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COMMENTS ON “CONVERGENCE PROPERTIES OF THE
LIKELIHOOD OF COMPUTED DYNAMIC MODELS”

BY DANIEL ACKERBERG, JOHN GEWEKE, AND JINYONG HAHN

We show by counterexample that Proposition 2 in Fernández-Villaverde, Rubio-
Ramírez, and Santos (Econometrica (2006), 74, 93–119) is false. We also show that
even if their Proposition 2 were corrected, it would be irrelevant for parameter esti-
mates. As a more constructive contribution, we consider the effects of approximation
error on parameter estimation, and conclude that second order approximation errors
in the policy function have at most second order effects on parameter estimates.

KEYWORDS: Approximation error.

1. INTRODUCTION

FERNÁNDEZ-VILLAVERDE, RUBIO-RAMÍREZ, AND SANTOS (2006; FRS
hereafter) consider likelihood based estimation of economic models which
cannot be solved analytically and must be solved numerically or with some
other form of approximation. This approximated model (e.g., an optimal pol-
icy function in the dynamic environment of FRS) is used in place of the exact
model to form an approximated likelihood function. The approximated likeli-
hood is then used for statistical inference.

FRS posed the question, “What are the effects on statistical inference of
using an approximated likelihood instead of the exact likelihood?” Assuming
that the approximated model is converging to the exact model, they obtained
two results. First, given a fixed number of observations T , they found condi-
tions under which the approximated likelihood function converges to the exact
likelihood function. This is an important contribution, since if the approximate
likelihood function converges to something other than the exact likelihood
function, it is hard to see how one could ever perform meaningful inference.

In the second part of the paper (Section 4), the authors consider implications
of the relative speed at which the approximated model (in their case, the pol-
icy function) converges to the exact model. Their main conclusion here is that
“second order approximation errors in the policy function, which almost always
are ignored by researchers, have first order effects on the likelihood function”
(emphasis in the introduction of original text). More specifically, Proposition 2
in their paper states that the difference between the approximated likelihood
function and the exact likelihood function is bounded by a function that in-
cludes a term of the form TBχδ� where δ is a bound on the approximation
error of the model, and where B and χ are constants that do not depend on T .
This result implies that as T increases, one may need the approximation er-
ror δ to be shrinking at a rate faster than T for the approximated likelihood to
converge to the exact likelihood. Given the authors’ emphasis on the result, a
reader might additionally conclude that, for meaningful inference on the para-
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meter vector γ0, one may also need the approximation error δ to disappear at
a rate faster than T .

This comment has two parts. First, we show by counterexample that Propo-
sition 2 in FRS is false. In a simple model that satisfies the assumptions of the
FRS framework, we find a sharp bound on the likelihood function that can ei-
ther be larger or smaller (depending on parameters) than the bound claimed
by Proposition 2. We note that Geweke (2007) was the first to point out the
error in Proposition 2 in FRS. He showed that the upper bound derived there
is incorrect. He also pointed out the logical error of using an upper bound
that is not sharp to make conclusions regarding the effects of approximation
error. Our note goes one step further, using the counterexample to show that
even if their Proposition 2 were corrected, it would be irrelevant for parameter
inference.

Second, as a more constructive contribution, we extend the results of FRS to
explicitly consider the effects of approximation error on parameter inference
from a classical perspective.1 What is relevant for classical maximum likelihood
inference on γ0 is not the behavior of the approximated likelihood function per
se (as considered by FRS), but the behavior of the maximizer of the approxi-
mated likelihood function. Denote this maximizer as γ̂j and call it the pseudo-
maximum likelihood estimator (PMLE). Our first result shows that as T in-
creases, the difference between γ̂j and the true parameter vector γ0 converges
to something bounded by a term of the same order as the approximation error.
Hence, we conclude that second order approximation errors in the policy function
have at most second order effects on parameter inference.

We then investigate the consistency and asymptotic normality of the PMLE.
The analysis is a straightforward extension of that used in the simulated maxi-
mum likelihood literature (e.g., Gouriéroux and Monfort (1991), Hajivassiliou
and Ruud (1994)). We first show that as long as the approximation error con-
verges to zero at any rate (as T increases), γ̂j is a consistent estimate of γ0.2
Regarding asymptotic normality, we show that as long as the approximation
error disappears at a rate faster than

√
T , the approximation error does not af-

fect the asymptotic distribution of the maximum likelihood estimator. In other
words, the asymptotic distribution of

√
T(γ̂j − γ0) is normal with mean 0 and

variance given by the inverse of the information matrix of the exact model. Un-
der our assumptions, this information matrix can be consistently estimated in
the standard way.

1Note that our extension is done under some additional regularity conditions that are not
assumed by FRS.

2A working paper version of Fernández-Villaverde, Rubio-Ramírez, and Santos (2005) shows
that if the approximated likelihood function converges to the exact likelihood function, the max-
imum likelihood estimate using the approximated likelihood converges to the value of the para-
meter vector that maximizes the exact likelihood function. However, this is done for fixed T and
thus does not imply anything about consistency or asymptotic normality.
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We conclude that the relative impact of approximation error is not as large
as one might conclude from a reading of FRS. The effects of approximation
error on classical inference regarding γ0 are of the same magnitude as the
approximation error itself. There is no sense in which the effects of approxi-
mation error on point estimates worsen as the sample size T increases. To put
the result in context, it is helpful to compare the effects of approximation error
to the effects of simulation error in maximum likelihood estimation. In both
cases, there are “bias” terms that must disappear at a rate faster than

√
T to

not affect the asymptotic distribution of the estimator. However, we emphasize
that these are only asymptotic results. One’s estimates are only going to be as
accurate as one’s approximations, and we believe one should make concerted
efforts to make these approximations as precise as possible. We also note that it
is beyond the scope of this comment to characterize the convergence behavior
of approximation error using various approximation techniques.3

2. SIMPLIFIED VERSION OF FRS’S PROPOSITION 2

We consider a very simplified, static version of the model studied by FRS.
This simple model is sufficient to illustrate the key points of this comment.
Note that since our simplified model is just a restricted version of the model of
FRS,4 our counterexample to FRS’s Proposition 2 is in fact a valid counterex-
ample.

Our simple model is

yt = g(vt;γ)�

where vt is an independent and identically distributed unobservable, and γ
is an unknown parameter which will be assumed to be a scalar for simplic-
ity of notation. As in FRS, we will assume that we cannot compute the func-
tion g(·;γ) exactly. Alternatively, it can be approximated by a function gj(·;γ),
where j indexes the accuracy of the approximation. This approximated model
gj(·;γ) will in turn generate an approximation pj(·;γ) to the true density
p(·;γ) of yt .

Lemma 6 of FRS then implies that, under some regularity conditions, if
‖gj(·;γ) − g(·;γ)‖ ≤ δ, where ‖ · ‖ is the sup norm, then there exists some
constant χ> 0 such that

|pj(yt;γ)−p(yt;γ)| ≤ χδ�(1)

3For example, quadrature and interpolation.
4Formally, one can get to our simplified model from the FRS framework by simply adding the

additional assumptions that St = {·} and Wt = {·}.
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Their Proposition 2 further implies that∣∣∣∣∣
T∏
t=1

pj(yt;γ)−
T∏
t=1

p(yt;γ)
∣∣∣∣∣ ≤ TBχδ�(2)

where, like χ, B is a constant that does not depend on T .5

3. COUNTEREXAMPLE TO PROPOSITION 2

We now show by counterexample that Proposition 2 of FRS is incorrect.
Consider the model yt = g(vt;γ) = γ + vt , where vt ∼ N(0�σ2). Suppose
that σ2 is known, so the only parameter to estimate is γ. Suppose that in-
stead of using the true model g(vt;γ) = γ + vt , the econometrician uses an
approximated model gj(vt;γ) = γ + δ+ vt . For now, consider the approxima-
tion error δ �= 0 to be a constant. Again, note that this simple model satisfies
the assumptions of the FRS framework.

