Consistent Weighted Sampling Made More Practical

Wei Wu?, Bin Li?, Ling Chent, Chengqi Zhang*
LCAI, University of Technology Sydney, Ultimo NSW 2007, Australia
william.third.wu@gmail.com

{ling.chen, chengqi.zhang}@uts.edu.au
*Data61, CSIRO, Eveleigh NSW 2015, Australia
bin.li@data61.csiro.au

ABSTRACT

Min-Hash, which is widely used for efficiently estimating
similarities of bag-of-words represented data, plays an in-
creasingly important role in the era of big data. It has been
extended to deal with real-value weighted sets — Improved
Consistent Weighted Sampling (ICWS) is considered as the
state-of-the-art for this problem. In this paper, we propose
a Practical CWS (PCWS) algorithm. We first transform the
original form of ICWS into an equivalent expression, based
on which we find some interesting properties that inspire
us to make the ICWS algorithm simpler and more efficient
in both space and time complexities. PCWS is not only
mathematically equivalent to ICWS and preserves the same
theoretical properties, but also saves 20% memory footprint
and substantial computational cost compared to ICWS. The
experimental results on a number of real-world text data
sets demonstrate that PCWS obtains the same (even bet-
ter) classification and retrieval performance as ICWS with
1/5 ~ 1/3 reduced empirical runtime.

Keywords
Weighted Min-Hash; Consistent Weighted Sampling; LSH

1. INTRODUCTION

Nowadays, data are growing explosively on the Web. In
2008, Google processed 20PB data every day [23]; in 2012,
Google received more than 2 million search queries per minute;
while in 2014 this number had been more than doubled [9,
27]. Social networking services also have to face the data
explosion challenge. More than 500TB of data need to be
processed in Facebook every day [28] and 7 million check-in
records are produced in Foursquare every day [30] — Big data
have been driving data mining research in both academia
and industry [7, 22]. A fundamental research that underpins
many high-level applications is to efficiently compute simi-
larities (or distances) of data. Based on the data similarity,
one can further conduct information retrieval, classification,
and many other data mining tasks. However, the standard

@2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.

WWW 2017, April 3-7, 2017, Perth, Australia.

ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052598

Coie

1035

similarity computation has been incompetent for big data
due to the “3V” nature (volume, velocity and variety). For
example, in text mining, it is intractable to enumerate the
complete feature set (e.g., over 10® elements in the case of
5-grams in the original data [22]). Therefore, it is urgent
to develop efficient yet accurate similarity estimation algo-
rithms.

A typical solution to the aforementioned problem is to ap-
proximate data similarities using a family of Locality Sen-
sitive Hashing (LSH) techniques [12]. By adopting a collec-
tion of hash functions to map similar objects to the same
hash code with higher probability than dissimilar ones, LSH
is able to approximate certain similarity (or distance) mea-
sures. One can thus efficiently and, in many cases, unbi-
asedly calculate the similarity (or distances) between ob-
jects. Many LSH schemes have been successively proposed,
e.g., Min-Hash for estimating the Jaccard similarity [1], Sim-
Hash for estimating angle-based distance [3, 20], and LSH
with p-stable distribution for estimating [, distance [6]. In
particular, Min-Hash has been widely used for approximat-
ing the similarity of documents which are usually repre-
sented as sets or bags-of-words. Recently, some variations
of Min-Hash have further improved its efficiency. For ex-
ample, b-bit Min-Hash [16] and odd sketches [21] remark-
ably improve the storage efficiency by storing only b bits of
each hash value; while one-permutation Min-Hash [17, 25]
employs only one permutation to reduce the computational
workload.

Although the set similarity can be efficiently estimated
based on the standard Min-Hash scheme and its variations,
the target data are restricted to binary sets. However, in
most real-world scenarios, weighted sets are more common.
For example, a tf-idf value is assigned to each word to rep-
resent its importance in a collection of documents. As Min-
Hash treats all the elements in a set equally for comput-
ing the Jaccard similarity, it cannot handle weighted sets
properly. To address the limitation, weighted Min-Hash
algorithms have been explored to approximate the gener-
alized Jaccard similarity [11], which is used for measuring
the similarity of weighted sets. Roughly speaking, existing
works on weighted Min-Hash algorithms can be classified
into quantization-based and sampling-based approaches.

Quantization-based methods quantize each weighted ele-
ment into a number of distinct and equal-sized subelements.
The resulting subelements are treated equally just like inde-
pendent elements in the universal set. One can simply apply
the standard Min-Hash scheme to the collection of subele-
ments. Although in [8] an improved integer-value weighted

Min-Hash algorithm is proposed to avoid computing the
hash value for each individual subelement, the algorithm is
still inefficient for dealing with real-value weighted sets be-
cause each weight must be transformed into integer weight
by multiplying a large constant, which dramatically expands
the universal set with numerous quantized subelements.

To avoid computing hash values for all the subelements,
researchers have resorted to sampling-based methods. In [24],
a uniform sampling algorithm is proposed, which strictly
complies with the definition of the generalized Jaccard sim-
ilarity. However, this algorithm requires knowing the up-
per bound of each element in the universal set in advance,
which makes it impractical in real-world applications. In [5],
a sampling method is derived through the distribution of the
minimum of a set of random variables for integer weighted
sets, which results in a biased estimator. Later, Consis-
tent Weighted Sampling (CWS) [19, 10] and Improved CWS
(ICWS) [13] are proposed to remarkably improve the effi-
ciency of weighted Min-Hash by introducing the notion of
“active index” [8] into real-value weighted elements (the “ac-
tive indices” on a weighted element are independently sam-
pled as a sequence of subelements whose hash values mono-
tonically decrease [29]). Thus far, ICWS [13], as an efficient
and unbiased estimator of the generalized Jaccard similarity,
is recognized as the state-of-the-art. Recently, [15] approx-
imates ICWS by simply discarding one component of the
Min-Hash values.

