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Abstract 

Background:  Previous studies have indicated that oxygen uptake ( VO2 ) is one of 
the most accurate indices for assessing the cardiorespiratory response to exercise. In 
most existing studies, the response of VO2 is often roughly modelled as a first-order 
system due to the inadequate stimulation and low signal to noise ratio. To overcome 
this difficulty, this paper proposes a novel nonparametric kernel-based method for the 
dynamic modelling of VO2 response to provide a more robust estimation.

Methods:  Twenty healthy non-athlete participants conducted treadmill exercises with 
monotonous stimulation (e.g., single step function as input). During the exercise, VO2 
was measured and recorded by a popular portable gas analyser ( K4b2 , COSMED). Based 
on the recorded data, a kernel-based estimation method was proposed to perform the 
nonparametric modelling of VO2 . For the proposed method, a properly selected kernel 
can represent the prior modelling information to reduce the dependence of compre-
hensive stimulations. Furthermore, due to the special elastic net formed by L1 norm 
and kernelised L2 norm, the estimations are smooth and concise. Additionally, the 
finite impulse response based nonparametric model which estimated by the proposed 
method can optimally select the order and fit better in terms of goodness-of-fit com-
paring to classical methods.

Results:  Several kernels were introduced for the kernel-based VO2 modelling method. 
The results clearly indicated that the stable spline (SS) kernel has the best performance 
for VO2 modelling. Particularly, based on the experimental data from 20 participants, 
the estimated response from the proposed method with SS kernel was significantly 
better than the results from the benchmark method [i.e., prediction error method 
(PEM)] ( 76.0± 5.72 vs 71.4± 7.24%).

Conclusions:  The proposed nonparametric modelling method is an effective method 
for the estimation of the impulse response of VO2—Speed system. Furthermore, the 
identified average nonparametric model method can dynamically predict VO2 response 
with acceptable accuracy during treadmill exercise.

Keywords:  Cardiorespiratory response to treadmill exercise, Dynamical modelling, 
Kernel method, Impulse response identification, Oxygen uptake
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Background
Oxygen uptake ( VO2 ) on-kinetics is an important physiological parameter for the deter-
mination of functional health status and muscle energetics during physical exercise 
[1]. In addition, the VO2 kinetics provides a useful assessment of the body’s ability to 
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support a change in metabolic demand and an insight into the circulatory and metabolic 
response to exercise. Several studies confirmed that oxygen consumption is mainly con-
trolled by intramuscular factor related metabolic system [2, 3]. Different from heart rate, 
the oxygen uptake cannot be affected by mood, stress, etc., and is generally considered 
as the most accurate measurement of the fitness for cardiorespiratory system [4, 5]. The 
main goal of this paper is to establish a nonparametric model to describe the on-kinetics 
of the oxygen uptake in response to the speed of treadmill exercise.

Previous researches conducted on the oxygen uptake modelling can be divided into 
two categories: (i) static status modelling and (ii) dynamic status modelling. For the static 
status modelling, an early stage study in [6] proposes a linear static model to approxi-
mately estimate oxygen uptake for a given range of walking speed. Simple nonlinear 
static models are also discussed in [7–9] for the compensation of nonlinearities. On the 
other hand, the transient response of oxygen uptake has captured the interests of many 
researches. For example, the authors of [10, 11] have developed a first-order system to 
approximate the process based on step response. Later, the work in [12] has developed 
a nonlinear dynamic model for oxygen uptake modelling during treadmill exercise with 
pseudo random binary signal (PRBS) as the input. However, it is relatively difficult for 
the exercisers to follow the PRBS signal during the treadmill exercise generally.

In real life, the standard deviation of noise in VO2 measurements is quite large due to 
the limitations of portable gas analyser. For the modelling of a process with large noise, 
as determining the order is difficult, a nonparametric model such as impulse response 
(IR) model is a good choice. However, conventional system identification methods for 
impulse response estimation normally requires relatively complex input such as PRBS 
[13] to significantly stimulate the system. In previous studies, the response of oxygen 
uptake can only be roughly modelled as a first-order system due to the lack of suitable 
modelling techniques. Recently, a new kernel based estimation method has been devel-
oped for nonparametric model estimation [14, 15]. To avoid ill-conditioned solutions 
due to the existence of large noises, a regularised term is incorporated into the cost func-
tion [16], which can limit the one-step variation of the estimated parameters. This new 
kernel based method projects the parameters of IR into a reproducing kernel Hilbert 
space (RKHS) which can reduce high frequency components in IR model. Furthermore, 
by using this method, more accurate results can also be obtained enabling us to employ 
simple inputs such as step input.

In this paper, in order to implement nonparametric modelling of VO2 response to 
dynamic exercises, the kernel based estimation method has been adopted and modi-
fied. An L1 regularisation term has been added into the cost function to penalise 
the least significant term of IR which can result in reducing the order of the impulse 
response model. Particularly, we have demonstrated that this method is still valid 
when the input of the system is a single step response for this specific VO2—Speed 
system. For this research, several popular kernels were tested, such as stable spline 
(SS) kernel, diagonal kernel (DI) and diagonal/correlated (DC) kernel. Furthermore, 
we showed through several simulation examples that SS and DC kernels can achieve 
higher accuracy compared to DI kernel for this problem. Eventually, the proposed 
method was experimentally validated by using the VO2 data collected from 20 par-
ticipants. The results were compared with the estimated model based on Akaike’s 
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Information Criterion (AIC) selected autoregressive with exogenous terms (ARX) 
model with predicted error method for parameter estimation.

The main contributions of this work can be summarised as follows. Firstly, a new 
nonparametric modelling approach has been developed based on the kernel-based 
impulse response estimation approach, which can efficiently reduce the order of the 
IR model by incorporating an L1 penalty term. Secondly, for the developed IR model 
identification, appropriate kernels selection has been investigated using extensive 
simulations, and the stable spline kernel (SS) was recommended as the best candi-
date. Thirdly, it was demonstrated by both experiment and simulation that the pro-
posed method is efficient for the modelling of IR of cardiorespiratory response to 
dynamic exercise, which often confronts a highly noisy measurement under the stim-
ulation of a simple input signal. Finally, an averaged impulse response model has been 
established, which is able to quantitatively describe the oxygen update on-kinetics for 
treadmill exercise.

This paper is organised as follows. In the "New modelling method for VO2 dur-
ing exercise" section, the nonparametric method for VO2 modelling is proposed and 
kernel selection is also discussed. In the "Simulations" section, the simulation is car-
ried out for the validation of the proposed method. In the "Experiments" section, the 
experimental results are presented. The "Conclusions" section concludes the paper.

New modelling method for VO2 during exercise
In most of the previous studies, the step response of oxygen uptake during exercise 
which is shown in Fig. 1 has been considered as an exponential function [2]:

where td is the time delay, β is the steady state gain of the system, Tp is the time constant 
and VO0

2 is the baseline value of oxygen uptake. Based on Laplace transform, the transfer 
function in regarding with Eq. (1) can be derived as follows:

(1)VO2(t) = VO0
2 + β

[

1− e
−

(t−td )

Tp

]

,

(2)VO2(s) =
βe−tds

Tps + 1
.
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Fig. 1  Oxygen uptake during running on treadmill
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However, sometimes, a first-order system with time delay cannot lead to the best results 
due to the pattern of measurements (breath by breath) and the individual variation of 
oxygen uptake. It is likely that the model of VO2—Speed of some individuals should be 
described by high-order dynamic systems. However, to correctly identify a high-order 
system, specific input such as pseudorandom binary sequence (PRBS) is necessary to 
well stimulate the system. As we know, during treadmill exercise, it is unpractical for 
users to follow an ideal PRBS signal as input. Therefore, the VO2 uptake during treadmill 
exercise has been mainly considered as a first-order system and modelled by a first-order 
ARX model previously. However, a first-order transfer function and a high order transfer 
function which can be decomposed to serval first-order transfer functions, can lead to 
quite similar responses with a step input. Therefore, it is generally difficult to identify 
the correct order for the transfer function which describes the input–output relation. 
Hence, to overcome this shortage, nonparametric methods are developed to provide 
better accuracy in this situation. In order to obtain more acceptable results, we exploited 
a newly developed nonparametric modelling method which make use of finite impulse 
response (FIR) to describe the system’s characteristic.

Kernel based estimation method of finite impulse response

In this section, a new kernel based nonparametric estimation method is exploited to 
model the oxygen uptake during treadmill exercise. For this nonparametric estimation 
method, it is not necessary to predefine the order of the model in advance. Furthermore, 
it will be shown that the proposed method can provide stable and smooth estimation 
comparing to other estimation methods, cf [15].

For nonparametric model, we select t with sampling time T as the time index. The 
relationship between the running speed (u(t)) and oxygen uptake (y(t)) can be consid-
ered as a single input single output (SISO) dynamic system. Therefore, for the impulse 
response of this SISO system, the discrete time output can be calculated as [17]:

where q represents the shift operator, i.e. qu(t) = u(t + 1) , ε(t) is the Gaussian white 
noise and G0(q) is expressed as:

where g0k  represents the coefficient from the impulse response Go(q) . For linear response, 
the impulse response decays exponentially for stable G0(q) . Therefore, normally, the mth 
order finite impulse response is able to describe the system as:

where θ ∈ R
m is the unknown parameter to be identified hereafter. Hence, the model in 

Eq. (3) can be written as:

(3)y(t) = Go(q)u(t)+ ε(t), t = 1, 2, 3 . . . ,M,

(4)Go(q) =

∞
∑

k=1

g0k q
−k , k = 1, 2, 3 . . . ,∞,

(5)G(q, θ) =

m
∑

k=1

gkq
−k , θ = [g1, g2, . . . , gm]

T ,
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where ϕ(t)∈ R
m contains the input information of the system:

Then, the FIR model can be expressed in matrix form as:

where N = M −m , with M being the number of collected data points. As an illustra-
tion, the ith row of YN ∈ R

N , εN ∈ R
N and φN ∈ R

N×m are y(m+ i) , ε(m+ i) and 
[u(m+ i − 1),u(m+ i − 2), . . . ,u(i)] . Apparently, the straightforward cost function 
based on Eq. (8) can be expressed as:

By minimising the cost function (9), θ̂ can be derived by least square (LS) estimation or 
maximum likelihood (ML) estimation easily. However, this is inappropriate for model-
ling the oxygen uptake impulse response, as the input is only a square signal, and the 
measurements are normally extremely noisy [12] and thus it is likely that φT

NφN is ill-
condition. Hence, to guarantee the validity of the obtained model and avoid any ill-con-
ditioned solution, a regularisation term is crucial to reduce the variation of the estimated 
parameters in the objective function [16]. Then, the cost function can be considered as:

where the first term implies the modelling error, γ is a positive coefficient controlling the 
trade off between the error term and the regularisation term. W∈ R

m×m is a weighting 
matrix, which can be used to prioritise between system parameters. For a normal regu-
lariser θTW θ , regularised least square estimation (ReLS) is a standard method to obtain 
the solution based on cost function (10). This can be seen as an improved method out of 
ridge regression or weighted ridge regression [18] depending on the selection of matrix 
W .

However, ReLS cannot achieve desired solution when the input stimulation is insig-
nificant and the measurement has high noise level. In order to obtain a better FIR 
model of the oxygen uptake model, we introduce a newly developed kernel method 
based on the work in [14, 15]. Let us recall Eq. (5), assuming that the FIR function 
g ∈ Rm , then the function g  in regularisation term can be projected into a reproduc-
ing kernel Hilbert space (RKHS), i.e., g → gH ( Rm

× Rm
→ Rm×m(H) ). The advantage 

of this transform is the penalisation of the high frequency components in the func-
tion g [15]. Different from ReLS which only focuses on solving the equalities with ill-
conditioned matrices, the regularisation term gH can perform better for minimising 
the mean square error of finite impulse response g(·) [17]. If we use the kernel matrix 
P based on gH to replace W  in Eq. (10), the kernel based estimation method can be 
expressed as:

(6)y(t) = ϕT (t)θ + ǫ(t),

(7)ϕ(t) =
[

u(t − 1),u(t − 2), . . . ,u(t −m)
]T

.

