

 “© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

Online Compressed Robust PCA
Pingbo Pan1 Jiashi Feng2 Ling Chen1 Yi Yang1

1Centre for Artificial Intelligence, School of Software, Faculty of Engineering & Information Technology,
University of Technology Sydney

2 Department of ECE, National University of Singapore
lighnt001@gmail.com elefjia@nus.edu.sg {Ling.Chen, Yi.Yang}@uts.edu.au

Abstract—In this work, we consider the problem of robust
principal component analysis (RPCA) for streaming noisy data
that has been highly compressed. This problem is prominent
when one deals with high-dimensional and large-scale data and
data compression is necessary. To solve this problem, we propose
an online compressed RPCA algorithm to efficiently recover the
low-rank components of raw data. Though data compression
incurs severe information loss, we provide deep analysis on the
proposed algorithm and prove that the low-rank component can
be asymptotically recovered under mild conditions. Compared
with other recent works on compressed RPCA, our algorithm
reduces the memory cost significantly by processing data in an
online fashion and reduces the communication cost by accepting
sequential compressed data as input.

I. INTRODUCTION

In recent years, many algorithms have been proposed to
robustify standard principal component analysis (PCA) [4],
[14] to deal with gross noise or outliers in realistic data
[2], [6], [3], [22], [17], [27]. Among them, a popular robust
PCA (RPCA) algorithm for recovering a low-dimensional
subspace underlying the noisy data is to factorize the data
matrix into a low-rank component plus a sparse component
– through solving the following principal component pursuit
(PCP) problem [3]:

min
L,E

‖L‖∗ + λ‖E‖1,

s.t. X = L+ E.

Here each column in the matrix X represents one sample of
the observations. The matrices L and E are respectively en-
couraged to be low-rank (accounting for the low-dimensional
subspace structure) and sparse (explaining the gross noise on
the observations) by the imposed matrix nuclear norm ‖ · ‖∗
and the `1 norm ‖ · ‖1.

Studies on the RPCA problems have achieved great success
in theories as well as practices on simple datasets [28], [18].
However, most of existing algorithms require to access the
whole set of raw data directly to solve the RPCA problems.
Thus they are usually computationally expensive when dealing
with large-scale and high-dimensional data such as video
sequence and high-resolution images.

To address the challenge of high memory cost for RPCA,
one possible solution is to compress the large-scale data first
and then analyze size-reduced data in a compressed domain
(e.g., randomly project the raw data into a low-dimensional
space) instead of in the original domain. This is motivated by
the practical observations that realistic high-dimensional data

is often intrinsically redundant, and thus analyzing properly
compressed data directly can be much more efficient.

In fact, several methods have been developed to solve the
problems of RPCA in the compressed domain. [25] gives a
proof that when the number of observations exceeds the num-
ber of intrinsic degree of freedom of the component signals
by a polylogarithmic factor, the low-rank and sparse terms can
be exactly recovered by convex optimization. SpaRCS [23] is
a loop-based greedy algorithm which combines CoSaMP [16]
and Admira [11]. In each iteration, SpaRCS adopts CoSaMP
to recover the sparse term and Admira to recover the low-rank
term.

With the spirit of RPCA, they try to solve the following
optimization problem to recover the row rank and sparse
components from the compressed data directly:

min
L,E

‖L‖∗ + λ‖E‖1

s.t. Y = A(L+ E).

Here A is a known data compression operator (e.g., ran-
dom projection, random sampling) and Y is the observed
compressed data. Although compressing data before RPCA
analysis indeed reduces memory cost, those methods still fail
to handle large-scale data sets as they need to load all the
compressed data into memory for computation.

In this work, we propose an online compressed RPCA
algorithm – termed as OCRPCA – to more efficiently solve
compressed PCA problems, with provable performance guar-
antee. OCRPCA specifically considers linear compression op-
erators A for compressing streaming data, such as noiselet [5],
random sampling and random projection [20], [12], [7]. Given
a sequence of compressed data Y = A(X) = [y1, y2, . . . , yT],
OCRPCA directly recovers the low rank component of raw
data X from compressed data Y in an online manner.
Here X = [x1, x2, . . . , xT] is a sequence of the raw high-
dimensional data and yt = A(xt), t = 1, . . . , T .

The proposed OCRPCA offers several appealing advantages
in both practice and theory. First of all, compared with existing
online RPCA algorithms such as ORPCA [8], [9], [13], OCR-
PCA only needs to access the compressed data, whose size has
been reduced significantly. Therefore, the data communication
cost that is prominent in modern data processing systems
can be reduced dramatically. Secondly, compared with batch
compressed RPCA method, OCRPCA does not need to revisit
all the former samples when a new sample is revealed. Thus,

OCRPCA can efficiently deal with sequential and dynamic
inputs, such as video sequences. Thirdly, rather than loading
all the samples into memory, OCRPCA only needs to load
one sample at each time instance. This property of OCRPCA
offers greater efficiency benefits for dealing with big data.
We also provide sharp analysis on the statistical performance
of OCRPCA and demonstrate that the estimation offered by
OCRPCA converges to the global optimum asymptotically.

II. PROBLEM FORMULATION

A. Notations

Throughout the paper, we use capital letters to denote
matrices. In particular, let X ∈ Rd×T denote the collection
of T noisy raw data in Rd without compression and xi denote
the ith column of the matrix X . The problem of RPCA is
to find an underlying low rank component L and a sparse
noise component E of X . We use A to denote the linear
compression operator and A> to denote its adjoint. Y ∈ Rp×T
is the observed compressed data, for which we have Y =
A(X) = [y1, y2, ..., yT], and specifically yi = A(xi). Given
a′ = A(a), we define the compression ratio of the operator
A as s , dim(a′)

dim(a) , where dim(a) denotes the dimension
of a data point a and the smaller compression ratio means
more significant compression. In analysis on the recovery
performance, the incoherence of the low rank component L
is involved, which is defined as follows.

Definition 1 (µ-incoherence [25]). A low-rank matrix L ∈
Rm×n has rank-reduced singular value decomposition L =
UΣV >, then L is µ-incoherent if

∀i, j, ‖U>ei‖22 ≤
µr

m
, ‖V >ej‖22 ≤

µr

n
, ‖UV >‖∞ ≤

√
µr

mn

Here r is the rank of L and ei is the ith canonical basis vector
in Euclidean space (the vector with all the entries equal to 0
but the ith equal to 1).

B. Online Compressed Robust PCA

We focus on solving the problem of RPCA in the com-
pressed domain. The compression operator A is known and
only the compressed data is observed. Formally, the optimiza-
tion problem we are going to solve is:

min
L,E

1

2
‖Y −A(L+ E)‖2F + λ1‖L‖∗ + λ2‖E‖1, (1)

with λ1 and λ2 be two pre-defined trade-off parameters. We
will explain how to choose the values of λ1 and λ2 in the
experiments.

Most of existing works, such as SpaRCS [23], solve the
above compressed RPCA problem through explicit recovering
the raw high-dimensional data and then performing SVDs
on it, which restricts their scalability to big data. In this
work, we develop an online learning algorithm to solve the
above problem. Performing the online learning is not trivial
for the above optimization problem, as the involved nuclear
norm tightly couples the sampels together, so they cannot
be processed individually. Inspired by the recent work of

online RPCA [8], we propose a new algorithm that avoids this
problem by reformulating the above optimization problem in a
bilinear form, based on the property of nuclear norm: ‖L‖∗ =
minL=UV >

(
‖U‖2F + ‖V ‖2F

)
/2 [19]. Here U ∈ Rd×r and

V ∈ RT×r, and r is the rank of L. Then it is clear that the
optimization problem is equivalent to:

min
U,V,E

1

2
‖Y −A(UV > + E)‖2F +

λ1

2
(‖U‖2F + ‖V ‖2F)

+ λ2‖E‖1.

In order to simplify the optimization, we here introduce an
auxiliary variable X = UV > + E that serves as a surrogate
of the raw data. Then the above optimization problem can be
written as:

min
U,V,E

1

2
‖Y −A(X)‖2F +

λ1

2

(
‖U‖2F + ‖V ‖2F

)
+ λ2‖E‖1

+
λ3

2
‖X‖2F

s.t. X = UV > + E.
(2)

Here the extra regularization term λ3

2 ‖X‖
2
F is used to prevent

the magnitude of raw data from being arbitrarily large. Note
that the re-formulated optimization problem is actually non-
convex as there is a bilinear term of UV >. Fortunately,
we can provide a performance guarantee that our algorithm
can successfully solve the above non-convex problem and
asymptotically recover the low-rank and sparse components
from the compressed data. Details of the proof are provided
in Section III of Proof.

We now proceed to explain the details of our proposed
OCRPCA algorithm. The algorithm actually solves an equiv-
alent optimization problem with penalty as follows:

L(U, V,E,X) =
1

2
‖Y −A(X)‖2F +

λ1

2

(
‖U‖2F + ‖V ‖2F

)
+ λ2‖E‖1 +

µ

2
‖X − UV > − E‖2F +

λ3

2
‖X‖2F .

(3)
Compared with the objective function in (2), it has an ad-
ditional penalty term: µ

2 ‖X − UV
> − E‖2F , where µ is the

penalty parameter.
Let Y = [y1, y2, ..., yT], X = [x1, x2, ..., xT], V > =

[v1, v2, ..., vT] and E = [e1, e2, ..., eT], then the loss function
in the above problem can be written as L(U, V,E,X) =∑T
i=1 h(yi, U, vi, ei, xi) + λ1

2 ‖U‖
2
F , where:

h(yi, U, vi, ei, xi) =
1

2
‖yi −A(xi)‖22 +

λ1

2
‖vi‖22

+ λ2‖ei‖1 +
λ3

2
‖xi‖22 +

µ

2
‖xi − Uvi − ei‖22.

Then, vi can be updated by solving the following quadratic
programming problem:

vi = arg min
vi

µ

2
‖xi − Uvi − ei‖22 +

λ1

2
‖vi‖22

= (λ1I + µU>U)−1U>(µxi − µei),
(4)

and ei can be updated by solving the following Lasso type
problem:

ei = arg min
ei

µ

2
‖xi−Uvi−ei‖22 +λ2‖ei‖1 = S 2λ2

µ
(xi−Uvi).

(5)
Here Sα(x) is a shrinkage operator over x with a parameter
α : Sα(x) , sgn(x)�max{|x| − α, 0}.

Since A is a linear operator, xi can be updated by solving
a quadratic programming problem:

xi = arg min
xi
‖A(xi)− yi‖22 +

µ

2
‖xi−Uvi− ei‖22 +

λ3

2
‖xi‖22

(6)
The update of U is quite different from that of vi, ei, xi. U
is the basis matrix which needs to be updated according to
the sequential data and we need to minimize the following
empirical cost function.

fT (U) =
1

T

T∑
i=1

l(yi, U) +
λ1

2T
‖U‖2F , (7)

where the loss function for each sample is:

l(yi, U) = min
v,e,x

h(yi, U, v, e, x). (8)

In the stochastic optimization, one is usually interested in the
minimization of the expected loss of the overall samples [15].

f(U) = Ex[l(y, U)] = Ey[(l(y, U)] = lim
T→∞

fT (U), (9)

where the first equation is based on the fact that y is deter-
ministically dependent on x via y = A(x).

We develop our OCRPCA method based on the above
analysis. The basic idea is to develop a stochastic optimization
algorithm to minimize the empirical cost function (7) for
streaming data. The coefficients vi, ei, xi are alternatively
optimized according to Equations (4), (5) and (6) respectively.
At the t-th time instance, we use the previously estimated
coefficients {vi}ti=1, sparse noise {ei}ti=1 and recovered high-
dimensional data {xi}ti=1 to establish a surrogate cost function
and then minimize it to calculate the basis Ut. The surrogate
loss function we are going to work with is defined as:

gt(U) ,
1

t

t∑
i=1

h(yi, U, vi, ei, xi) +
λ1

2t
‖U‖2F . (10)

It is easy to verify that this function renders an upper bound
for ft(U): gt(U) ≥ ft(U).

Combining the above optimization steps gives our proposed
OCRPCA algorithm, with details provided in Algorithm 1.
Here we consider the linear compression operator A, and
thus xi is updated via a simple quadratic programming. To
improve the convergence, we update U by adopting the block-
coordinate descent with warm restarts [1]. It is described in
Algorithm 2.

Algorithm 1: Online Compressed Robust PCA (OCR-
PCA)

Input : [y1, y2, ..., yT] (a sequence of observed data), A,A>
(the compression operator and its inverse operator),
λ1, λ2, µ ∈ R (regularization parameters)

Initialize: U0 is a random matrix ;
for i = 1 to T do

initialize vi = 0, ei = 0, xi = A(yi) ;
while not converge do

vi ← (λ1I + µU>i−1Ui−1)
−1U>i−1(µxi − µei) ;

ei ← S 2λ2
µ

(xi − Ui−1vi) ;

xi ← argminxi
1
2
‖A(xi)− yi‖2F + µ

2
‖xi − Ui−1vi −

ei‖2F + λ3
2
‖xi‖22;

end
Ai ← Ai−1 + (µxi − µei)v>i ;
Bi ← Bi−1 + µviv

>
i ;

Compute Ui with Ui−1 as warm restart using Algorithm 2 ;
end
Output: U, V,E

Algorithm 2: The Basis Update
Input : U = [u1, u2, ..., ur] ∈ Rp×r, A = [a1, a2, ..., ar] ∈

Rp×r, B = [b1, b2, ..., br] ∈ Rr×r
B̃ = B + λ1I;
for j = 1 to r do

uj ← 1

B̃j,j
(aj − Ub̃j) + uj ;

end

C. Performance Guarantees

In this work, we propose deep analysis on the solution
presented in Algorithm 1, and provide a guarantee in the
following theorem that the final solution will converge to the
optimum of the batch problem.

min
L,E

1

2
‖Y −A(X)‖2F +

λ1

2
‖L‖2F + λ2‖E‖1 +

λ3

2
‖X‖2F

s.t. X = L+ E.

Theorem 1 (convergence guarantee). Assume the magnitudes
of observations are always upper bounded and the compres-
sion operator A is a linear operator. Suppose the rank of
the optimal solution U of the problem in (9) is r, and the
solution Ut ∈ Rp×r provided by Algorithm 1 is full rank, then
Ut converges to the optimal solution of (9) asymptotically as
t→∞.

Applying the above convergence result, along with the
recovery condition for batch algorithm in [25], guarantees
that OCRPCA can recover the low-rank components from
compressed data with a high probability.

Theorem 2 (main result). Let X = L0 + E0 ∈ Rd×T , with
d ≥ T , and suppose that L0 6= 0, with a rank r, which is a
µ-incoherent matrix with

r ≤ crT

µ log2 d
,

and sgn(E0) is iid Bernoulli-Rademacher with nonzero prob-
ability ρ < ce. Let Q ⊂ Rd×T be a random subspace of
dimension

dim(Q) ≥ Cd · (ρdT + dr) · log2 d

distributed according to the Haar measure [10], probabilis-
tically independent of sgn(E0). Then with probability at
least 1− Cd−9 in (sign(E0), Q), the asymptotic solution by
OCRPCA with λ = 1/

√
d is unique, and equal to L0. Above,

cr, ce, Cd and C are positive constants.

III. PROOF

In this section, we provide the proof of our main result in
Theorem 2.

The compression operator A used in our algorithm is
linear operator, so we write A(X) as AX in this section for
notational convenience. Here A is the corresponding projection
matrix of the compression operator A.

The proof of Theorem 1 proceeds in the following four
steps: (I) we first prove the surrogate function gt(U) converges
almost surely; (II) we then prove the solution difference
behaves as ‖Ut − Ut−1‖F = O(1/t); (III) based on (II) we
show f(Ut) − gt(Ut) → 0 almost surely, and the gradient of
f becomes zero at solution Ut when t → ∞; (IV) finally
we prove that Ut asymptotically converges to the optimum
solution of (9), which recovers the ground truth with high
probability under mild conditions.

