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ABSTRACT: Recent experimental studies demonstrate that temperature changes may significantly influence the deformation of 
unsaturated soils. Thus, there is an essential need to develop a predictive framework for the unsaturated consolidation capturing non-
isothermal effects. This paper introduces analytical solutions to predict the one-dimensional (1D) consolidation of unsaturated soil 
deposit while incorporating the time-dependent exponential temperature variation. The one-way drainage boundary system and the 
uniform initial condition are adopted for the mathematical derivation. In this study, governing equations under the non-isothermal 
condition are first obtained. Then, Fourier sine series and the Laplace transform technique are used to solve these governing equations 
and obtain the final solutions. This study highlights the combined effects of time-dependent exponential temperature and an external 
step loading on the excess pore pressures at various depths. It is predicted that the effects of exponential temperature on the 
dissipation process would be much attenuated at a lower depth. 

RÉSUMÉ: Des études expérimentales récentes démontrent que les changements de température peuvent influencer de façon significative 
la déformation des sols non saturés. Il existe donc un besoin essentiel de développer un cadre prédictif pour la consolidation non saturée 
capturant des effets non isothermes. Cet article présente des solutions analytiques pour prédire la consolidation unidimensionnelle (1D) 
du dépôt de sol non saturé tout en incorporant la variation de température exponentielle dépendante du temps. Le système de limite de 
drainage unidirectionnel et l'état initial uniforme sont adoptés pour la dérivation mathématique. Dans cette étude, les équations 
gouvernantes sous l'état non isotherme sont d'abord obtenues. Ensuite, la série de Fourier sine et la technique de transformée de Laplace 
sont utilisées pour résoudre ces équations et obtenir les solutions finales. Cette étude met en évidence les effets combinés de la 
température exponentielle dépendant du temps et d'une charge de marche externe sur les pressions de pores en excès à diverses 
profondeurs. On prévoit que les effets de la température exponentielle sur le processus de dissipation seraient très atténués à une 
profondeur inférieure. 
KEYWORDS: 1D consolidation, unsaturated soil deposit, analytical solution, excess pore pressures, settlement. 

 
1. INTRODUCTION 

Consolidation of a natural soil deposit has been a primary 
geotechnical interest for several decades. This phenomenon 
involves the gradual dissipation of excess pore pressures from 
the void spaces due to an external applied load and eventually 
the soil volume would reduce considerably. Unsaturated soil 
foundation is mostly found in arid and semi-arid climatic 
regions, where attract large population and significant civil 
developments. It should be noted that a typical unsaturated soil 
mainly consists of soil skeleton (solid phase), water (liquid 
phase) and air (gaseous phase), thus, the compression process 
would involve simultaneous flows of pore-air and pore-water. 
The consolidation-related problems in unsaturated soils are 
usually considered to be nonlinear and require cumbersome 
evaluations to predict. Likewise, the inclusion of pore-air 
pressure has brought about a great challenge in estimating the 
consolidation due to complex stress state variables. These 
theoretical shortcomings result in a greater need for 
comprehensive models to evaluate the consolidation 
characteristics of an unsaturated soil deposit near the ground 
surface. 

Several profound studies on unsaturated consolidation 
problems were initiated in early 1960s (e.g. Scott 1963). The 
research of interest continued to grow progressively until it 
reached its culmination in late 1970s when Fredlund and Hasan 
(1979) introduced a set of nonlinear inhomogeneous partial 
differential equations (PDEs) for the 1D consolidation 
describing the coupled flows of air and water phases. 
Dakshanamurthy and Fredlund (1981) later developed the 
continuity equation of air flow by capturing the thermal 
gradients in an unsaturated soil element and finally obtained the 
modified 1D consolidation equations. This novel concept has 
rendered a new framework for unsaturated consolidation 
problems under the non-isothermal condition.  