(8)YN = φN θ + εN ,

(9)CostFunc1: θ̂ = arg min
θ∈Rm

||YN − φN θ ||
2
2.

(10)CostFunc2: θ̂ = arg min
θ∈Rm

||YN − φN θ ||
2
2 + γ θTW θ ,
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where P∈ R
m×m represents the kernel matrix whose details are given in the next sec-

tion. With the priori information in kernel matrix P−1 , the estimated θ̂ from Eq. (11) 
can provide better and smoother results comparing to ReLS or ridge regression [15]. 
Furthermore, unlike support vector regression (SVR) [19], and for this nonparametric 
method, the inputs and system parameters from the error term are not projected to a 
higher dimension as the estimated system parameters from SVR are normally hard to 
recover from projected space to original system parameters. Furthermore, during the 
VO2 uptake modelling, this model tends to have relatively large time constant based on 
the previous research [12]. Hence, we expect that the last several parameters of the esti-
mated FIR approach to zero. Therefore, we need to add an extra L1 regularisation term 
as another regulariser to sparsify the transfer function identified, by which the overall 
cost function can be expressed as:

where α is a positive coefficient to control the trade off between L1 regulariser, kernel 
regulariser γ θTP−1θ and the error term.

The above equation can be considered as a special case of elastic net [20], in which 
the L2 norm regularisation is weighted by kernel matrix P−1 . Let us rearrange Eq. (12) 
and define a parameter φ∗

N ∈ R
(N+m)×m as:

where R ∈ R
m×m is the upper triangular matrix from Cholesky factorisation of kernel 

matrix P−1 ( P is symmetric).
If denote, Y ∗

N ∈ R
N+m can be defined as:

Then, the cost function (12) can be rewritten as:

where θ∗∈ R
m is defined as:

Due to the limitation of the input signal, the input matrix φT
NφN is not orthogonal. 

Therefore, the close form solution of LASSO [21] cannot be applied to achieve the solu-
tion of the optimisation problem of CostFunc5 directly. Here, an interior-point method 
[22] is adopted for this L1 norm regularisation for θ̂

∗

 . At the end, θ̂
∗

 can be restored to θ̂ 
according to Eq. (16) as:

(11)CostFunc3: θ̂ = arg min
θ∈Rm

||YN − φN θ ||
2
2 + γ θTP−1θ ,

(12)CostFunc4: θ̂ = arg min
θ∈Rm

||YN − φN θ ||
2
2 + γ θTP−1θ + α||θ ||1.

(13)φ∗

N =
1

√
1+ γ

[

φN√
γR

]

,

(14)Y
∗

N =

[

YN

0

]

.

(15)CostFunc5: θ̂
∗

= arg min
θ∗∈Rm

||Y
∗

N − φ∗

N θ
∗
||
2
2 +

α
√
1+ γ

||θ∗||1,

(16)θ∗ =

√

1+ γ θ .
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Kernel selection

Several kernels have been applied or developed for the proposed nonparametric kernel 
estimation method, such as polynomial kernel, radial basis function (RBF) kernel, sta-
ble spline (SS) kernel, diagonal/correlated (DC) kernel, diagonal (DI) kernel, etc. Due 
to the use of Cholesky matrix decomposition in the proposed nonparametric modelling 
method, the kernel matrix must be symmetric positive definite. As a result, SS kernel, DI 
kernel and DC kernel were selected. SS kernel, DC kernel and DI kernel were developed 
in [14, 17]. In addition, as the impulse response of a stable process decays exponentially 
with a certain rate, the SS, DC and DI kernels, which belong to amplitude modulated 
locally stationary (ALMS) kernel, can often achieve deserved results when identifying 
FIR model. These three kernels are defined as follows:

• • DI kernel: 

 where c > 0 , 1>�>0.
• • SS kernel: 

 where c > 0, � > 0.
• • DC kernel: 

 where c > 0 , 1 > � > 0 , |ρ| ≤ 1 and |ρ| �= 0.
More details about the kernels above can be found in [23].