Lemma 1. Assume A is the linear compression matrix. v∗ ∈
Rr, e∗ ∈ Rd and x∗ ∈ Rd is a solution of (8) if and only if

x∗ = (A>A+Q+ λ3I)−1(A>y +Qe∗)

v∗ = PU>((A>A+Q)−1(A>y +Qe∗)− e∗)
CΛe

∗
Λ + bΛ = λ2sign(e∗Λ)

CΛce
∗
Λc + bΛc ≤ λ2

where P = (U>U + λ1/µI)−1, Q = (1/µI + 1/λ1UU
T)−1,

C = ((A>A + Q)−1Q − I)Q b = µ(A>A + Q)−1A>y −
µUPU>(A>A+Q)−1A>y, u ∈ ∂‖e∗‖1, and CΛ denotes the
elements of matrix C indexed by Λ × Λ,Λ = {j|e∗[j] 6= 0}.
Moreover, the optimal solution is unique.

The proof of Lemma 1 is quite straightforward. We first
calculate the partial derivative of the objective function (8) and
then the first order optimal condition on the objective function
is applied. In addition the uniqueness of the optimal solution,
as guaranteed in Lemma 1, offers the following theorems and
lemmas.

Lemma 2. Assume the observation y always has upper
bounded magnitude and A is a linear compression operator.
Define

{v∗, e∗, x∗} = arg min
v,e,x

1

2
‖y −Ax‖2F +

λ1

2
‖v‖2F + λ2‖e‖1

+
µ

2
‖x− Uv − e‖2F +

λ3

2
‖x‖22.

Then, we have 1) the function defined in (8) is continuously
differentiable and

∇U l(y, U) = µ(Uv∗ + e∗ − x∗)v∗>

2) ∇f(U) = Ey[∇U l(y, U)]; 3) ∇f(U) is Lipschitz.

Proof. The function h(y, U, v, x, e) is continues, and for all
v ∈ Rr, x ∈ Rd, e ∈ Rd, the function h(., ., v, x, e) is dif-
ferentiable, and the derivative ∇Uh(., ., v, x, e) is continuous.
According to Lemma 1, h(., ., v, x, e) has unique minimizer
(v∗, e∗, x∗). We directly apply Lemma 2 and obtain that
l(y, U) is differentiable in U and

∇U l(y, U) = ∇Uh(y, U, v∗, x∗, e∗) = µ(Uv∗ + e∗ − x∗)v∗>.

Proof of the second claim

According to the first claim, function l(y, U) is continuously
differentiable, thus

∇Uf(U) = ∇UEy[l(y, U)] = Ey[∇U l(y, U)]

Proof of the third claim

To prove ∇f(U) is Lipschitz, we will show that for all
bounded observations y, v∗(y, .), x∗(y, .) and e∗(y, .) are
Lipschitz with constants independent of y. The loss function
l(y, U) is continues in y, U, v, e, x and according to Lemma 1
, for fixed y and U , it has a unique minimum, so the optimal
solutions v∗, e∗, x∗ are continuous in U and y.

Consider a matrix U and a sample y, the corresponding
optimal solutions are v∗, x∗, e∗. Assume C and b are defined
as those of Lemma 1, and Λ is the set of the indices such that
|CΛeΛ + bΛ| = λ1. Since CΛ is nonsingular, CΛeΛ + bΛ is
continuous in U, y. We consider a small perturbation of (y, U)
in their open neighbourhood V , where for all (y′, U ′) ∈ V ,
we have if j /∈ Λ, |C ′j(y′[j] − e∗

′[j])| < λ1 and e∗[j] = 0.
Thus the support set of e∗ will not change in set V . Moreover,
v∗, e∗, x∗ are continuous in the set V .

We consider the function h(y, U, v, x, e). The Hessian ma-
trix of the function h(y, U, ., ., .) w.r.t. x is A>A+ µI + λ3I
, the Hessian matrix of the function h(y, U, ., ., .) w.r.t. v is
L>L + λ1I , the Hessian matrix of the function h(y, U, ., ., .)
w.r.t. e is I . So all these Hessian matrices are positive definite.
We have the function h(y, U, ., ., .) is strictly convex and

h(y, U, v∗′, x∗′, e∗′)− h(y, U, v∗, x∗, e∗)

≥ λ1‖v∗′ − v∗‖22 + λ3‖x∗′ − x∗‖22 + ‖e∗′ − e∗‖
≥ min(λ1, λ3, 1)(‖v∗′ − v∗‖22 + ‖x∗′ − x∗‖22 + ‖e∗′ − e∗‖),

(11)
We then show the function h(y, U, ., ., .) − h(y′, U ′, ., ., .)

is Lipschitz continuous. Define a matrix H = [I,−U,−I],
a vector d = [x; v>; e]. Assume matrix A is the projection

matrix of compression operator A. The difference of these
two functions is

(h(y, U, v, x, e)− h(y′, U ′, v, x, e))

− (h(y, U, v′, x′, e′)− h(y′, U ′, v′, x′, e′))

=
µ

2
(‖Hd‖22 − ‖H ′d‖22)− µ

2
(‖Hd′‖22 − ‖H ′d′‖22)

+
1

2
(‖y −Ax‖22 − ‖y′ −Ax‖22)

− 1

2
(‖y −Ax′‖22 − ‖y′ −Ax′‖22)

It is easy to show that the function ‖Hd‖22 − ‖H ′d‖2F is
Lipschitz with constant as c1‖H−H ′‖2, where c1 is a constant
independent of H,H ′. It is not difficult to show function ‖y−
Ax‖22−‖y′−Ax‖22 is also Lipschitz with constant as c2‖y−
y′‖2, where c2 is a constant independent of y, y′. Thus we
have,