The past two decades have witnessed notable investments on 
the consolidation theory of unsaturated soils. This has been 
evidenced by a significant increase in both analytical and 
numerical methods to predict the consolidation behaviour of 
unsaturated soils (Ho et al. 2015; Ho and Fatahi 2015; Ho and 
Fatahi 2016). Among original analytical research, Qin et al. 
(2008) adopted the Laplace transform and Cayley-Hamilton 
method to obtain a final solution while assuming all soil 
properties to be constant during the consolidation process. Shan 
et al. (2012) and Zhou et al. (2014), on the other hand, 
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 converted the inhomogeneous governing flow equations into the 
traditional homogeneous forms and then proposed solutions 
using the separation of variables technique. The above 
mentioned solutions and numerous others, however, only 
predict the consolidation behaviour under the isothermal 
condition. This theoretical drawback may reduce the reliability 
of models since the temperature change has been a crucial 
factor characterising the consolidation, in addition to the 
external loading (Alsherif and McCartney 2015). 

 In this paper, analytical solutions are presented to predict 
the 1D consolidation of unsaturated soil deposit induced by the 
time-dependent exponential temperature variation and an 
external step loading. The governing flow equations that 
capture the temperature change are adopted from 
Dakshanamurthy and Fredlund (1981). Fourier sine series and 
Laplace transformation techniques are employed to obtain final 
solutions. The combined effects of the exponential temperature 
and external step loading on the excess pore pressure 
dissipation rates and soil deformation will be discussed 
hereafter.  
 
2. ANALYTICAL SOLUTION 

Unsaturated soils are usually complex in nature and lack 
homogeneity in particle sizes, making it more difficult in 
predicting the consolidation characteristics. To achieve the 
closed-form analytical solution, some conventional assumptions 
are made as follows: 

 The soil stratum is homogeneous; 
 The soil skeleton and pore-water are incompressible; 
 The air and water flows are continuous and independent; 
 The air flow satisfies Fick’s law whereas the water flow 

follows Darcy’s law;  
 Air diffusion through water is neglected; 
 Soil deformation only occurs in the vertical direction (z-

direction); and 
 Soil properties (e.g. permeability coefficients, degree of 

consolidation, porosity etc.) and consolidation coefficients 
with respect to the air phase and water phase are assumed to 
be constant during the consolidation process. 

The assumption of constant soil properties during the 
consolidation may not be strictly accurate for some applications. 
Particularly, under an external load, degree of saturation and 
porosity would vary during consolidation while the 
permeability coefficients for air and water phases could be 
expressed as functions of degree of saturation. In many existing 
literature, these properties are assumed to remain unchanged 
throughout the consolidation to alleviate the difficulty in 
obtaining the final solution. Furthermore, it may be acceptable 
to assume the properties to be constant during a transient 
compression process for a particular stress range. 

2.1. Governing equations capturing non-isothermal condition 

Dakshanamurthy and Fredlund (1981) proposed a set of 
governing equations describing the coupled flows of pore-air 
and pore-water in an unsaturated soil element as follows:  
 ൜uୟ,୲ + 	 Cୟu୵,୲ + C஀Θ,୲ +	 c୴ୟuୟ,୸୸ = 	 0u୵,୲ + C୵uୟ,୲ + c୴୵u୵,୸୸ 	 = 0	 	 	 	 	 	 	 	    (1) 

 
where uୟ  and u୵  are the excess pore-air and pore-water 
pressures; uୟ,୲ and u୵,୲ are the first order of PDEs of excess 
pore-air and pore-water pressures with respect to time, 
respectively; uୟ,୸୸ and u୵,୸୸ are the second order of PDEs of 
excess pore-air and pore-water pressures with respect to depth, 
respectively; and Θ,୲is the first order of PDE of temperature. 

