) is O(ds), where ds is the dimension of
the source instance. Therefore, the complexity of the offline
computation is O(nsncds), which involves ns source instances
and nc co-occurrence instances.

For the computation at each round of online learning,
we first analyze the complexity of Step 3 in Algorithm 1.
Equation (6) computes the similarity between the current
target instance and each co-occurrence instance, which has
a total cost of O(ncd), where d is the dimension of the target
instance. For ns source instances, the complexity of (8) is
O(nsnc). Finding k nearest neighbors in (9) has a cost of
O(ns log ns). By adding the complexity O(d) of prediction
in (1), the complexity of Step 3 is O(ncd+nsnc+ns log ns+d).
Step 5 involves addition and inner product calculations of
vectors; thus, it has a cost of O(d). Step 6 has O(1) com-
plexity. Finally, the total complexity for n target instances is
O(nsncds + n (ncd + nsnc + ns log ns + d)).

IV. THEORETICAL ANALYSIS

In this section, we study the theoretical bounds of
the proposed OHTHE algorithms. We first establish
Proposition 1 [38].

Proposition 1: Let �s
i = ψ(yi hs(xi )), �i = ψ(yi h(xi )),

and β be the decay factor of the weights. θ s
i and θi are the

normalized weights of two decision functions with θ s
i +θi = 1.

When �s
i ∈ [0, 1], �i ∈ [0, 1], and β ∈ (0, 1), for any sequence

of loss vectors {(�s
i , �i )|i = 1, 2, . . . n}, we have

n∑
i=1

(θ s
i �

s
i + θi�i ) ≤ 1

1 − β
min{Δs,Δ} (16)

where Δs = ln(1/θ s
1)+ (ln (1/β))

n∑
i=1

�s
i and Δ = ln(1/θ1)+

(ln (1/β))
n∑

i=1
�i .

Remark: Proposition 1 states that the entire loss, which is
the sum of the losses at all n rounds, is not much larger
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than t loss suffered by the better of the two decision func-
tions. On the right-hand side of inequality (16), ln(1/θ s

1) and
ln(1/θ1) measure the prior confidences that we have in the
two decision functions. If there is no preference, we can
simply set θ s

1 = θ1 = (1/2). At this time, the upper
bound only depends on the sum of the separate losses of
the two decision functions. On the other hand, if we have
some prior information on which decision function will per-
form better, we can change ln(1/θ s

1) and ln(1/θ1) to get a
tighter bound. For instance, if we believe that the online
target decision function will achieve a lower loss, which
means that

∑n
i=1 �i <

∑n
i=1 �

s
i , we can set θ1 > θ s

1 .
If our guess is correct, we can obtain a better bound than
the one we obtained by setting θ1 = θ s

1 . In the following,
we analyze the theoretical results that are obtained by setting
θ s

1 = θ1 = (1/2).
According to Proposition 1, the mistake bound of OHTHE

is given by Theorem 1.
Theorem 1: Given θ1 = θ s

1 = (1/2), let M be the number
of the mistakes made by a version of OHTHE after receiving
a sequence of n instances. Then, we have

M ≤ 2

1 − β
min{Δs,Δ} (17)

where Δs = ln 2 + (ln (1/β))
∑n

i=1 �
s
i and Δ = ln 2 +

(ln (1/β))
∑n

i=1 �i .
Proof: Note that for all three pairs of φ(z) and ψ(z) in

Section III-D, we have

φ(z) = ψ(−z) (18)

φ(z)+ ψ(z) = 1. (19)

When the ensemble classifier makes a mistake at the i th round,
according to (1), we should have

yi ŷi = yi

(
sign

(
θ s

i φ(h
s(xi ))+θiφ(h (xi ))− 1

2

))
<0. (20)

There are two possible values of the true label yi : 1 and −1.
Case 1 (yi = 1): We know that θ s

i φ(h
s(xi ))+θiφ(h (xi)) <

(1/2). Therefore, we have

θ s
i φ(h

s(xi ))+ θiφ(h (xi ))

= θ s
i

(
1 − ψ(hs (xi ))

) + θi (1 − ψ(h (xi )))

= θ s
i − θ s

i ψ(h
s(xi ))+ θi − θiψ(h (xi ))

= 1 − (
θ s

i ψ(h
s (xi ))+ θiψ(h (xi ))

)
<

1

2
.

By using yi = 1, we obtain (1/2) < θ s
i ψ(yi hs(xi )) +

θiψ(yi h (xi )).
Case 2 (yi = −1): We know that θ s

i φ(h
s(xi )) +

θiφ(h (xi)) > (1/2). Thus, we obtain

θ s
i φ(h

s(xi ))+θiφ(h (xi ))=θ s
i ψ(−hs (xi ))+θiψ(−h (xi ))>

1

2
.

By using yi = −1, we get (1/2) < θ s
i ψ(yi hs(xi )) +

θiψ(yi h (xi )). In summary, we always have

1

2
< θ s

i ψ(yi h
s(xi ))+ θiψ(yi h (xi )).

Fig. 5. Results related to the loss bound in Proposition 1, where m is
the number of target instances that have been received. The blue and green
lines represent the results related to the offline and online decision functions,
respectively. The red line represents the result produced by OHTHE-SIG.

By adding the inequalities of all the mistakes, we obtain

1

2
M <

n∑
i=1

(
θ s

i ψ(yi h
s(xi ))+ θiψ(yi h (xi ))

)
.

The theorem follows directly from Proposition 1 by multiply-
ing both sides of the above inequality by 2. �

Next, we suggest a value of β based on the following lemma
and theorem.

Lemma 1: Let L = ∑n
i=1 �

s
i or L = ∑n

i=1 �i . Suppose

L ≤ L̃. When β = (
√

L̃/(
√

L̃ + √
2 ln 2)), we have

−L ln β + ln 2

1 − β
≤ L +

√
2L̃ ln 2 + ln 2. (21)

This lemma can be derived from [38, Lemma 4]. L̃ is an upper
bound of the cumulative loss suffered by the source or target
decision function. According to [38], in the following, we set
L̃ = n, which holds in the worst case.

Theorem 2: When β = (
√

n/(
√

n + √
2 ln 2)), we have

M ≤ 2
(
min{Λs,Λ}) (22)

where Λs = √
2n ln 2 + ln 2 + ∑n

i=1 �
s
i and Λ = √

2n ln 2 +
ln 2 + ∑n

i=1 �i .
Proof: According to Theorem 1, we have

M ≤ 2

1 − β

(
ln 2 − (ln β)min{

n∑
i=1

�s
i ,

n∑
i=1

�i }
)
.

From Lemma 1, the theorem follows immediately. �
The value of β suggested in Theorem 1 will be used in our

experiments.

A. Empirical Study of Theoretical Bounds

We use a sample task based on a text-image data set (see the
description in Section V) to empirically study the theoretical
bounds of OHTHE-SIG. We set θ1 = θ s

1 = (1/2) and
β = (

√
n/(

√
n + √

2 ln 2)).
Fig. 5 presents the results that are related to the loss bound

in Proposition 1. The result of OHTHE-SIG (i.e., the red line)
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Fig. 6. Results related to the mistake bounds in Theorems 1 and 2, where m
is the number of target instances that have been received. The blue and green
lines represent the results related to Theorem 1. The black and magenta lines
represent the results related to Theorem 2. The red line represents the result
produced by OHTHE-SIG.

TABLE I

STATISTICS OF THE DATA SETS IN TERMS OF #INSTANCES × #FEATURES

is always the lowest, which conforms to the loss bound in
Proposition 1.

Fig. 6 presents the results that are related to the mistake
bounds in Theorems 1 and 2. The result of OHTHE-SIG
(i.e., the red line) is consistently lower than the others, which
verifies the upper bounds in Theorems 1 and 2.

V. EXPERIMENTS

We conduct experiments on three real-world data sets.
Table I lists the statistical information of the data sets in terms
of #instances × #features, e.g., 600 × 500 in the table means
that the text-image data set has 600 target instances, each of
which is represented by a 500-D feature vector.

1) Text-Image Data Set: This data set is extracted from
the NUS-WIDE data set, which is collected from
Flickr [53], and includes images and tags posted by
users. We refer to the images as the target data and
the text instances as the heterogeneous source data.
Additionally, images and their corresponding tags are
used as the co-occurrence data.
Since we focus on binary classification tasks, we first
select ten classes from the NUS-WIDE data set (each
class contains 300 images) and then use images with
two classes (e.g., river and sky) to conduct a binary
classification task, where the data consist of images
with either the positive class (e.g., river) or the nega-
tive class (e.g., sky). This setting is also used in the
experiments reported in [11]–[13], [15]–[17], and [20].
The number of the generated tasks is

(10
2

) = 45.
2) Cross-Language Data Set: The cross-language

data set [54] includes original documents
(e.g., the documents written in English) and their

translated versions (e.g., the documents that are
translated from French to English). We use four
languages and six classes to construct

(4
2

) × (6
2

) = 90
two-language binary classification tasks, each of which
takes two languages as the source and target domains.
Specifically, for the English–French binary classification
task considering the C15 and CCAT categories, half
of the original English documents with C15 or CCAT
labels are referred to as the source data, and half of the
original French documents with C15 or CCAT labels
are referred to as the target data. The remaining original
documents and their translated versions are referred to
as the co-occurrence data.

3) Video Data Set: We also construct a large-scale binary
classification task based on the YouTube Multi-view
Video Games data set [55], which includes text, audio,
and visual features. We take a visual view based on the
color histogram as the source feature and a text view
based on latent Dirichlet allocation as the target feature.
For more details regarding the feature descriptions,
please refer to [55]. The objective is to judge whether a
target instance is related to a popular video game or not.

A. Baseline Methods

1) PA: Online passive-aggressive (PA) algorithm is a tradi-
tional online learning algorithm [40]. We adopt PA as a
baseline method without knowledge transfer.

2) SCW: Soft confidence-weighted (SCW) algorithm is
a second-order online learning algorithm [46], which
assumes that the linear decision vector is drawn from
a Gaussian distribution. SCW is considered the state-
of-the-art online learning algorithm without knowledge
transfer.

3) SVM: SVM is an offline baseline method without knowl-
edge transfer [56]. To handle online target data, we
periodically retrain the classifier after receiving (n/20)
target instances, where n is the number of target data.

4) HTL-PA: HTL-PA finds the nearest neighbors of each
target instance in the co-occurrence data and uses the
heterogeneous views of the neighbors as the new rep-
resentation of the target instance. After that, the PA
algorithm is performed on the heterogeneous features.

5) HTLIC-PA: HTL for image classification (HTLIC) [15]
uses heterogeneous source data and co-occurrence data
to construct new features for target data. We adjust
HTLIC to the online setting by applying PA to the new
features.

For fair comparison and simplicity, we set the regulariza-
tion parameter c = 1 for all the algorithms and adopt the
linear kernel on all the algorithms except HTLIC-PA. The
new representations constructed by HTLIC-PA are dense and
low dimensional; thus, they tend to be linearly inseparable.
Therefore, we conduct HTLIC-PA using the linear kernel and
the Gaussian kernel with σ = {2−5, 2−4, . . . , 24, 25}, and
report the best result that is achieved when σ = 2−5. We set
the decay factor β = (

√
n/(

√
n + √

2 ln 2)) as suggested
in Theorem 2, and the number of the nearest neighbors
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Fig. 7. Average rates of mistakes of different algorithms on the text-image data set, obtained by repeating each task 20 times.

TABLE II

AVERAGE RATES OF MISTAKES ON EXAMPLE TASKS ON THE TEXT-IMAGE DATA SET

Fig. 8. Online average rate of mistakes on example tasks on the text-image data set. (a) Task 3. (b) Task 26. (c) Task 37.

k = (nc/10), where nc is the number of co-occurrence data.
The sensitivities of the parameters c, k, and β will be examined
later. In order to obtain stable results, we draw 20 random
permutations of the data set and evaluate the performance of
each algorithm based on the average rate of mistakes. All the
experiments are conducted on a machine with Intel Xeon
3-GHz CPU and 128 GB of RAM, and the source code is
implemented in MATLAB.

B. Results of the Text-Image Data Set

Due to the restricted space and observability, we exhibit
the results of PA, HTLIC-PA, and OHTHE-SIG for each
task in Fig. 7 while leaving out the results of the other
algorithms. The x-axis of the figure refers to the 45 tasks.
On most tasks, HTLIC-PA and OHTHE-SIG achieve better
performances than PA, which indicates that knowledge trans-
ferred from the source domain is helpful for the target task.
On some tasks, OHTHE-SIG outperforms HTLIC-PA, and on
other tasks, OHTHE-SIG is highly comparable with HTLIC-
PA. This observation demonstrates the effectiveness of our
approach of heterogeneous knowledge transfer.

Table II presents the numerical results of all the used
algorithms on several randomly selected tasks and the average
results over all the 45 tasks. On average, OHTHE-SIG gets
the best result. HTLIC-PA utilizes auxiliary information,
such as source and co-occurrence data, to construct new
representations that are more effective for classifying the target
data. Therefore, HTLIC-PA achieves competitive performance.
SVM retrains the classifier and conducts extensive batch
training on the target data that have been received. The
performance of SVM benefits from more training data. From
Fig. 8, we observe that the mistake curves of SVM decrease
quickly when more target data have been received. Therefore,
when sufficient training data are provided, SVM achieves
comparable performance with HTLIC-PA and OHTHE-01.
SCW outperforms the first-order method PA, which validates
the effectiveness of the second-order method.

Fig. 8 shows the detailed learning processes on three repre-
sentative tasks. The OHTHE algorithms consistently achieve
better results than or highly comparable results with the
baseline methods. Moreover, the OHTHE algorithms usually
obtain better results at the beginning, which demonstrates the
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Fig. 9. Average rates of mistakes of different algorithms on the cross-language data set, obtained by repeating each task 20 times.

TABLE III

AVERAGE RATES OF MISTAKES ON EXAMPLE TASKS ON THE CROSS-LANGUAGE DATA SET

TABLE IV

AVERAGE RATES OF MISTAKES AND RUNNING TIMES

ON THE VIDEO DATA SET

effectiveness of our approach of heterogeneous knowledge
transfer. Similar observations are drawn from the other learn-
ing tasks.

C. Results of the Cross-Language Data Set

The feature dimension of the cross-language data set is
much higher than that of the above text-image data set;
thus, SCW and HTLIC-PA require relatively excessive running
times to finish the learning tasks under the available resources,
and we do not compare them on this data set.

Fig. 9 shows the average rate of mistakes of each task,
where OHTHE-CUBE outperforms PA on most tasks. Table III
shows the numerical results of several representative tasks.
The OHTHE algorithms still achieve the best performance.
These results validate that our approach of knowledge transfer
effectively leverages the source data to assist in the target task.

D. Results of the Video Data Set

To evaluate the scalability of the proposed algorithms, we
compare the OHTHE algorithms with the online learning
algorithms PA, SCW, and SVM on the large-scale video data
set, which includes tens of thousands of target data, and
thousands of source and co-occurrence data.

Table IV lists the average rates of mistakes and running
times. The online learning algorithms work in rounds.

Fig. 10. Online average rates of mistakes on the video data set.

At each round, an online learning algorithm gets a newly
arrived instance, outputs a prediction for this instance, and
updates the classifier parameters. As suggested in [50] and
[51], the time cost over all rounds of label prediction and
parameter updating is used as the running time of an online
learning algorithm. From Table IV, PA takes the least running
time, while SCW and the OHTHE algorithms have comparable
running times. The proposed OHTHE algorithms take rela-
tively longer times because of the additional cost to compute
the similarity and find the nearest neighbors. SVM takes much
longer running time due to the retraining paradigm.

Fig. 10 presents mistake curves with respect to rounds.
From Fig. 10, overall PA, SCW, and SVM achieve comparable
results, while OHTHE-CUBE and OHTHE-SIG consistently
achieve the best results.

E. Parameter Sensitivity

We investigate the influences of the parameters on the
performance. The experiments are conducted on the text-image
data set, where n = 600.
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Fig. 11. Average results over all 45 tasks with different values of the parameters c, k, and β, respectively. (a) Regularization parameter c. (b) Number of
nearest neighbors k. (c) Decay factor β.

1) Effect of the Regularization Parameter c: Fig. 11(a)
shows the average rates of mistakes over all 45 tasks
with different values of c, where k = 27 = 128 and
β = (

√
n/(

√
n + √

2 ln 2)) ≈ 0.954. All the OHTHE
algorithms have the similar change trend curves.
In particular, they achieve their best performances when
c = 2−4 or 2−3.

2) Effect of the Number of the Nearest Neighbors k:
Fig. 11(b) shows the average rates of mistakes over all
45 tasks with different values of k, with c = 20 = 1
and β = (

√
n/(

√
n + √

2 ln 2)) ≈ 0.954. From the
figure, the OHTHE algorithms are relatively stable under
changes in k when k is greater than 23 = 8.