Simulations
Mostly, the relationship between the oxygen uptake and the jogging speed was consid-
ered as a first-order system. To the authors’ best knowledge, due to the individual dif-
ferences of the body condition of human beings, it is likely that the transfer function 
model of the VO2 for each person is different in terms of gain value and order. For some 
people, the relationship between the oxygen uptake and the joggling speed may not be 
described by a first-order transfer function. Furthermore, it is generally hard to correctly 
identify the exact order of system through a single input response, especially under large 
observation noise. The major difference between a first-order system and a high-order 

(17)θ̂ =
1

√
1+ γ

θ̂
∗

.

(18)P(i, j) =

{

c�i, i = j

0
,

(19)P(i, j) =



















c
�
2i

2

�

�
i
−

�
j

3

�

, i ≥ j

c
�
2j

2

�

�
j
−

�
i

3

�

, j ≥ i

,

(20)P(i, j) = cρ|i−j|
�
|i+j|/2,
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system in step response is in their slope and damping. Therefore, it is likely that a second 
or higher order system is identified as a first-order system through single step response. 
Therefore, during this “Simulations” section, both first-order systems and second-order 
systems were considered.

First of all, the performance of the proposed calibration method was tested on the 
first-order system. In this simulation, we considered a first-order system as

where time-constant Tp follows the uniform distribution U(10, 20) and the gain k fol-
lows U(10, 20). During the simulation, the input signal X(s) was a step response which 
jumps from 0 to 1 at time 180 s and remains at 1 for 300 s. For comparison purposes, the 
estimations of both ARX model and impulse response model were tested. Assuming that 
the sampling Ts = 1(s) , the discrete time ARX model of the first-order system in transfer 
function (21) was assumed as:

where n is the number of samples, ε1 is the zero mean Gaussian noise with 3dB signal-
to-noise ratio (SNR). For ARX model, we used the conventional prediction error method 
(PEM) to solve the unknown parameters a1 and b1 . For the estimation of the impulse 
response model, the proposed method was applied with FIR m = 120 . In paper [24], the 
authors gave some extra constraints for the parameters’ of kernels: (i) 0.9 ≤ � < 1 for SS 
kernel; (ii) 0.72 ≤ � < 1 , − 0.99 ≤ ρ ≤ 0.99 for DC kernel; (iii) 0.7 ≤ � < 1 for DI kernel. 
the settings of kernels are listed as follows after tuning:

• • SS kernel: c = 1 , � = 0.98

• • DC kernel: c = 1 , � = 0.9 , ρ = 0.8

• • DI kernel: c = 1 , � = 0.9

• • regulariser: γ = 8 , α = 10

We repeated this simulation for 1000 times, and the fit ratio NRMSE (normalised root 
mean square error) defined as:

The results of simulations are reported in Table  1 and the box plot of the results is 
shown in Fig.  2. From the results of nonparametric method with SS kernel and PEM 

(21)Y (s) =
kX(s)

Tps + 1
,

(22)y(k) = a1x(k − 1)+ b1y(k − 1)+ ε1, k = 2, 3, . . . , n,

(23)Fit ratio =

(

1−
||ŶN − YN ||2

||YN −mean(YN )||2

)

.

Table 1  Fit ratio comparison of first-order system simulation

Method Mean Standard deviation Best

PEM 0.7525 0.0444 0.8475

Kernel (SS) 0.8705 0.0264 0.9170

Kernel (DC) 0.8738 0.0254 0.9141

Kernel (DI) 0.8678 0.0254 0.9114
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method, one way analysis of variance (ANOVA) was implemented for the significance 
test of fit ratio. The p value is less than 0.0001. Therefore, the fit ratio of the kernel esti-
mation method is significantly better than PEM when the noise of measurement is large. 
Specially, for SS kernel and DC kernel, they can achieve similar results. A simulation 
result is randomly chosen out of the 1000 simulations and is shown in Fig. 3 to visualise 
the comparison between the proposed method and the conventional method. Note that 
to have a clear plot, only the estimated results from the kernel method with SS kernel 
and PEM are shown. It is evident from this graph that the proposed kernel method can 
fit better when the measurement is noisy.