Additionally, the consolidation coefficients, as presented in Eq. 
1, are expressed as: 
 Cୟ = ଵ൤൬ౣభ౗ౣమ౗ିଵ൰ି ౤(భష౏౨)ౣమ౗൫౫౗బశ౫౗౪ౣ൯൨; C஀ = ଵ

஀బ൦ౣమ౗ቆౣభ౗ౣమ౗షభቇ౤(భష౏౨) ି భ౫౗బశ౫౗౪ౣ൪
; 

c୴ୟ = ୩౗ୖ஀బ୥୑ ଵ൤୫మ౗(୳౗బା୳౗౪ౣ)൬ౣభ౗ౣమ౗ିଵ൰ି୬(ଵିୗ౨)൨; C୵ = ቀ୫భ౭୫మ౭ − 1ቁ; and  c୴୵ = ଵ୫మ౭ ቀ୩౭ஓ౭ቁ. (2) 

 
where mଵୟ  and mଵ୵  are the coefficients of air and water 
volume change with respect to the change of net stress (kPaିଵ) , 
respectively; and mଶୟ and mଶ୵ are the coefficients of air and 
water volume change with respect to the change of suction 
( kPaିଵ ), respectively; kୟ  and k୵  are the permeability 
coefficients of air and water phases (m/s), respectively; g is 
the gravitational constant (9.81	 m/sଶ); uୟ଴ is the initial pore-
air pressure (kPa); uୟ୲୫ is the atmospheric pressure (kPa); R 
is the universal air constant (8.31	 J/(mol. K)); Θ଴ = θ° + 273, 
is the absolute temperature (K); θ° is the average temperature 
of the soil profile (25°C); M is the molecular mass of air (i.e. 0.03	 kg/mol ); n  is the porosity; S୰  is the degree of 
saturation; and γ୵ is the water unit weight (9.81	 kN/mଷ). 

2.2. Boundary and initial conditions   

Figure 1 illustrates a single soil stratum that consists of an 
infinite width and a measurable thickness, denoted H. Based on 
the conventional assumptions provided for the 1D consolidation 
theory, the air and water phases flow independently and 
continuously along the soil thickness. This study only considers 
the one-way drainage boundary system, in which the top 
surface of the soil stratum is permeable to air and water while 
the base is impermeable. The boundary condition can be 

mathematically presented as follows:  ൜uୟ(0, t) = u୵(0, t) = 0	 	 	uୟ,୸(H, t) = u୵,୸(H, t) = 0     (3) 

 
Assume that the instantaneous compression results in 

uniformly distributed excess pore-air and pore-water pressures 
along the domain z ∈ (0, H). Thus, the initial condition is: 
 ൜uୟ(z, 0) = uୟ଴	u୵(z, 0) = u୵଴ , z ∈ (0, H)   (4) 

 
where uୟ଴ and u୵଴  are initial excess pore-air and pore-water 
pressures. 

2.3. Excess pore pressures and consolidation settlement    

The general solutions for Eq. 1 can be obtained using Fourier 
sine functions as below:  
 

Figure 1. One-way drainage boundary system of unsaturated soil  

z
Permeable top surface:

Impermeable base:

Soil
element

Unsaturated soil deposit

H

(a)

u  (0,t) = u   (0,t) = 0a w

u    (H,t) = u     (H,t) = 0a,z w,z
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൜uୟ(z, t) = ∑ Tୟ(t)	 sin(μ୧z)ஶ୧ୀ଴ 	 	u୵(z, t) = ∑ T୵(t)	 sin(μ୧z)ஶ୧ୀ଴ 	    (5) 

Based on the boundary condition provided in Eq. 3, the 
eigenvalue μ୧ = (2i + 1)π/(2H)  ( i = 0, 1, 2, … ) is finally 
obtained. Also, the general thermal equation is introduced as 
functions of depth z and time t, giving:  
 Θ(z, t) = ∑ ϑ୧(t)	 sin(μ୧z)ஶ୧ୀ଴     (6) 
 
where	 ϑ୧(t) = ׬ Θ(z, t)sin(μ୧z)dzୌ଴ / ׬ sinଶ(μ୧z)dzୌ଴ . (7) 
 