(h(y, U, v, x, e)− h(y′, U ′, v, x, e))

− (h(y, U, v′, x′, e′)− h(y′, U ′, v′, x′, e′))

≤ c1‖H −H ′‖2‖d− d′‖2 + c2‖y − y′‖2‖x− x′‖2
≤ (c1‖U − U ′‖F + c2‖y − y′‖2)

∗ (‖x− x′‖2 + ‖v − v′‖2 + ‖e− e′‖2)

Then according to the (11) of this section, and considering
(v∗′, e∗′, x∗′) minimizes h(y′, U ′, ., ., .), we have

min(λ1, λ3, 1)(‖v∗′ − v∗‖22 + ‖x∗′ − x∗‖22 + ‖e∗′ − e∗‖22)

≤ h(y, U, v∗′, x∗′, e∗′)− h(y, U, v∗, x∗, e∗)

≤ h(y, U, v∗′, x∗′, e∗′)− h(y′, U ′, v∗′, x∗′, e∗′)

+ h(y′, U ′, v∗, x∗, e∗)− h(y, U, v∗, x∗, e∗)

≤ (c1‖U − U ′‖F + c2‖y − y′‖2)

∗ (‖v∗′ − v∗‖2 + ‖x∗′ − x∗‖2 + ‖e∗′ − e∗‖2)

So we have

(‖v∗′ − v∗‖2 + ‖x∗′ − x∗‖2 + ‖e∗′ − e∗‖2)

≤ 1

min(λ1, λ3, 1)
(c1‖U − U ′‖F + c2‖y − y′‖2)

Combining the second claim, we can conclude the third
claim. The proof of the convergence of f can be derived from
Lemma 2.

Theorem 3 (convergence of the surrogate function gt). Let gt
denote the surrogate function defined in (10). Then, gt(Ut)
converges almost surely when the solution Ut is given by
Algorithm 1.

The convergence of the surrogate function gt provides a
guarantee for the convergence of the function f .

Theorem 4 (difference of the solution Ut). For the two
successive solutions obtained from the Algorithm 1, we have

‖Ut+1 − Ut‖F = O(1/t)

Theorem 4 actually provides a guarantee of the convergence
of Ut. Since the purpose of our algorithm is to recover the
basis matrix U from the compressed data.

Theorem 5 (convergence of f). Let gt denote the surrogate
function defined in (10). Then, 1) f(Ut) − gt(Ut) converges
almost surely to 0; and 2) f(Ut) converges almost surely, when
the solution Ut is given by Algorithm 1.

The convergence of f is proved by first showing gt(Ut)
converges to f(Ut) as t → ∞, then combining Theorem 3
and 4 gives Theorem 5.

Theorem 6. The first order optimal condition for minimizing
the objective function in (9) is satisfied by Ut, the solution
provided by Algorithm 1, when t tends to infinity.

According to Theorem 6, the U∞ obtained form Algorithm
1 satisfies the first order optimality condition for minimizing
the expected cost f(U). Our OCRPCA algorithm can calculate
a solution that converges to a stationary point of the expected
loss (9). Until now we finish the convergence analysis of our
algorithm.

Details of the proofs for Theorem 3, Theorem 4, Theorem
5 and Theorem 6 can be found in [8].

Theorem 7. When solution U satisfies the first order condition
for minimizing the objective function in (9), the obtained
solution U is the optimal solution of the problem (9) if U
is full rank.

Proof. The minimizer of the objective function in (9) is

min
U

lim
T→∞

1

T

T∑
i=1

l(yi, U)

which is equivalent to

min
X,U,V,E

1

2
‖Y −AX‖2F +

λ1

2
(‖U‖2F + ‖V ‖2F) + λ2‖E‖1

+
λ3

2
‖X‖2F +

µ

2
‖X − UV > − E‖2F .

(12)
Where Y = [y1, y2, ..., yT], X = [x1, x2, ..., xT], E =
[e1, e2, ..., eT], V > = [v>1 , v

>
2 , ..., v

>
T].

We can calculate the following equations

(A>A+ µI + λ3I)X − µUV > − µE = 0 (13)
µ(V U> − Z>)U + λ1V = 0 (14)
µ(UV > − Z)V + λ1U = 0 (15)
µ(UV > − Z) ∈ λ2∂‖E‖1 (16)

Here Z = X − E. Note that for any invertible matrix Q,
the pair (UQ, V Q−1>) provides a factorization equivalent
to (U, V). According to [21] any solution (U, V) can be
orthogonalized to an equivalent orthogonal solution Ū =

UQ, V̄ = V Q−1> such that Ū>Ū = ΛU and V̄ >V̄ = ΛV
are diagonal matrices. When we replace U, V by Ū , V̄ in (14)
and (15), it is easy to find that ΛU = ΛV = Λ.

Since orthogonalization operation is always performed on
our algorithm, we focus on the orthogonal solution, where
U>U = Λ ∈ Rr×r and V >V = Λ ∈ Rr×r. Since U and
R are full rank, the elements in the diagonal of matrix Λ are
non-zero.