Then, let us consider a second-order system as:

where the variables τ1 and τ2 follow U(10, 20) and U(5, 10), respectively. The gain k fol-
lows U(10, 20). In this simulation, the input signal X(s) is a step response which jumps 
from 0 to 1 at time 180 s and stays at 1 for 300 s. During the simulation, we used both 
first-order and second-order model in the ARX model. The second-order ARX model is 
expressed as:

(24)Y (s) =
kX(s)

(τ1s + 1)(τ2s + 1)
,

PEM SS DC DI
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where ε2 is the zero mean Gaussian noise with 3dB SNR.
For impulse response estimation, the SS, DI and DC kernels were selected in the sim-

ulation. For the FIR, we set m = 120 , and the settings of the kernels were chosen the 
same as the first-order simulation. The simulations were repeated for 1000 times, and 
the results are reported in Table 2 and visualised in the box plot in Fig. 4.

Based on the results in Table 2, it is clearly seen that the kernel method outperforms 
previous methods. Another significant advantage is that the order of the model does not 
need to be determined separately. From the results given in Table 2, if the second-order 
system is identified as first-order system incorrectly, the differences between the achieved 
results are significant. Figure 5 shows one randomly chosen simulation. The figure shows 
that the estimated response from the kernel method fits the best. Although the SS kernel 
and DC kernel can achieve similar performance so far, paper [17] indicates that SS kernel 
can outperform DC kernel when the system has higher order. Therefore, we selected SS 
kernel to estimate the impulse response during our "Experiments" section.

It is also necessary to verify that this method is better than ridge regression. Con-
sider a second-order system as:

(25)
y(k) = a1x(k − 1)+ a2x(k − 2)

+b1y(k − 1)+ b2y(k − 2)+ ε2, k = 2, 3, . . . , n,

PEM (1st) PEM(2nd) SS DC DI
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Fig. 4  Box plot of fit ratio of estimation from PEM and nonparametric method with SS, DC and DI kernel for 
second-order model

Table 2  Fit ratio comparison of second-order system simulation

Method Mean Standard deviation Best

PEM (first-order system) 0.7087 0.0554 0.8157

PEM (second-order system) 0.8133 0.0484 0.8955

SS kernel 0.8694 0.0246 0.9075

DC kernel 0.8758 0.0248 0.9184

DI kernel 0.8615 0.0234 0.9073
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The SS kernel was selected for the proposed method with c = 1 , � = 0.98 and m = 120 . 
For ridge regression, whose weighting matrix W  in the regularisation term was a simple 
identity matrix, we also set m = 120 and both methods share the same weight of regu-
lariser ( γ = 4 , α = 10 ). First, let us visualise the estimated IR from kernel method and 
true IR in Fig. 6. As we can see from Fig. 6, the estimation output from the SS kernel is 
very close to the true output without over-fitting. The comparison of results between 
the kernel method and ridge regression is shown is Fig. 7. From Figs. 6 and 7, it can be 
seen that the IR model from ridge regression without the kernelised L2 norm penalty is 
inaccurate comparing to the kernel method. The results from the kernel method are far 
better than the classic ridge regression. Specifically, the estimated IR from the kernel 
method is very close to the true IR.

Experiments
In order to develop the impulse response model of the dynamic VO2 responses to treadmill 
exercise, an experimental approach was employed in which 20 healthy males subjects were 
asked to exercise. The physical characteristics of the participants are shown in Table 3.