Now, substituting Eqs. 5 – 7 into Eq. 1 would yield in: 
 ቊTୟ,୲(t) + CୟT୵,୲(t) + C஀ϑ,୲୧ − c୴ୟ(μ୧)ଶTୟ(t) = 0T୵,୲(t) + C୵Tୟ,୲(t) − c୴୵(μ୧)ଶT୵(t) = 0	 	 	 	 	  (8) 

 
Taking Laplace transform and then rearranging Eq. 8 would 

lead to the following matrix form: 
 T = +ۻ  (9)    ۼ

where T = ൜Tഥୟ(s)Tഥ୵(s)ൠ;  

ۻ  = ቐ୘౗(଴)(େ౭େ౗ିଵ)ୱାୡ౬౭ሾେ౗୘౭(଴)ା୘౗(଴)ሿ(ஜ౟)మ(େ౭େ౗ିଵ)ୱమା(ୡ౬౭ାୡ౬౗)(ஜ౟)మୱିୡ౬౭ୡ౬౗(ஜ౟)ర୘౭(଴)(େ౭େ౗ିଵ)ୱାୡ౬౗ሾେ౭୘౗(଴)ା୘౭(଴)ሿ(ஜ౟)మ(େ౭େ౗ିଵ)ୱమା(ୡ౬౭ାୡ౬౗)(ஜ౟)మୱିୡ౬౭ୡ౬౗	 (ஜ౟)ర ቑ; and 

ۼ  = ൞ େ౸ሾୱିୡ౬౭(୏)మሿൣୱ஬ഥ౟(ୱ)ି஬౟(଴)൧(େ౭େ౗ିଵ)ୱమା(ୡ౬౭ାୡ౬౗)(ஜ౟)మୱିୡ౬౭ୡ౬౗(ஜ౟)ర− େ౭େ౸ൣୱ஬ഥ౟(ୱ)ି஬౟(଴)൧ୱ(େ౭େ౗ିଵ)ୱమା(ୡ౬౭ାୡ౬౗)(ஜ౟)మୱିୡ౬౭ୡ౬౗(ஜ౟)రൢ. (10) 

 
where Tഥୟ(s) , Tഥ୵(s)  and ϑത୧(s)  ( i = 0, 1, 2, … ) are Laplace 
transformed functions with the subjugate variable s. Referring 
to the initial condition presented in Eq. 4, the terms Tୟ(0) and T୵(0) can be expressed using the orthogonality of Fourier sine 
series: 
 ቊTୟ(0) = ζiua0	T୵(0) = ζiuw0      (11) 

 
where ζ୧ = 2/(μ୧H). Besides, this study adopts the thermal 
equation that decreases linearly with depth and varies 
exponentially with time: 
 Θ(z, t) = 273 + ൣθ° + A൫1 − eିୠ୲൯൧ ቀ1 − ξ ୸ୌቁ    (12)  

 
where b is the thermal parameter presented in the exponential 
thermal equation (sିଵ ); A  is the dimensionless parameter 
presented in the exponential thermal equation; ξ, which ranges 
from 0 to 1, is the gradient that controls the linear distribution 
of temperature throughout the soil profile. It should be noted 
that Eq. 12 presents a simplified simulation of temperature 
variation that may be only applicable to short-term laboratory 
investigations. The time-dependent exponential temperature 
variation at various depths is depicted in Figure 2. 