3) Effect of the Decay Factor β: Fig. 11(c) presents the
average rates of mistakes over all 45 tasks with different
values of β, where k = 27 = 128 and c = 20 = 1. From
the figure, OHTHE-CUBE and OHTHE-SIG achieve the
best results when β is set to the recommended value
(
√

n/(
√

n + √
2 ln 2)) ≈ 0.954.

VI. CONCLUSION

In this paper, we consider the OHT learning problem, where
the target data arrive in an online manner, while the source
data and co-occurrence data are from offline sources. In order
to connect the source and target domains, we build an offline
decision function based on a heterogeneous similarity, which
is constructed using the labeled source data and the unlabeled
co-occurrence data. After that, an online decision function is
built on the target data sequence. Last, we apply a hedge
weighting strategy to combine these two kinds of decision
functions to boost the learning performance on the target data.
We analyze the theoretical bounds of the proposed technique,
and perform comprehensive experiments on three real-world
data sets to evaluate the proposed algorithms.

In this paper, we address the binary classification problem
in the target domain. The multiclass classification problem
is more challenging, since it involves learning offline and
online decision functions considering multiple classes, and
requires a sophisticated strategy to produce an effective com-
bined multiclass classifier. In the future, we plan to focus on
exploiting heterogeneous source data to assist in the multiclass
classification task in the target domain.

REFERENCES

[1] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[2] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain
adaptation: A survey of recent advances,” IEEE Signal Process. Mag.,
vol. 32, no. 3, pp. 53–69, May 2015.

[3] L. Shao, F. Zhu, and X. Li, “Transfer learning for visual categorization:
A survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5,
pp. 1019–1034, May 2014.

[4] P. Wu and T. G. Dietterich, “Improving SVM accuracy by training on
auxiliary data sources,” in Proc. ICML, 2004, p. 110.

[5] X. Liao, Y. Xue, and L. Carin, “Logistic regression with an auxiliary
data source,” in Proc. ICML, 2005, pp. 505–512.

[6] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learning,”
in Proc. ICML, 2007, pp. 193–200.

[7] W. Dai, G.-R. Xue, Q. Yang, and Y. Yu, “Transferring naive Bayes
classifiers for text classification,” in Proc. AAAI, 2007, pp. 540–545.

[8] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation
via transfer component analysis,” IEEE Trans. Neural Netw., vol. 22,
no. 2, pp. 199–210, Feb. 2011.

[9] L. Cheng and S. J. Pan, “Semi-supervised domain adaptation on
manifolds,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 12,
pp. 2240–2249, Dec. 2014.

[10] S. Li, S. Song, and G. Huang, “Prediction reweighting for domain
adaptation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 7,
pp. 1682–1695, Jul. 2017.

[11] L. Yang, L. Jing, J. Yu, and M. K. Ng, “Learning transferred weights
from co-occurrence data for heterogeneous transfer learning,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2187–2200,
Nov. 2016.

[12] L. Yang, L. Jing, and M. K. Ng, “Robust and non-negative collective
matrix factorization for text-to-image transfer learning,” IEEE Trans.
Image Process., vol. 24, no. 12, pp. 4701–4714, Dec. 2015.

[13] B. Tan, Y. Song, E. Zhong, and Q. Yang, “Transitive transfer learning,”
in Proc. KDD, 2015, pp. 1155–1164.

[14] L. Niu, X. Xu, L. Chen, L. Duan, and D. Xu, “Action and event
recognition in videos by learning from heterogeneous Web sources,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 6, pp. 1290–1304,
Jun. 2017.

[15] Y. Zhu et al., “Heterogeneous transfer learning for image classification,”
in Proc. AAAI, 2011, pp. 1304–1349.

[16] M. K. Ng, Q. Wu, and Y. Ye, “Co-transfer learning via joint transition
probability graph based method,” in Proc. 1st Int. Workshop Cross
Domain Knowl. Discovery Web Social Netw. Mining (KDD), 2012,
pp. 1–2.

[17] Q. Wu, M. K. Ng, and Y. Ye, “Cotransfer learning using coupled
Markov chains with restart,” IEEE Intell. Syst., vol. 29, no. 4, pp. 26–33,
Jul./Aug. 2014.

[18] W. Dai, Y. Chen, G.-R. Xue, Q. Yang, and Y. Yu, “Translated learning:
Transfer learning across different feature spaces,” in Proc. NIPS, 2008,
pp. 353–360.

[19] G. Wang, D. Hoiem, and D. Forsyth, “Building text features for object
image classification,” in Proc. CVPR, Jun. 2009, pp. 1367–1374.

[20] B. Tan, E. Zhong, M. K. Ng, and Q. Yang, “Mixed-transfer: Transfer
learning over mixed graphs,” in Proc. SDM, 2014, pp. 208–216.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAN et al.: OHTHE OF OFFLINE AND ONLINE DECISIONS 11

[21] E. Eaton and M. desJardins, “Selective transfer between learning tasks
using task-based boosting,” in Proc. AAAI, 2011, pp. 338–342.

[22] A. Arnold, R. Nallapati, and W. W. Cohen, “A comparative study of
methods for transductive transfer learning,” in Proc. 7th IEEE Int. Conf.
Data Mining Workshops (ICDM), Oct. 2007, pp. 77–82.

[23] Z. Wang, Y. Song, and C. Zhang, “Transferred dimensionality reduc-
tion,” in Proc. ECML/PKDD, 2008, pp. 550–565.

[24] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Self-taught clustering,” in
Proc. ICML, 2008, pp. 200–207.

[25] Z. Ding, M. Shao, and Y. Fu, “Deep low-rank coding for transfer
learning,” in Proc. IJCAI, 2015, pp. 3453–3459.

[26] M. Shao, D. Kit, and Y. Fu, “Generalized transfer subspace learning
through low-rank constraint,” Int. J. Comput. Vis., vol. 109, nos. 1–2,
pp. 74–93, 2014.

[27] X. Shi, Q. Liu, W. Fan, S. Y. Philip, and R. Zhu, “Transfer learning
on heterogenous feature spaces via spectral transformation,” in Proc.
ICDM, 2010, pp. 1049–1054.

[28] B. Wei and C. Pal, “Heterogeneous transfer learning with RBMs,” in
Proc. AAAI, 2011, pp. 531–536.

[29] W. Pan and Q. Yang, “Transfer learning in heterogeneous collaborative
filtering domains,” Artif. Intell., vol. 197, pp. 39–55, Apr. 2013.

[30] J. T. Zhou, S. J. Pan, I. W. Tsang, and Y. Yan, “Hybrid heteroge-
neous transfer learning through deep learning,” in Proc. AAAI, 2014,
pp. 2213–2220.

[31] J. T. Zhou, I. W. Tsang, S. J. Pan, and M. Tan, “Heterogeneous domain
adaptation for multiple classes,” in Proc. AISTATS, 2014, pp. 1095–1103.

[32] T. Nguyen, T. Silander, and T. Y. Leong, “Transferring expecta-
tions in model-based reinforcement learning,” in Proc. NIPS, 2012,
pp. 2555–2563.

[33] Q. Yang, Y. Chen, G.-R. Xue, W. Dai, and Y. Yu, “Heterogeneous
transfer learning for image clustering via the social Web,” in Proc.
ACL/AFNLP, 2009, pp. 1–2.

[34] G.-J. Qi, C. Aggarwal, and T. Huang, “Towards semantic knowledge
propagation from text corpus to Web images,” in Proc. WWW, 2011,
pp. 297–306.

[35] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

[36] S. C. Hoi, J. Wang, and P. Zhao, “LIBOL: A library for online learning
algorithms,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 495–499, 2014.

[37] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychol. Rev., vol. 65, no. 6,
p. 386, 1958.

[38] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, Aug. 1997.

[39] S. Shalev-Shwartz, K. Crammer, O. Dekel, and Y. Singer, “Online
passive-aggressive algorithms,” in Proc. NIPS, 2004, pp. 1229–1236.

[40] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” J. Mach. Learn. Res., vol. 7,
pp. 551–585, Dec. 2006.

[41] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proc. ICML, 2003, pp. 928–935.

[42] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal estimated
sub-gradient solver for SVM,” in Proc. ICML, 2007, pp. 807–814.

[43] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal
estimated sub-gradient solver for SVM,” Math. Program., vol. 127, no. 1,
pp. 3–30, Mar. 2011.

[44] M. Dredze, K. Crammer, and F. Pereira, “Confidence-weighted linear
classification,” in Proc. ICML, 2008, pp. 264–271.

[45] K. Crammer, M. Dredze, and F. Pereira, “Exact convex confidence-
weighted learning,” in Proc. NIPS, 2009, pp. 345–352.