The exact and approximated likelihoods for yt are, respectively,

p(yt;γ)= 1

σ
√

2π
exp

(
−(yt − γ)2

2σ2

)

and

pj(yt;γ)= 1

σ
√

2π
exp

(
−(yt − δ− γ)2

2σ2

)
�

It can be shown6 that the difference in these two individual likelihoods can be
bounded by

|p(yt;γ)−pj(yt;γ)| ≤ χ(δ)|δ|�(3)

where χ(δ) is such that

χ(δ)≤
exp

(
−1

2

)
σ

√
2π

(4)

and

1

σ
√

2π
≤ lim inf

|c|→∞
|c|χ(c)≤ lim sup

|c|→∞
|c|χ(c)≤ 2

σ
√

2π
�(5)

5The second term in the published version of Proposition 2 of FRS disappears in our simple
example since St = {·} and Wt = {·}.

6Proofs of (3), (4), and (5) are available in the a Supplemental Material (Ackerberg, Geweke,
and Hahn (2009)).
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It is also shown that the difference in the joint likelihoods can be bounded by∣∣∣∣∣
T∏
t=1

pj(yt;γ)−
T∏
t=1

p(yt;γ)
∣∣∣∣∣ ≤

(
1

σ
√

2π

)T−1

|√Tδ|χ(√Tδ)(6)

and that this bound is sharp.
Consider the case where σ < 1/

√
2π. Because |√Tδ|χ(√Tδ) is bounded

from above and away from zero for T large, our bound is of order KT−1, where
K > 1. Comparing our bound to the bound derived in Proposition 2 of FRS
(i.e., (2)), it is obvious that for large enough T , our bound will be strictly larger.
Given that our bound is sharp, this contradicts Proposition 2 of FRS. If σ >

1/
√

2π, then our bound is of order KT−1 with K < 1, which implies that in
other cases the bound in Proposition 2 of FRS is too big.

Given this counterexample, one might be inclined to try to find a valid bound
for the joint likelihood of more general models. However, further considera-
tion of this simple counterexample suggests that this might not be a fruitful
endeavor. Note that the maximum likelihood error (MLE) of γ in the simple
counterexample is γ̂ = y . The MLE using the approximate model is γ̂j = y −δ.
Hence, the effects of approximation error on inference regarding γ is of the
same order of magnitude as the approximation error in the model gj(vt;γ). In
addition, the impact of a fixed level of approximation error does not depend
on T . These results are true regardless of the value of the standard deviation σ .

In contrast, the dependence of our sharp bound (6) on T depends dramati-
cally on the value of σ . When σ < 1/

√
2π, the bound increases exponentially

in T (for fixed δ). When σ > 1/
√

2π , the bound actually shrinks. Thus, while
the effects of approximation error on γ̂j do not depend on σ� the effect of ap-
proximation error on the bound of the joint likelihood depends critically on σ .
The counterexample is therefore suggestive that the way in which these joint
likelihood function bounds depend on T may not be relevant for studying the
effects of approximation error on inference, even in more general models. In
this simple example, the Bayesian posterior means (with flat priors) are equiv-
alent to the MLEs. Hence, this evidence is also suggestive that the dependence
of a joint likelihood bound on T is not relevant for both classical inference and
at least some aspects of Bayesian inference.

In the next two sections, we provide a constructive analysis of the effects of
approximation error on classical maximum likelihood inference. This analy-
sis is based on the differences in the true and the approximating average log
likelihoods rather than the differences in their levels.

4. THE EFFECTS OF APPROXIMATION ERROR ON CLASSICAL INFERENCE

We now extend the results in FRS to examine the effects of approximation
error on classical inference regarding γ. This is done in the context of the sta-
tic model of the previous section, but we suspect that our results could also be
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shown in FRS’s more general framework. We first show that we can bound the
effect of approximation error on parameter inference by a term of the same
order of magnitude as the approximation error. In other words, we show that
second order approximation errors in the model have at most second order
effects on inference regarding the model’s parameters. In the following sec-
tion, we explicitly analyze the effect of approximation error on the asymptotic
distribution of maximum likelihood estimators.

Denote the true value of γ by γ0. Define γ̂j as the pseudo-maximum like-
lihood estimator (PMLE) which maximizes the approximated joint log likeli-
hood function, that is,

γ̂j = arg max
γ

1
T

T∑
t=1

logpj(yt;γ)�

To characterize the magnitude of the effect of approximation error on estima-
tion, we will investigate how the probability limit of γ̂j depends on the approx-
imation error.

We use the Sobolev norm to measure the degree of approximation:

DEFINITION 1: We define

Δj ≡ max
{

sup
yt �γ

∣∣∣∣ ∂k

∂γk
logpj(yt;γ)− ∂k

∂γk
logp(yt;γ)

∣∣∣∣�k= 0�1�2
}
�

The Δj measures how well the individual log likelihood pj approximates both
the level and the shape of the exact log likelihood. This approximation error in
the individual log likelihood is generated by the difference between the exact
model (g(vt;γ)) and the approximated model (gj(vt;γ)). One could derive this
bound Δj from lower level assumptions on bounds relating gj(vt;γ), g(vt;γ),
and their derivatives.7 For this comment, it is sufficient to observe that this
approximation error bound Δj will not depend on the sample size T . This is
because in our simple model, none of gj(vt;γ)� g(vt;γ), or the distribution
of vt depends on the sample size T . We will assume that the index j is such that
the approximation error gets small as j gets larger:

CONDITION 1: We assume Δj → 0 as j → ∞.

We will assume the following standard regularity conditions on the exact
likelihood, which can be found in, for example, Newey and McFadden (1994;
NM hereafter):

7Given that we bound differences in shapes as well as levels between the approximated
and true individual log likelihoods, this might require extra regularity conditions (on gj(vt;γ),
g(vt;γ), and the distribution of vt) in addition to those assumed by FRS.
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CONDITION 2: (i) If γ �= γ0, then p(yt;γ) �= p(yt;γ0); (ii) γ0 ∈ Γ , which
is compact; (iii) logp(yt;γ) is continuous at each γ ∈ Γ with probability 1;
(iv) E[supγ∈Γ | logp(yt;γ)|] <∞.

Given these conditions, NM (Lemma 2.2) implies that the function Q0(γ)≡
E[p(yt;γ)] is uniquely maximized at γ0. We will strengthen this identification
result by making the following additional assumption:

CONDITION 3: We assume Q′′
0(γ0) < 0.

Last, we assume additional regularity conditions on both the exact individual
likelihood p(yt;γ) (Condition 4) and the approximated individual likelihood
pj(yt;γ) (Condition 5):

CONDITION 4: (i) logp(yt;γ) is twice continuously differentiable; (ii) there
exists some d(yt) with E[d(yt)] < ∞ such that γ ∈ Γ | logp(yt;γ)| ≤ d(yt),
|∇γ logp(yt;γ)| ≤ d(yt), and |∇γγ logp(yt;γ)| ≤ d(yt) for all γ ∈ Γ .

CONDITION 5: (i) logpj(yt;γ) is twice continuously differentiable; (ii) there ex-
ists some d(yt) with E[d(yt)] <∞ such that | logpj(yt;γ)| ≤ d(yt), |∇γ logpj(yt;
γ)| ≤ d(yt), and |∇γγ logpj(yt;γ)| ≤ d(yt) for all γ ∈ Γ ; (iii) γj uniquely maxi-
mizes Qj(γ)≡E[pj(yt;γ)].

Note that part (iii) of Condition 5 is not guaranteed by NM (Lemma 2.2)
because pj(yt;γ) is not the true likelihood of the data yt� However, given we
assume this additional identification condition, NM (Theorem 2.1) implies that
the PMLE γ̂j converges to γj in probability, i.e.

THEOREM 1: Suppose that Condition 5 is satisfied. Then, γ̂j converges to γj in
probability as T → ∞ while j is fixed.

The proofs of all theorems are given in the Supplemental Material (Acker-
berg, Geweke, and Hahn (2009)).

We next explicitly relate how this bound relates to the approximation error
of pj :

THEOREM 2: Suppose that Conditions 1–5 are satisfied. Then there exists ζ > 0
such that |γj − γ0| ≤ ζ ·Δj .

The ζ in Theorem 2 does not depend on the sample size T . Hence, Theo-
rem 2 states that the difference between the true parameter and the probability
limit of the PMLE using the approximated likelihood is bounded by a term of
the same magnitude as the approximation error Δj . As a result, we conclude
that second order approximation errors in the model have at most second or-
der effects on inference regarding parameters.
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5. ASYMPTOTIC RESULTS WITH APPROXIMATION ERROR

Last we explicitly consider the effects of approximation errors on standard
asymptotic approximations. For this purpose, we assume that the index j is a
function j(T ) of the sample size T such that j(T ) → ∞ as T → ∞. It is fairly
obvious that one will need the approximation error to disappear asymptotically
in order to obtain consistent estimates. What might be less obvious is the rate
at which the approximation error needs to disappear, both for consistency and
for standard asymptotic approximations to be valid. The results in this section
are based on very standard arguments that have also been used in the simulated
maximum likelihood literature (Gouriéroux and Monfort (1991), Hajivassiliou
and Ruud (1994)); the proofs are in the Supplemental Material.

Our first result regards the consistency of the PMLE γ̂j(T).

THEOREM 3: Suppose that Conditions 1–5 are satisfied. Then γ̂j(T) = γ0 +
op(1) as T → ∞ and Δj(T) → 0.

This result states that γ̂j(T) is a consistent estimate of γ0 regardless of the
rate at which Δj(T) converges to zero (as T → ∞). Intuitively, the approxi-
mated likelihood converges to the exact likelihood (since Δj(T) → 0), and the
maximum of the exact likelihood converges to γ0 (since T → ∞), providing
the result.

Our next result considers the asymptotic distribution of
√
T(γ̂j(T) − γ0) as

T → ∞ and Δj(T) → 0.

THEOREM 4: Suppose that Conditions 1–5 are satisfied. Then
√
T

(
γ̂j(T) − γ0

) ⇒N(0� I −1)

if
√
TΔj(T) → 0 as T → ∞. Here, I = −Q′′

0(γ0) denotes the Fisher information.

To appreciate Theorem 4, note that standard arguments imply that the MLE
that maximizes the exact joint likelihood, that is,

γ̂0 = arg max
γ

1
T

T∑
t=1

logp(yt;γ)�

also has asymptotic distribution
√
T(γ̂0 − γ0)⇒N(0� I −1)�(7)

A comparison of (7) to Theorem 4 implies that as long as Δj(T) → 0 at a rate
faster than

√
T , approximation error does not affect the asymptotic distribution

of the estimator. Intuitively, approximation error introduces a bias term of or-
der Δj(T) into the PMLE. If this bias term disappears at a rate slower than

√
T ,
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this bias term dominates the asymptotic distribution. If the term disappears
faster than

√
T , it vanishes from the asymptotic distribution. Again, this is very

reminiscent of the “bias term” that arises in simulated maximum likelihood
estimation. That bias term (which is inversely proportional to the number of
simulation draws) also needs to disappear at a rate faster than

√
T for it not to

affect the asymptotic distribution.
Last, we note that under our assumptions it is straightforward to show that

Q′′
j (γ̂j(T)) is a consistent estimate of Q′′

0(γ0). In other words, we can consis-
tently estimate I using the approximated model. Thus, our results imply that
as long as approximation error disappears at a rate faster than

√
T , it can be

ignored for purposes of forming asymptotically valid confidence intervals and
hypothesis tests.
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