Combining Eqs. 9 – 12 and then taking the Laplace inverse to 
obtain Tୟ(t) and T୵(t). The final solutions predicting excess 
pore-air and pore-water pressures in response to the exponential 
temperature change are presented as follows: 
 

۔ۖەۖ
,uୟ(zۓ t) = ∑ ቊζiቂஐ	 ቀୣಉభ౟ ౪ିୣಉమ౟ ౪ቁାஏ	 ቀୣಉభ౟ ౪ାୣಉమ౟ ౪ቁቃଶ஗ + Ξୟ୧ ቋ sin(μ୧z)ஶ୧ୀ଴ 	
u୵(z, t) = ∑ ቊζiቂஐᇲ	 ቀୣಉభ౟ ౪ିୣಉమ౟ ౪ቁାஏᇲቀୣಉభ౟ ౪ାୣಉమ౟ ౪ቁቃଶ஗ + Ξ୵୧ ቋ sin(μ୧z)ஶ୧ୀ଴   

     (13) 
 
where  η = ሾ(c୴୵ − c୴ୟ)ଶ + 4c୴୵c୴ୟC୵Cୟሿభమ; Ω = (c୴ୟ − c୴୵)uୟ଴ − 2c୴୵Cୟu୵଴ ; Ψ = ηuୟ଴; Ωᇱ = (c୴୵ − c୴ୟ)u୵଴ − 2c୴ୟC୵uୟ଴; Ψᇱ = ηu୵଴ ; Ξୟ୧ = Υ୧ ቊ ୣಉభ౟ ౪	 ஒభ౟൫஑భ౟ ା௕൯൫஑భ౟ ି஑మ౟ ൯ + ୣಉమ౟ ౪	 ஒమ౟൫஑మ౟ ା௕൯൫஑మ౟ ି஑భ౟ ൯ + ୣష್౪ൣ൫ஒభ౟ ି஑భ౟ ൯ି௕൧൫஑భ౟ ା௕൯൫஑మ౟ ା௕൯ ቋ;  Ξ୵୧ = Υᇱ୧ ቊ ୣಉభ౟ ౪	 ஑భ౟൫஑భ౟ ା௕൯൫஑మ౟ ି஑భ౟ ൯ + ୣಉమ౟ ౪	 ஑మ౟൫஑మ౟ ା௕൯൫஑భ౟ ି஑మ౟ ൯ + ௕ୣష್౪൫஑భ౟ ା௕൯൫஑మ౟ ା௕൯ቋ;  Υ୧ = ௕୅େ౸ங౟େ౭େ౗ିଵ;  Υᇱ୧ = ௕୅େ౭େ౸ங౟େ౭େ౗ିଵ ;  αଵ୧ = ଵଶ ቀୡ౬౭ାୡ౬౗ା஗ଵିେ౭େ౗ ቁ (μ୧)ଶ; αଶ୧ = ଵଶ ቀୡ౬౭ାୡ౬౗ି஗ଵିେ౭େ౗ ቁ (μ୧)ଶ; βଵ୧ = ቂଵଶ ቀୡ౬౭ାୡ౬౗ା஗ଵିେ౭େ౗ ቁ − c୴୵ቃ (μ୧)ଶ; βଶ୧ = ቂଵଶ ቀୡ౬౭ାୡ౬౗ି஗ଵିେ౭େ౗ ቁ − c୴୵ቃ (μ୧)ଶ; ι୧ = ଶ	 ൣஜ౟ୌିஞ	 (ିଵ)౟൧(ஜ౟ୌ)మ .    (14) 

 
Note that the terms Ξୟ୧ = Ξ୵୧ = 0  when the temperature 

becomes constant. The settlement of unsaturated soil layer can 
be determined by: 
 S(t) = (mଶୱ − mଵୱ) ቂ׬ uୟdzୌ଴ − Huୟ଴ቃ − mଶୱ ቂ׬ u୵dzୌ଴ − Hu୵଴ ቃ    

(15) 
 
Eq. 15 estimates the time-dependent settlement of 

unsaturated soil deposit under the exponential temperature 
variation. It is noteworthy that mଵୱ = mଵୟ + mଵ୵  and mଶୱ =mଶୟ + mଶ୵.  
 