[46] S. C. H. Hoi, J. Wang, and P. Zhao, “Exact soft confidence-weighted
learning,” in Proc. ICML, 2012, pp. 1–8.

[47] A. Lazaric and E. Brunskill, “Sequential transfer in multi-armed bandit
with finite set of models,” in Proc. NIPS, 2013, pp. 2220–2228.

[48] L. Ge, J. Gao, and A. Zhang, “OMS-TL: A framework of online multiple
source transfer learning,” in Proc. CIKM, 2013, pp. 2423–2428.

[49] B. Wang and J. Pineau, “Online boosting algorithms for anytime transfer
and multitask learning,” in Proc. AAAI, 2015, pp. 3038–3044.

[50] P. Zhao and S. C. Hoi, “OTL: A framework of online transfer learning,”
in Proc. ICML, 2010, pp. 1231–1238.

[51] P. Zhao, S. C. H. Hoi, J. Wang, and B. Li, “Online transfer learning,”
Artif. Intell., vol. 216, pp. 76–102, Nov. 2014.

[52] V. Sindhwani and D. S. Rosenberg, “An RKHS for multi-view learning
and manifold co-regularization,” in Proc. ICML, 2008, pp. 976–983.

[53] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng,
“NUS-WIDE: A real-world Web image database from national
University of Singapore,” in Proc. CIVR, 2009, p. 48.

[54] M. Amini, N. Usunier, and C. Goutte, “Learning from multiple partially
observed views—An application to multilingual text categorization,” in
Proc. NIPS, 2009, pp. 28–36.

[55] O. Madani, M. Georg, and D. A. Ross, “On using nearly-independent
feature families for high precision and confidence,” Mach. Learn.,
vol. 92, nos. 2–3, pp. 457–477, 2013.

[56] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan,
“A dual coordinate descent method for large-scale linear SVM,” in Proc.
ICML, 2008, pp. 408–415.

Yuguang Yan is currently pursuing the Ph.D. degree
with the School of Software Engineering, South
China University of Technology, Guangzhou, China.

His current research interests include trans-
fer learning, multilabel classification, and online
learning.

Qingyao Wu received the Ph.D. degree in computer
science from the Harbin Institute of Technology,
Harbin, China, in 2013.

He was a Post-Doctoral Research Fellow with the
School of Computer Engineering, Nanyang Techno-
logical University, Singapore, from 2014 to 2015.
He is currently an Associate Professor with the
School of Software Engineering, South China Uni-
versity of Technology, Guangzhou, China. His cur-
rent research interests include machine learning, data
mining, big data research, and bioinformatics.

Mingkui Tan received the Ph.D. degree in computer
science from Nanyang Technological University,
Singapore, in 2014.

He is currently a Professor with the School of
Software Engineering, South China University of
Technology, Guangzhou, China. His current research
interests include compressive sensing, big data learn-
ing, and large-scale optimization.

Michael K. Ng received the B.Sc. and M.Phil.
degrees from The University of Hong Kong,
Hong Kong, in 1990 and 1992, respectively, and
the Ph.D. degree from The Chinese University of
Hong Kong, Hong Kong, in 1995.

He is currently a Chair Professor with the
Department of Mathematics, Hong Kong Bap-
tist University, Hong Kong. His current research
interests include bioinformatics, image processing,
scientific computing, and data mining.

Dr. Ng is a fellow of the Society for Industrial
and Applied Mathematics. He serves on the Editorial Board of international
journals.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Huaqing Min is currently a Professor with the
School of Software Engineering, South China
University of Technology, Guangzhou, China.
His current research interests include artificial intel-
ligence, machine learning, database, data mining,
and robotics.

Ivor W. Tsang received the Ph.D. degree in com-
puter science from The Hong Kong University of
Science and Technology, Hong Kong, in 2007.

He is currently an ARC Future Fellow and
a Professor with the University of Technology
Sydney (UTS), Ultimo, NSW, Australia. He is also
the Research Director of the UTS Priority Research
Centre for Artificial Intelligence.

Dr. Tsang received the 2008 Natural Science
Award (Class II) by the Ministry of Education,
China, in 2009, and the prestigious IEEE Transac-

tions on Neural Networks Outstanding 2004 Paper Award in 2007 and the
2014 IEEE Transactions on Multimedia Prize Paper Award.