(26)Y (s) =
15X(s)

(10s + 1)(15s + 1)
.
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All data was acquired by a gas analyser K4b2 (COSMED), which is a portable system 
for pulmonary gas exchange measurement with true breath-by-breath analysis. The UTS 
Human Research Ethics Committee (UTS HREC 2009000227) approved this study and 
an informed consent was obtained from every participant before the commencement of 
data collection.

Prior to the experiments, all participants were ask to observe the following require-
ments: including the nutritional intake, physical activity and environment conditions. 
The participants were instructed to consume a standardised light meal at least 2 h before 
the experiment. Meanwhile, they were asked not to engage in any other exercises for one 
day before the experiment. The temperature and humidity of the laboratory were set to 
20–25 °C and around 50% relative humidity respectively.

During the experiment, each participant was seated for 5 min first, and then stood 
next to the treadmill for another 2 min. Then, the participants were asked to start walk-
ing at 3 km/h for 4 min, followed by a run for 8 min at 8 km/h, and another walk for 8 
min and at 3 km/h. At the end, they rested for 5 min. One single experiment took 32 min 
in total. The protocol of this experiment is shown in Fig. 8. The participants only ran at 
a relatively low speed (8 min) to avoid anaerobic respiration. The typical experimental 
scenario with K4b2 gas analyser and the automated treadmill system is shown in Fig. 9.

In this work, we only focused on the onset VO2 response of treadmill exercise (i.e., 
from walking to running). Therefore, for the purposes of impulse response model-
ling, we only took the data from t 1 =  420s to t2 =  1120s as shown in Fig.  9. Since 
the data of gas exchange recorded by K4b2 is breath by breath based, the sampling 
time of K4b2 is irregular, and the quality of the measurements is often relatively low 
because of the complexity of the gas exchange in cardiopulmonary system. This is also 
another reason that nonparametric modelling was selected in this study rather than 

m
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Fig. 7  IR from proposed kernel method and Ridge regression

Table 3  Age and BMI of participants

Subject Age (year) Height (m) Mass (kg) BMI (kg/m2)

Average 38.02 1.77 86.10 27.16

Standard deviation 5.28 0.06 14.05 3.61
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structured modelling. Furthermore, only a 3rd median filter was applied to reduce 
the measurement noise with minimal influence of breath signals. An experiment was 
randomly chosen and the result of applying a 3rd median filter is shown in Fig. 10. 
It is evident from Fig. 10 that the 3rd median filter can efficiently remove the noise, 
without losing many details from raw signals. As it is mentioned previously, the gas 
response of K4b2 is breath by breath based, therefore, the sampling time of measure-
ment is not constant. In order to deal with the varying sampling time of K4b2 , we 
used a classic interpolation method [25] to unify the sampling period to 1 s.

Overall, for the estimation of impulse response model, the sampling time was selected 
as 1s, and the order of the model was selected as 300. The IR model can therefore be 
expressed as a 300 order FIR model:
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Fig. 8  Protocol of exercise for the experiment

Fig. 9  The LabVIEW controlled treadmill system for experiments
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As we mentioned previously, since this study focused on the onset, we only took the 
measurements from t = 420 (starting walking at 3 km/h) to t = 1120 (nearly finished 
running at 8 km/h), which is 700 measurements in total. As the order of the FIR is 300, 
while the walking period only has 240 measurements (4 mins walking), we cloned 200 
measurements of walking and inserted it into the selected 700 measurements. There-
fore, the data records were extended from 700 to 900. Hence, the input u[i] is defined as 
follows, u[i] = 0, i = 1, 2, . . . , 420 ; u[i] = 1, i = 421, 422, . . . , 900 . With these 900 meas-
urements, firstly, we removed the offset which is the average value of the initial 420 out-
puts. Then, the proposed nonparametric kernel based estimation was applied to estimate 
the IR model by using stable spline kernel ( c = 1 , � = 0.978 ). During the estimation, the 
coefficients γ and α for the L1 and kernalised L2 norm were set to 4 and 10 respectively. 
As a comparison with the conventional method, we also used system identification tool-
box from Maltab to estimate the model using the ARX model with AIC for model selec-
tion [26]. Then the system was estimated by PEM based on the model that selected by 
AIC. The fit ratios (NRMSE) were calculated and recorded in Table 4. For a fair compari-
son, only ŷ from the samples 301 to 900 of the selected 900 s samples was compared for 
both methods as the initial value of ŷ of nonparametric method started from 301 s.