The mystery of ICWS [13] is that it implicitly constructs
an exponential distribution for each real-value weighted el-
ement using only two “active indices”. The minimum of the
collection of exponential variables of all the elements yields
one of the two components of the real-value weighted Min-
Hash code (the other component can be easily obtained),
meanwhile complying with the uniformity of the Min-Hash
scheme — This enables ICWS to produce Min-Hash code for
a real-value weight with computational complexity that is
independent of the number of quantized subelements.

In this paper, we aim to further improve the efficiency of
ICWS. By transforming the original form of ICWS into a
different but mathematically equivalent expression, we find
some interesting properties that inspire us to further make
ICWS more practical. Thus, we propose the Practical CWS
(PCWS) algorithm, which is simpler and more efficient in
both space and time complexities compared to ICWS. Fur-
thermore, we theoretically prove the uniformity and consis-
tency of the PCWS algorithm for real-value weighted Min-
Hash. We conduct extensive empirical tests on a number of
real-world text data sets to compare the proposed PCWS
algorithm and the state-of-the-arts for classification and re-
trieval. In summary, our contributions are three-fold:

1. We transform the original form of ICWS [13] into a
simpler and easy-to-understand expression, uncovering
the working mechanism of ICWS.

2. We propose the PCWS algorithm, which is mathemat-
ically equivalent to ICWS and preserves the same the-
oretical properties as ICWS.

PCWS has the same (even better) classification and
retrieval performance as ICWS while saving 20% mem-
ory footprint and 1/5 ~ 1/3 empirical runtime, which
makes it more practical.

1036

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the definitions of (generalized) Jaccard
similarity, weighted Min-Hash, and ICWS [13]. Then, in
Section 3 we revisit ICWS and present its equivalent ver-
sion, based on which we propose our PCWS algorithm and
give its theoretical analysis. The experimental results are
presented in Section 4 and the paper is concluded in Sec-
tion 5.

2. PRELIMINARIES

In this section, we first give some notations which will
be used throughout the paper. Next we will introduce the
Min-Hash scheme and present the state-of-the-art method,
ICWS [13], for weighted Min-Hash.

Given a universal set U = (U1, Uz, -+ ,Uy,) and its subset
S C U, if for any element S, € S, Sk, = 1 or S = 0, then we
call § a binary set; if for any element Si € S, Sk > 0, then
we call S a weighted set. A typical example of universal set
is the dictionary of a collection of documents, where each
element corresponds to a word.

For hashing a binary set S, a Min-Hash scheme assigns
a hash value to each element Sk, h : k — v;. By contrast,
for hashing a weighted set, there is a different form of hash
function: h : (k,yx) — vy, where yr € [0,Sk]. A ran-
dom permutation (or sampling) process returns the first (or
uniformly selected) k from a binary set or (k,yx) from a
weighted set. If the set is sampled D times, we will obtain
a fingerprint with D hash values.

2.1 The Min-Hash Scheme

DEFINITION 1 (MIN-HASH [1]). Given a universal set
U and a subset S C U, Min-Hash is generated as follows:
Assuming a set of D hash functions (or D random per-
mutations), {ma}5_1, are applied to U, the elements in S
which have the minimum hash value in each hash function
(or which are placed in the first position of each permuta-
tion), {min(mq(S))}5,, would be the Min-Hashes of S.

Min-Hash [1] is an approximate algorithm for computing
the Jaccard similarity of two sets. It is proved that the
probability of two sets, S and T, to generate the same Min-
Hash value (hash collision) is exactly equal to the Jaccard
similarity of the two sets:

|SNT]
ISUT|

Pr (min(mq(S)) = min(r4(7))) = J(S,T) =

The Jaccard similarity is simple and effective in many appli-
cations, especially for document analysis based on the bag-
of-words representations [26].

From the above Min-Hash scheme we can see that all the
elements in U are considered equally because all the ele-
ments can be mapped to the minimum hash value with equal
probability. To sample a weighted set based on the standard
Min-Hash scheme, the weights, which indicates different im-
portance of each element, will be simply replaced with 1 or
0, which in turn leads to serious information loss.

In most real-world scenarios, weighted sets are more com-
monly seen than binary sets. For example, a document is
usually represented as a tf-idf set. In order to reasonably
compute the similarity of two weighted sets, the generalized
Jaccard similarity was introduced in [11]. Considering two

weighted sets, S and T, the generalized Jaccard similarity
is defined as

- Zk min(S;m Tk)

generalizedJ(S,T) = S max(Sn Th)
k)

2.2 Improved CWS

Based on the generalized Jaccard similarity, some weighted
Min-Hash algorithms have been proposed [8, 19, 13, 24]. To
the best of our knowledge, Improved Consistent Weighted
Sampling (ICWS) [13] is remarkable in both theory and
practice, and considered as the state-of-the-art method for
weighted Min-Hash [15].

DEFINITION 2
Given a weighted set S = {S1,...,Sn}, where Sy > 0 for
k € {1,...,n}, Consistent Weighted Sampling (CWS) pro-
duces a sample (k,yx) : 0 < yx, < