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Abstract--Condition monitoring can diagnose the 
inception of fault mechanisms in induction motors, thus 
avoiding failure and expensive repairs. Therefore, there is a 
strong need to develop an efficient condition monitoring. 
The main target is to achieve a relatively low cost and/or 
non-invasive system which is still powerful in terms of 
monitoring for online detection of developing faults. The 
presented paper addresses rotor eccentricity faults and 
studies conventional monitoring techniques for induction 
motors. In order to reduce the unbalanced magnetic pull 
(UMP) in case of an eccentric rotor, the eccentricity­
generated additional airgap flux waves should be reduced. 
The radial forces in an induction motor are calculated, and 
the characteristics of unbalanced magnetic pull are 
described. 

Index Terms--condition monitoring, eccentric rotor, 
induction machines, unbalanced magnetic pull (UMP). 

I. INTRODUCTION 

The best definition of condition monitoring may be 
the continuous evaluation of the health of the associated 
electrical machines throughout their service life. The key 
is the ability to detect faults while they are still 
developing, which is called incipient failure detection [ 1]. 
By implementing an efficient condition monitoring, it is 
possible to provide adequate warning of imminent failure. 
Thus, it is also possible to schedule future preventive 
maintenance and repair work [2], [3]. Different methods 
for fault identification have been developed and used 
effectively to detect the machine faults at different stages 
using machine variables, such as current, voltage, speed, 
torque, noise and vibrations [ 4 ]-[8]. In most cases, faults 
produce one or more indicative signs, such as increased 
losses, excessive heating, torque pulsation, and 
unbalanced air-gap voltages and line currents. The motor 
faults are due to mechanical and electrical stresses [9]. 
According to IEEE and EPRI reports [10],[11] the 
occurrence of faults in induction machines are as shown 
in Table I. Bearings are common elements of an electrical 
machine and Table I indicates that they are the single 
largest cause of machine failures. However, eccentricity 
fault represents a considerable part of the three phase 
induction motor faults. What we have to keep in mind is 
that airgap eccentricity exists even in the healthy motor, 
but the permissible limit depends on the motor 
construction, e.g. 10% for a healthy motor. 

Rotor eccentricity as a fault is discussed on the basis 

of its importance regarding condition monitoring of 
induction motors in the next section. According to [ 12], 
[13], the radial forces in an induction motor due to 
eccentricity faults are stated and calculated in Sections 
Two and Three. Tn terms of eccentricity faults in 
induction machines, there are several detection methods 
as addressed in [14],[15]; each method has its advantages 
and disadvantages. However, the main idea is that these 
methods are able to expose faults and to prevent the total 
damage and reduce unexpected shutdowns. These 
methods will be discussed in Section Four. 

II. AIR GAP ECCENTRICITY FAULT 

An unequal airgap between the stator and rotor results 
in eccentricity of the rotor in an induction motor [l 5]­
[19], and the imbalance produces electromagnetic forces 
between the stator and rotor. This electromagnetic force 
depends on the movement of rotor axis away from stator 
axis, and the motion of eccentric rotor in terms of its 
angular velocity. There are also considerable effects due 
to winding arrangement, loading and slotting. 

TABLE I 
SUMMARY OF MOTOR FAULTS, PERCENTAGE OF FAILURE, CAUSES, AND 

SENSOR SIGNAL USED FOR FAULTS DETECTION 

Major 
Components 

Electrical Faults 

Rotor faults 

Stator faults 

Mechanical Faults 

Bearing faults 

Other faults 
(mainly-
eccentricity) 

Percentage 
(%) Causes 
IEEE EPRI 

9 

26 36 

44 41 

22 14 

Thennal­
stresses 
Corrosion 
Poor­
manufacturing 

Over-heating 
Over-voltages 
Mechanical­
stresses 

Contamination 
Improper-
installation and 
lubrication 
End of life 

Bent rotor 
Bearing wear 
Misalignment 

Detections 
Methods 

Stato1· current 
Axial flux 
Vibration 
Torq uc, speed 

Axial flux 
Stator current 

Stator current 
Vibration 

Stator current 
Vibration 
Axial flux 



This force acts between rotor and stator in an irregular 
manner and pulls the rotor out of alignment, and this is 
known as unbalanced magnetic pull (UMP). Further 
increase in the UMP may cause damage to the machine. 
Other vibrations can also be generated. The eccentricity 
often appears due to manufacturing tolerances. The 
inaccuracy of installation is another reason for increasing 
UMP, for example, when the bearings are incorrectly 
positioned or worn. 

Assuming that the stator and rotor surfaces are 
perfectly circular, there are two main types of 
eccentricity: static and dynamic. Static eccentricity occurs 
when the axis of the rotor is at a constant distance from 
the center of the stator, although the rotor still rotates 
about its own axis. However dynamic eccentricity occurs 
when the rotational axis of the shaft is not the true axis, 
although it still rotates on the stator axis. Obviously these 
conditions can exist together, and the eccentricity is not 
necessarily constant down the bore. The distribution of 
the magnetic flux density between the stator and the rotor 
will be changed due to the eccentricity fault. When an 
airgap asymmetry appears, a resultant radial force is 
produced on the rotor and stator, acting at the minimum 
airgap. Static eccentricity produces a steady pull on the 
rotor to one side while dynamic eccentricity produces a 
rotating force vector acting on the rotor and rotating with 
rotor velocity. Fig. 1 illustrates the different cases of 
eccentricity. The red areas in Fig. 1 represent the 
minimum airgap during the run-time. 

lTI. CA LC ULA TION OF UMP 

Many different approaches were developed for electro­
magnetic force calculation in induction machines with 
eccentric rotors. These can often be organized into two 
main categories: analytical methods and numerical 
methods. Both analytical and numerical methods have 
their own benefits and drawbacks in studying induction 
machines as in Table II. 
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Fig. I . Illustration of different cases of eccentricity. (a) Static 
eccentricity and (b) Dynamic eccentricity. 

TABLE II 

COMPARfNGTHE ANALYTICAL AND NUMERICAL METHODS 

Prompt results 

Simple interpretation 

Evaluate accurately the effects of 
magnetic saturation 

Evaluate accurately the effects of 
circulating currents 

Evaluate accurately the effects of 
stator and rotor slotting 

Provide high degree of accuracy in 
the final solution 

Require computational power of 
computers and time consuming 

Analytical Numerical 
Methods Methods 

A machine consisting of a pair of poles is considered to 
explain the UMP calculation process as shown in Fig. 2a. 
The rotor of the machine is set symmetrically within the 
stator bore. Rotor and stator are purely cylindrical, thus 
the length of air gap is uniform. The rotation of the rotor 
is on account of the formation of poles of opposite 
polarity on stator and rotor which exert a tangential force 
on the rotor. However, a much stronger magnetic force of 
attraction takes place between the stator and the rotor 
poles acting along a direction perpendicular to the rotor 
shaft axis. These forces therefore act radially. In a 
symmetrical machine the magnetomotive force (MMF) 
per pole and the area per pole are the same for all the 
poles. Assume the flux density B is uniform in the airgap, 
and MMF required for the iron parts is negligible. The 
forces of attraction between stator and rotor poles in the 
top and bottom are equal and act in the opposite direction 
to each other as below: 

F;=J._£A=J._µo(mmfJ2A (1) 
2 µ0 2 g 

F1 = J._£A = !._µo (mmf J2 A 
2 µ 0 2 g 

(2) 

where A is the area per pole, and g is the length of the air 
gap, and Pm is fundamental pole-pair number. 

£F1 
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(a) (b) 
Fig . 2. Radial magnetic forces in 2 poles machine . (a) Radial magnetic 
forces in symmetrical machine and (b) Machine with rotor displaced 
vertically downwards. 



Forces are equal and hence their resultant is equal to 
zero. There is no resultant radial magnetic pull on the 
rotor. In the analysis given above, the flux density 
distribution has been assumed uniform in the airgap. In 
the real case the flux density distribution is sinusoidal, 
considering an elemental angled(} at an angle (}from axis 
x, D is the diameter of stator bore, and l is the length of 
machines core. The radial force acting on the elemental 
strip is: 

1 ( . 1 DL F=- B sme) -de 
2µ0 "' 2 

(3) 

and the vertical component of the force is: 

DL 2 ( . )3 F,. =-B,,, sme de 
4µ" 

(4) 

It is evident that if (g1 > g1) as in Fig. 2b, force F2 is 
greater than F1, and hence a resultant pull radial force acts 
on the rotor in the downward direction. It should be 
noticed that it is not only the abnormality of the airgap that 
causes UMP but also any other asymmetry in the airgap 
flux destiny destitution or winding would cause UMP. 
When the rotor of induction machine is not concentric 
with the stator, the airgap is not uniform over periphery. 
The UMP would be produced, which tends to draw the 
rotor over to the side where the airgap is smaller. This was 
showed earlier that the UMP is inversely proportional to 
the square of the length of the airgap. Consider the case of 
a rotor when it is moved vertically downwards as shown 
in Fig. 2b, where (e) is the displacement of the rotor along 
downward direction. The total UMP acting on the rotor is 