3. RESULTS AND DISCUSSION 

In this section, variations of the excess pore-air and pore-water 
pressures and the consolidation settlement due to the time-
dependent exponential temperature and external step loading q 
are investigated. The adopted soil properties are as follows:   
 mଵୱ = −2.5 × 10ିସ	 kPaିଵ; mଶୱ = 0.4mଵୱ; mଵ୵ = 0.2mଵୱ;  mଶ୵ = 4mଵ୵; n = 0.50;   S୰ = 80%;  k୵ = 10ିଵ଴	 m/s;  kୟ/k୵ = 10;  H = 10m;              R = 8.31	 J/(mol. K); M = 0.03	 kg/mol;  uୟ୲୫ = 100	 kPa; Θ = ൫θ° + 273.16൯	 K; θ° = 25℃;   uୟ଴ = 20	 kPa;  u୵଴ = 40	 kPa;  q = 100	 kPa.    (16) Figure 2. Time-dependent exponential temperature variation at 

different depths 

260

280

300

320

340

360

0.E+00 2.E+04 4.E+04 6.E+04 8.E+04 1.E+05

A
bs

ol
ut

e 
Te

m
pe

ra
tu

re
 (

K
)

Time (s)

0 2x104 4x104 6x104 8x104 105

z = 0

z = 0.25H

z = 0.5H

z = 0.75H

z = H

(a)

, ,    ,    

- 759 -



  Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul 2017 

 Soil properties provided in Eq. 16 are used to obtain 
consolidation coefficients for the air phase (Cୟ, C஀ and c୴ୟ) 
and for the water phase (C୵ and c୴୵). According to Fredlund et 
al. (2012), the constant load q (i.e. 100kPa) applied to the 
unsaturated ground surface would generate an initial excess 
pore-air pressure uୟ଴  of 20kPa  and an initial excess pore-
water pressure u୵଴  of 40kPa.  

Figures 3a and 3b present changes in normalised pore-air 
(uୟ/uୟ଴) and pore-water (u୵/u୵଴ ) pressures at various depths, 
respectively, due to the combined effects of time-dependent 
exponential temperature variation and external step loading q. 
It is observed that the exponential increase in temperature 
induces moderate increases in excess pore-air and pore-water 

pressures at the early stages of consolidation. During these 
stages, it takes shorter time for excess pore pressures near the 
ground surface to attain the peak values as the temperature 
approaches the asymptote. It is also noteworthy that the peak 

values may reduce with depth. In other words, the effect of 
exponential temperature is much attenuated at lower depth. 
Since there are no temperature changes after about 10ସs , 
excess pore pressures would eventually dissipate similar to 
those curves under the isothermal condition. 

Figure 4 shows the normalised settlement of unsaturated soil 
stratum induced by combined effects of temperature change and 
external step loading (i.e. S∗ = S(t)/(mଵୱqH)). There is a slight 
increase in the settlement curve during the early stages of 
consolidation as the result of the exponential increase in 
temperature. At later stages, the soil settlement gradually 
increases resembling to that under the isothermal condition 
because the temperature reaches the asymptote and remains 
unchanged afterwards. 

 
4. CONCLUSIONS 

This paper presents an analytical solution to predict the 1D 
consolidation of unsaturated soil deposit induced by the time-
dependent exponential temperature and external step loading. 
The governing equations of flow, incorporating the non-
isothermal condition, were first introduced. The mathematical 
procedure adopted the one-way drainage system and uniform 
initial condition. Fourier sine series and Laplace transform 
technique were employed to obtain the closed-form analytical 
solutions. 

For the graphical presentation, excess pore-air and pore-
water pressure dissipation rates and consolidation settlement 
were investigated. It was predicted that both pressure curves 
increase at the first stages of consolidation process. Once the 
temperature remains constant, the excess pore pressures tend to 
dissipate gradually similar to those under the isothermal 
condition. In addition, the effect of exponential temperature is 
less obvious at lower depths. 
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Figure 3. Changes in (a) excess pore-air and (b) pore-water pressures 
induced by both time-dependent exponential temperature and external 
step loading 

Figure 4. Settlement of unsaturated soil due to the time-dependent 
exponential temperature and external step loading 
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