The results are reported in Table 4 and the box plot is given in Fig. 11. From Table 4, 
it can be seen that the proposed method can significantly outperform the conventional 
method in most of the cases. It has also higher fit ratio and less standard deviation. 
Actually, the results in Table 4 show that the proposed method is very effective when the 
system has high level of noise.

Particularly, Fig. 12a shows the estimations based on PEM and the proposed method 
for one participant. The figure clearly illustrates that the model response of the proposed 
method fits better to the original measurements, especially for the transient stage.

Figure 13 shows the estimated impulse responses for all 20 participants. Although 
the values of the impulse responses are slightly different, the patterns of the responses 
among participants are similar. This figure also shows that dynamic VO2 response to 
exercise of these 20 participants should be described by a higher order model instead 
of a simple first-order transfer function as the starting point of the identified impulse 

(27)

y[n] = g[1]u[n− 1] + g[2]u[n− 2] + . . .+ g[300]u[n− 300]

=

300
∑

i=1

g[i]u[n− i].
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Fig. 10  Raw VO2 measurement and filtered measurement of participant 1
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response is non-zero. Furthermore, it is evident that the impact of time delay in Eq. 
(1) is negligible from these results, which is in line with the results reported in [27]. 
The average impulse response is also shown in Fig. 13. Based on the estimated average 
impulse response model, we calculated the predicted average VO2 output, and then 
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Fig. 11  Results comparison for proposed method and classic method

Table 4  Goodness of fit

Subject Nonparametric (%) AIC + PEM (%) AIC

Participant 1 83.3 83.3 11

Participant 2 77.0 67.4 7

Participant 3 61.5 54.7 12

Participant 4 75.3 65.4 7

Participant 5 74.7 61.0 4

Participant 6 81.1 73.7 8

Participant 7 81.7 80.1 13

Participant 8 82.2 80.6 11

Participant 9 78.3 74.5 12

Participant 10 72.6 63.6 10

Participant 11 74.3 65.1 9

Participant 12 72.9 71.0 13

Participant 13 71.1 67.0 17

Participant 14 77.8 74.3 15

Participant 15 76.6 74.1 17

Participant 16 76.5 71.6 11

Participant 17 78.0 76.0 11

Participant 18 78.4 72.1 11

Participant 19 76.3 69.4 10

Participant 20 76.4 70.8 13

Average 76.0 71.4 –

Standard deviation 5.72 7.24 –
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compared it with the experimental data, shown in Fig. 14. It can be observed that the 
estimation fits properly with the experimental data without over-fitting.

Conclusions
This paper reports our proposed method for nonparametric modelling of VO2 
response to treadmill exercise using a kernel based modelling approach. Several ker-
nel functions have been exploited and tested using different numerical simulations. 

0 100 200 300 400 500 600

time (s)

-10

0

10

20

30

V
O

2
(m

l/m
in

/k
g)

measurement
predicted error method
nonparametric method

a

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

impulse response

b

Fig. 12  a Estimated response for one participant with PEM and nonparametric and b the estimated impulse 
for the participant

0 50 100 150 200 250 300

FIR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
es

po
ns

e

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20
Average

Fig. 13  Average IR and individual IR from 20 participants



Page 17 of 18Ye et al. BioMed Eng OnLine  (2018) 17:44 

The stable spline kernel was chosen as it can achieve expected results. With stable 
spline kernel, the proposed estimation method were tested experimentally using 20 
participants. The obtained results showed that the goodness of fit of the proposed 
method can significantly exceed the prediction error method. We conclude that the 
kernel based nonparametric modelling method is an effective method for the esti-
mation of the impulse response of the VO2—Speed system. We also believe that the 
identified FIR model can provide accurate dynamic prediction of VO2 response during 
treadmill exercise.
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