From (15) we can obtain

U = ZV (V >V +
λ1

µ
I)−1 = ZV (Λ +

λ1

µ
I)−1 (17)

Substituting back into (14), we have

V Λ− Z>U +
λ1

µ
V = 0

Then,

V Λ− Z>ZV (Λ +
λ1

µ
I)−1 +

λ1

µ
V = 0

V (Λ +
λ1

µ
I)2 = Z>ZV. (18)

Define V ′ = V (
√

Λ)−1, then we have V ′
>
V ′ =

(
√

Λ)−1V >V (
√

Λ)−1 = I . Namely, the matrix V ′ is an
orthogonal matrix. From the above equation, we conclude that

V ′
√

Λ(Λ +
λ1

µ
I)2 = Z>ZV ′

√
Λ

V ′(Λ +
λ1

µ
I)2 = Z>ZV ′

Therefore, the columns of the matrix V ′ are the eigenvectors
of the matrix Z>Z. Thus the columns of the matrix V are the
eigenvectors of the matrix Z>Z scaled by the square root of
the matrix Λ. And the eigenvalues of the matrix Z>Z are the
elements in the diagonal of matrix (Λ + λ1I)2.

From (17) we have

ZZ>U = ZZ>ZV (Λ +
λ1

µ
I)−1 (18)

= ZV (Λ +
λ1

µ
I)

(17)
=

U(Λ +
λ1

µ
I)2.

Thus similar to V , the columns of matrix U correspond to
the eigenvector of the matrix ZZ> scaled by the square root
of the matrix Λ.

Performing SVD on the matrix Z provides Z = PΣD> =
P1Σ1D

>
1 +P2Σ2D

>
2 . Here P>1 P2 = 0, D>1 D2 = 0 and Σ1 ∈

Rr×r, Σ2 ∈ R(n−r)×(n−r).
From the above results, we can obtain U = P1

√
Λ and

V = D1

√
Λ.

Z>Z = DΣ2D>.

Thus, we have

Σ1 = Λ +
λ1

µ
I.

Since matrix U is full rank, U>U = Λ is positive definite.
Thus Σ1 � λ1

µ I .
The obtained solution L = UV > = P1ΛD>1 = P1(Σ1 −

λ1

µ I)D>1 . We can obtain that

Z − L = PΣD> − P1(Σ1 −
λ1

µ
I)D>1

=
λ1

µ
P1D

>
1 + P2Σ2D

>
2 =

λ1

µ
(U1V

>
1 +W),

where W = µ
λ1
P2Σ2D

>
2 .

Thus it is easy to verify that

Z − L = X − E − L ∈ λ1

µ
∂‖L‖∗

=

{
λ1

µ
(P1D

>
1 +W)|P>1 W = 0,WD1 = 0, ‖W‖2 ≤ 1

}
.

(19)
The problem in (12) is equivalent to the following convex

optimization problem

min
X,L,E

1

2
‖Y −AX‖2F +

λ1

2
‖L‖2F +

λ3

2
‖X‖2F + λ2‖E‖1

+
µ

2
‖X − L− E‖2F

The first order optimal condition is satisfied by the obtained
solution shown in (13), (16) and (19). Since the problem
is convex, we can conclude that the solution is also global
optimal.

The results of Theorem 2 are directly implied from apply-
ing Theorem 2.1 of [25] with the convergence guarantee in
Theorem 7.

IV. SIMULATIONS

We devote this section to simulation evaluation of the
proposed OCRPCA algorithm on the synthetic data.

For benchmarking the performance of OCRPCA, we de-
velop a batch counterpart of online compressed robust PCA
by applying the ADM technique [26] to solve the problem
(2). Here, instead of directly solving the complex optimization
problem: minU,V,E,X L(U, V,E,X, β), ADM separates the
problem into four subproblems and solves them alternatively.
Details of the batch compressed robust PCA algorithm are
given in Algorithm 3.

Algorithm 3: Batch Compressed Robust PCA
Input : Y (the observed data matrix), A,A> (the compressed

operator and its inverse operator), λ1, λ2, µ ∈ R
(regularization parameters)

Initialize: U0 is a random matrix, E0 = 0, V0 = 0, β0 = 0,
X0 = A(Y);
for i = 0, 1, 2, ... do

Vi+1 ← Vi, Ei+1 ← Ei, Xi+1 ← Xi;
while not converge do

Vi+1 ← (µX>i+1−µE>i+1−β>i)U(λ1I +µU>i Ui)
−1 ;

Ei+1 ← S 2λ2
µ

(Xi+1 − UiV >i+1 − βi/µ) ;

Xi+1 ← argminXi+1
1
2
‖A(Xi+1)− Y ‖2F +

µ
2
‖Xi+1 − (βi/µ+ UiV

>
i+1 + Ei+1)

2
F + λ3

2
‖Xi+1‖2F ;

end
βi+1 ← βi − µk(Xi+1 − UiV >i+1 − Ei+1);
Ui+1 ← (µXi+1−µEi+1−βi+1)Vi+1(λ1I+V

>
i+1Vi+1)

−1

;
end
Output: U, V,E

We follow the data generation scheme of PCP as in [3] to
generate our synthetic dataset. We first generate a low-rank
matrix L as a product of U and V , which is L = UV >. Here
the sizes of U and V are d × r and T × r respectively. r

(a) (b)

(c) (d)

Fig. 1: (a) convergence curves of OCRPCA with different batch
sizes. (b) convergence curve of the proposed OCRPCA. (c) and (d)
show the performance of subspace recovering under different com-
pression ratio s (vertical axis) and low-rank matrix rank (horizontal
axis). (c) the result of batch compressed RPCA algorithm and (d)
the result of OCRPCA. Brighter color means smaller subspace angle
between the recovered one and the groundtruth.

is the intrinsic rank of the low-rank data matrix L, d is the
dimension of each sample and T is the number of samples. U
is the basis of the subspace spanned by the columns of L. The
elements of both U and V are i.i.d. sampled from a normal
distribution N (0, 1/T). The raw data before compression is
then generated by X = L + E, where E is a sparse noise
matrix with a ρs fraction of non-zero element. The non-zero
elements in E is uniformly distributed over the interval of
[−10, 10]. The observed compressed data is Y = A(X), where
the compression operator A is the permuted noiselets proposed
in [5]. A nice property of this compression operator is that
we do not need to store any projection matrix explicitly. The
compression operation is implemented by C++ to reduce both
time and memory cost.

The performance is evaluated by the principal subspace
angle θ [24] between the subspace recovered by Algorithm
1 and the groundtruth. More concretely, let UT be the output
basis by OCRPCA, and U be the basis of the groundtruth
subspace. Then the subspace angle θ is calculated as

θ = arcsin(min{1, ‖UT − U(U>UT)‖F }).

Smaller subspace angle indicates better recovery of the sub-
space. If the matrices UT and U are not orthogonal ones,
we first calculate the orthonormal basis of their range space
through SVD, and then use the corresponding basis to calcu-
late the subspace angle.

In the experiments, we empirically found that the conver-
gence rate of Algorithm 1 was slow when it was only allowed
to access one sample at each time instance. This is because

a single sample carries very limited information when the
compression ratio s is small. Thus, we improve Algorithm
1 by allowing it to process a mini-batch of samples at each
time instance. The size of mini-batch n is controlled to be
small and thus the extra memory cost is also light. The results
in Figure 1a demonstrate the relationship between the size of
mini-batch and the convergence rate of Algorithm 1. In the
experiments, we use grid search to tune the parameters λ1,
λ2 and λ3. The results are obtained in the following settings:
d = 2048, r = 2, ρs = 0.01, s = 0.3. The parameter λ3 is
fixed to be a small value 1× 10−3. The same experiments are
performed for five times and the average is taken. We report
corresponding subspace angles produced by OCRPCA with
different mini-batch sizes when they see the same number of
samples. The results demonstrate that slightly increasing the
batch size from 1 to 4 significantly improves the convergence
rate. For example, there is a large performance difference
(around 0.8) after the algorithms see 5000 samples. Note that
these empirical results on dependence of convergence rate
on batch size do not conflict with our theoretical results in
Theorem 2, as the theoretical guarantees hold for asymptotic
cases.

Figure 1b illustrates how the performance of OCRPCA con-
verges to the one of its batch counterpart when OCRPCA visits
increasing number of mini-batches of very high-dimensional
samples under the following setting: n = 32, d = 2048,
T = 1024, s = 0.3, r = 2, ρs = 0.01. Here, we set the
trade-off parameter of OCRPCA as: λ1 = 10, λ2 = 0.01,
µ = 1. We allow OCRPCA to revisit mini-batches to avoid
introducing new samples. We run the batch algorithm on the
same dataset as baseline with following parameter setting:
λ1 = 0.1, λ2 = 0.01, µ = 1. The result of the batch algorithm
is plotted as the blue curve in Figure 1b. As another baseline,
we also apply SpaRCS proposed in [23] on the same dataset.
The final result is plotted as the red curve in the Figure 1b.
We observe that along with OCRPCA visiting more mini-
batches, the subspace angle smoothly decreases. This verifies
the convergence of OCRPCA. On this dataset, both batch
compressed RPCA and SpaRCS can correctly recover the
subspace (the subspace angle is less than 0.1), while the
subspace angle of the proposed OCRPCA gets really close
to 0.1 after dealing with 1000 batches.

We also plot the averaged subspace angle of batch com-
pressed RPCA and OCRPCA under different settings in a
matrix form in Figure 1c and Figure 1d. All the results in
Figure 1c and Figure 1d are produced under the following
setting: d = 256, T = 1024, n = 32(n is set as a trade-off
between the performance and overall convergence). Since there
are only 1024 samples that are not sufficient for OCRPCA
to converge, OCRPCA goes over all the mini-batches for 10
times without requiring new samples. This is also a common
practice for implementing online learning algorithms. The
fraction of non-zero elements in E is set as ρs = 0.01; the
intrinsic rank r of the low-rank component varies from 3 to
60; the compression ratio s varies from very small 0.015 (a
quite difficult case) to relatively large 0.3 (easier case). All the

results in Figure 1c and Figure 1d are generated by averaging
the results from implementing the algorithms for 5 times.

The results demonstrate that under relatively low intrinsic
rank (e.g., r ≤ 12) and large compression ratio (e.g., s ≥ 0.1),
OCRPCA can almost correctly recover the subspace (the
subspace angle less than 0.1). From the plots, we can also
observe that the performance of OCRPCA is very close to its
batch counterpart. This verifies the guarantee in Theorem 2
that the performance of OCRPCA can converge to the one of
the batch method, and both OCRPCA and batch method can
provide estimates close to groundtruth under mild conditions.
In some difficult settings for signal recovery (the very bottom
of Figure 1c and Figure 1d, which means the compression ratio
is very small), both the online algorithm and batch algorithm
cannot correctly recover the subspace. The reason is that
when the compression ratio is small, the observed compressed
data cannot provide sufficient information due to the huge
information loss.

We compare the efficiency of SpaRCS, batch compressed
RPCA and OCRPCA in Table I. SpaRCS, PCP and batch
compressed RPCA all have an O(dT) factor in space cost.
The dependency on T prevents them from dealing with big
data. In contrast, OCRPCA only has a space complexity of
O(dr + dn + r2) where r � T, n � T . Thus OCRPCA has
the desired small space complexity to deal with big data.