(5) 

The analysis given above assumes the case of static 
eccentricity, and hence the stator and rotor axes remain 
parallel during the running time. Tn (5), it has been 
assumed that the peak value of the flux density remains 
the same irrespective of the eccentricity, which is not 
correct. Therefore, the UMP has been calculated for the 
worst case. As described in many studies, for a given 
airgap eccentricity and flux density, the UMP increases 
with rotor diameter and rotor length. According to [13], 
[19], and [20], ifthe rotor is not centered, the permeance 
modulation of MMF takes place so that for a Pm, there 
will be not only a Pm pole pair magnetic flux but also 
Pm± I pole pair magnetic flux waves. Tn other words, the 
eccentricity will produce additional flux waves of 
different pole number in the airgap. This aspect not only 
opens the door for better understanding of the 
electromagnetic radial forces in different sorts of the 
induction machine but also helps to diagnosis the machine 
vibration in industrial environment. Once the terms for 
the additional airgap flux waves are obtained as in (6) 
below, the UMP can be calculated. The additional flux 
waves are the second and third terms: 

l
.JJP•eJ<ra-P,,•y) + 1 

b(x,y,t) =Re L BP.,-1(x)e11ax-k(P.-l)y) + 
" jjP.+1 (x)eJ1ra-k(P,,.+1)y) 

(6) 

where BP'" is the peak of the normal component of the 
main Pm pole pair airgap flux density wave as in (7) 
below: 

. J 
]jP,,, = 1µ0 SI 

kP,ng 

and jjP. .. ±1(x) = }µoJ.,, J°(x) 
kP..,g 

(7) 

(8) 

where J(x) is the absolute static airgap eccentricity and it is 
equal to (e/g), J" is the current density, y is the 
circumferential distance around the air gap, w is the 
angular velocity, and k is the inverse of the average air gap 
radius. At any particular point in the airgap, the radial 
force can be calculated from the Maxwell stress. 
Reference [21] considered the effects of the tangential flux 
density component and assessed it to be low. The 
characteristics of UMP forces depend on the air-gap flux 
density, geometric design of the machine eccentricity 
level, and the loading condition. As shown in [22], if the 
flux density increases by 20%, the UMP will increase by 
44% for a given eccentricity. 

TV. EXISTING CONDITION MONITORING TECHNIQUES 

Several methods of electrical machine condition 
monitoring have evolved over time, but the most distinct 
techniques are motor current monitoring, thermal 
monitoring, vibration monitoring, flux monitoring, and 
torque monitoring. In all the techniques, the obtained 
signals from the machine are analyzed continuously, thus 
identifying any significant change which is the indicative 
of a developing fault. 

A. Stator Current Monitoring 

The popular method is to use line current monitoring 
where the signature current sidebands are monitored [5], 
[22], and [23]. Tt is the most economically attractive 
technology in induction motor, and it monitors the stator 
current of an induction motor in a non-invasive manner. 
Therefore, the current monitoring is a sensorless detection 
method that can be implemented without any extra 
hardware to the machine. However, it is relevant to cage 
induction machines in terms of commercial system 
development. In renewable energy, particularly wind 
turbines, wound rotor induction generators are used and 
they do not produce the same sideband currents as shown 
in [25], and [26]. 

A clip-on current transformer can be used to measure 
the signal. It is not required to access to the machine; the 
current can be measured in the supply side without any 
disturbance to the operation of the motor [22], [27]. 
Thomson [23] presented the classical rotor slot passing 
frequency flux and current components that are spaced at 
twice the supply frequency 2/ apart (9), and (10) below 
predicts the current signature pattern that is a function of 
airgap eccentricity. The current monitoring is also 
extensively used to detect broken rotor bars. On the other 
hand, current monitoring techniques require a high degree 
of human expertise. There is another major challenge to 
use this method, as presented in [28] that the unstable 



load can produce a current harmonic at the frequencies 
defined by ( 10) 

J,, =J{;., (1-s)±nws} (9) 

le. = f,., ± f, 

fee =J(~(s-l)±nw,J±n"(J(l-s)J (10) 
Pm Pm 

where fr, are the frequency components due to rotor 
slotting, R is the number of the rotor slots, nws = 1,2, .. 
integer corresponds to the fundamental component in 
MMF waveform, ncFI ,2, .. airgap eccentricity index, and 
f,. rotor frequency. The eccentricity fault diagnosis can be 
done in real time by analyzing frequency components of 
stator current signals that was discussed in [5] and [24). 
For example, monitoring stator current and voltage which 
is based on the computer-aided monitoring of the stator 
current and voltage Park's Vectors [29] for detecting the 
airgap eccentricity. 

B. Thermal Monitoring 

The thermal monitoring of induction machines is 
carried out either by measuring the local or bulk 
temperatures of the motor, or by parameter estimation. 
For example, when the stator faults happen, they generate 
heat in the shorted turns. The heat extends until it reaches 
a destructive stage. The stator temperature can also be 
estimated based on the stator resistance measurement as 
in [30). The researchers developed a thermal model of 
synchronous motors, and then the thermal model was 
presented to focus on estimating the temperature of the 
motor and identify faults as shown in [31). 

Rubbing can happen between the stator and rotor due 
to many reasons. For example, when there is a 
misalignment or bearing failure, the rotor can cause 
puncture in the coil insulation of the coil laminations, 
resulting in the coil grounding [32). This method is very 
useful in detecting bearing faults, because the increased 
bearing wear will increase the friction and temperature in 
the fault region. Though thermal method can be classified 
as indirect method to evaluate some stator faults, it might 
be too slow to detect the incipient faults inside the motor. 

C. Vibration Monitoring 

Vibration signal analysis has been widely used in the 
fault detection of induction machine [32)-[34]. Faults 
create harmonics with different frequencies and power 
levels in the vibration signal. Consequently, the vibration 
signal is first sensed via a vibration sensor mounted on 
the stator frame, and then its spectrum is calculated using 
a Fourier transform or a fast Fourier transform (FFT). The 
main source of noise production in induction machines is 
the UMP in the airgap, since the resultant MMF that was 
produced by air gap flux wave contains the effect of any 
rotor and stator asymmetries. The study in [7] verified 
that airgap eccentricity resulted in vibratory harmonics at 
frequencies of if,,,, f,,,2, fm3, or f,,,4). The imbalance of the 
rotor can also create rotating velocity vibration. Thus it 
will not be easy to detect the dynamic eccentricity 
individually by monitoring rotational velocity vibration. 

The expensive cost of vibration sensors weakens the 
vibration monitoring technique, and the acquisition of the 
vibration signal requires a significant investment. 

D. Flux Monitoring 

A flux monitoring method can give reliable and 
accurate information for the condition of an electrical 
machine. Some reflected harmonic spectra will appear if 
any change occurs in airgap, winding, voltage, or current. 
In [35) the authors studied the airgap flux as a function of 
static eccentricity. The change in the airgap flux, can 
indicate a developing fault and it can be reflected in the 
harmonic spectrum. In [36) designed search coils are 
placed under the stator winding wedges of the motor, and 
they are used for measuring the actual magnetic flux. A 
search coil around the rotor shaft can also be used in order 
to evaluate the axial flux components due to eccentricity 
[37), but it is not easy to install the search coil in the 
correct position to ensure that a reliable signal is obtained. 
A search-coil was used as magnetic field sensor to 
measure the stray magnetic flux outside the motor in [38). 
A simple method in [25], [26] using pole-specific search 
coils was introduced and theory was developed to 
illustrate that rotor eccentricity leads to the generation of 
airgap flux waves with pole-pairs that are Pm±l. The 
method was tested using search coils in a four pole wound 
rotor machine and it was found to successfully indicate 
the presence of rotor eccentricity. The main challenge of 
flux monitoring is the small air gap in most induction 
motors; the installation of search coils may require design 
modifications that may not be easy to implement. 

E. Airgap Torque Monitoring 

The flux linkage and the currents of the induction 
machine produce the airgap torque. Faults create 
unbalanced state, and it will have influence on the air gap 
torque. Hsu [39) suggested a method for detecting defects 
such as cracked rotor bar and shored stator coils. Airgap 
torque can be measured while the motor is running. The 
zero frequency of the airgap harmonics distinguishes that 
the machine is normal. The forward stator rotating field 
produces a steady torque. The backward stator field 
interacting with the rotor field creates the oscillating 
torque. Tts frequency is: 

[

Stator field angular speed- l 
Frequency= (Rotor field angular+ 

Rotor field observed from Rotor) 

=-OJ, -{OJ, (1 -s) + sOJ,} = -20J, (11) 

The double slip frequency torque indicates an 
unbalanced rotor. However, once the leakage reactances 
and magnetic paths of the three phases become 
asymmetrical, errors are induced and the calculation of air 
gap torque as in ( 11) is no longer accurate [ 40). 

V. REDUCTION OF UMP 

In recent years the reduction of radial electromagnetic 
forces has been the objective of many works. In order to 
damp the UMP in case of an eccentric rotor, the 



additional airgap flux waves P .. ±1 should be eliminated 
or reduced. Three approaches have been previously 
suggested to achieve this; the use of equalizing windings 
on the stator [ 18], [21], the use of stator damper windings 
to reduce the side-band flux waves; and reconnection the 
stator coils groups to build the parallel paths from 
winding current. 

The reduction of UMP in induction motors is achieved 
by using parallel connection of the stator coil groups in 
order to reduce the additional airgap flux density due to 
eccentricity [41] as shown in Fig. 3. The two parallel 
paths illustrate the equalizing connections in the induction 
machines and lq1 and lq2 represent the equalizing current. 
Magnetic field harmonics due to the rotor eccentricity 
generate currents circulating in the parallel paths of the 
rotor and stator windings. These currents equalize the 
magnetic field distribution in the air gap, and hence 
reduce the resultant UMP. 

The results of the experiment in [42] showed that the 
parallel stator windings effectively attenuate the net 
eccentricity force by suppressing significantly the 
eccentricity harmonics related to the fundamental 
magnetic field. However, the stator winding contains 
normally fewer parallel paths. Thus the degree of the 
UMP reduction may depend on the position of the rotor 
axis displacement, causing the electromagnetic system of 
the motor to behave irregularly. 

There is a difference between the cage rotor and wound 
rotor in the generated UMP. The cage rotor will have 
substantial differential which can add to the UMP while 
the wound-rotor machine will not have a parallel path 
structure like the cage that can damp (Pm± 1) flux waves 
generated by the eccentricity. Tt has been illustrated that 
the wound rotor machine has more UMP than the cage 
machine [ 12]. Similar results of reducing UMP using 
parallel connections are reported by Berman in [ 43]. The 
experimental findings have shown that using equalizing 
connections in the stator the UMP of an induction 
machine can be reduced by 25 times. The particular 
winding scheme has been called the bridge configured 
winding (BCW) scheme [44], and the currents flowing 
across this bridge are known as equalizing currents. It has 
shown the effect of equalizing currents (applied to the 
bridge) on the magnetic field coupled with rotor 
eccentricity. 

A two pole induction machine was presented in [20], 
and it was built with four pole damper winding in stator. 
The test has shown that using the four-pole extra stator 
winding to damp the four pole flux reduced the total 
vibration significantly and stabilize the machine. The 
authors measured and predicted the unipolar flux in the 
machine. In [25]-[26] a method using pole-specific search 
coils was introduced and theory was developed. Tt was 
tested using P .. ±1 search coils in a four pole wound rotor 
machine as shown in Fig. 4. Therefore it was developed 
to include the damper windings to reduce the UMP 
particularly in a wound-rotor machine. ' 
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Fig. 3. Phase winding of a four-poles induction machine, with two 
parallel paths involving three series connected coils each. TI1is figure 
covers the coil number I, 2, 6, 10, 11, and 15. 
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Fig. 4. Phase search windings: 6-pole search coils, 12 coils per phase, 
and 44 turns per coil and 2-pole search coils, 12 coils per phase, and 15 
turns per coil - one phase of each shown. 

VJ. CONCLUSIONS 

This paper has outlined a survey on the condition 
monitoring and the fault diagnoses in induction machines 
which are related to eccentricity fault. The paper 
summarized the techniques that can be used to detect 
rotor eccentricity faults in the early stage and the methods 
which have been proposed to damp UMP. The 
electromagnetic forces between the stator and the rotor 
vary quickly but certain aspects of an induction machine 
such as magnetic saturation, skew effect effect of slots 
and uneven distribution of field are 'difficult to b~ 
incorporated in the calculation. The researchers have 
begun to implement artificial neural networks (ANNs) or 
neuro-fuzzy system to speed and torque estimation. These 
new techniques including automated fault detection will 
improve the condition monitoring and faults detection in 
the future to be more accurate and faster. 

More experimental testing and evaluation under real­
life conditions are required in the future for the reliable 
condition monitoring. There is a strong need to develop 
researches in the area of eccentricity detection of closed­
loop drive-fed motors. It is important also to compare 
how the UMP is affected by the parallel paths in the stator 
side and the parallel paths in the rotor side. 
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