TABLE I: The space complexity of SpaRCS, PCP, batch compressed
RPCA and the proposed OCRPCA.

Algorithm Space complexity
SpaRCS O(ρsdT + dT + dr + Tr)
PCP O(dT)
Batch compressed RPCA O(dT + dr + Tr)
OCRPCA O(dr + dn+ r2)

V. CONCLUSION

In this work, we developed an online compressed robust
principal component analysis method that processed com-
pressed big data directly. Different from former batch algo-
rithms that need to record all the data, the proposed OCRPCA
algorithm only needs to record a small batch (or even a single
one) of the input sequential samples. Thus OCRPCA reduces
the computation cost significantly and is very promising for
dealing with big or dynamic data. Though we need to solve
a non-convex optimization problem in OCRPCA, we provides
an asymptotic guarantee – with a large probability, OCRPCA
can successfully find the global optimum under mild condi-
tions.

VI. ACKNOWLEDGEMENT

This work was in part supported by the Data to Decisions
Cooperative Research Centre www.d2dcrc.com.

REFERENCES

[1] D. P. Bertsekas. Nonlinear programming. 1999.
[2] N. A. Campbell. Robust procedures in multivariate analysis i: Robust

covariance estimation. Applied statistics, pages 231–237, 1980.
[3] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component

analysis? Journal of the ACM (JACM), 58(3):11, 2011.

[4] X. Chang, F. Nie, Y. Yang, and H. Huang. A convex sparse PCA for
feature analysis. ACM Transactions on Knowledge Discovery from Data,
2016.

[5] R. Coifman, F. Geshwind, and Y. Meyer. Noiselets. Applied and
Computational Harmonic Analysis, 10(1):27–44, 2001.

[6] F. De La Torre and M. J. Black. A framework for robust subspace
learning. International Journal of Computer Vision, 54(1-3):117–142,
2003.

[7] D. Feldman, M. Monemizadeh, C. Sohler, and D. P. Woodruff. Coresets
and sketches for high dimensional subspace approximation problems.
In Proceedings of the twenty-first annual ACM-SIAM symposium on
Discrete Algorithms, pages 630–649. Society for Industrial and Applied
Mathematics, 2010.

[8] J. Feng, H. Xu, and S. Yan. Online robust pca via stochastic optimiza-
tion. In Advances in Neural Information Processing Systems, pages
404–412, 2013.

[9] H. Guo, C. Qiu, and N. Vaswani. An online algorithm for separating
sparse and low-dimensional signal sequences from their sum. 2014.

[10] A. Haar. Der massbegriff in der theorie der kontinuierlichen gruppen.
Annals of mathematics, pages 147–169, 1933.

[11] K. Lee and Y. Bresler. Admira: Atomic decomposition for mini-
mum rank approximation. Information Theory, IEEE Transactions on,
56(9):4402–4416, 2010.

[12] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert.
Randomized algorithms for the low-rank approximation of matrices.
Proceedings of the National Academy of Sciences, 104(51):20167–
20172, 2007.

[13] B. Lois and N. Vaswani. Online matrix completion and online robust
pca. arXiv preprint arXiv:1503.03525, 2015.

[14] M. Luo, F. Nie, X. Chang, Y. Yang, A. Hauptmann, and Q. Zheng.
Avoiding optimal mean robust pca/2dpca with non-greedy l1-norm max-
imization. In International Joint Conference on Artificial Intelligence,
2016.

[15] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix
factorization and sparse coding. The Journal of Machine Learning
Research, 11:19–60, 2010.

[16] D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from in-
complete and inaccurate samples. Applied and Computational Harmonic
Analysis, 26(3):301–321, 2009.

[17] F. Nie, H. Huang, C. Ding, D. Luo, and H. Wang. Robust principal
component analysis with non-greedy l1-norm maximization. In Interna-
tional Joint Conference on Artificial Intelligence, volume 22, page 1433.
Citeseer, 2011.

[18] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. Rasl: Robust
alignment by sparse and low-rank decomposition for linearly correlated
images. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 34(11):2233–2246, 2012.

[19] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization.
SIAM review, 52(3):471–501, 2010.

[20] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for
principal component analysis. SIAM Journal on Matrix Analysis and
Applications, 31(3):1100–1124, 2009.

[21] N. Srebro, T. Jaakkola, et al. Weighted low-rank approximations. In
International Conference on Machine Learning, volume 3, pages 720–
727, 2003.

[22] S. Wang, D. Liu, and Z. Zhang. Nonconvex relaxation approaches to
robust matrix recovery. In Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence, pages 1764–1770. AAAI
Press, 2013.

[23] A. E. Waters, A. C. Sankaranarayanan, and R. Baraniuk. Sparcs: Recov-
ering low-rank and sparse matrices from compressive measurements. In
Advances in neural information processing systems, pages 1089–1097,
2011.

[24] P. Å. Wedin. On angles between subspaces of a finite dimensional inner
product space. In Matrix Pencils, pages 263–285. Springer, 1983.

[25] J. Wright, A. Ganesh, K. Min, and Y. Ma. Compressive principal
component pursuit. Information and Inference, 2(1):32–68, 2013.

[26] X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via
alternating direction methods. preprint, 2009.

[27] H. Zhang, Z. Lin, C. Zhang, and E. Y. Chang. Exact recoverability of
robust pca via outlier pursuit with tight recovery bounds. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

[28] Z. Zhang, Y. Matsushita, and Y. Ma. Camera calibration with lens
distortion from low-rank textures. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 2321–2328.
IEEE, 2011.

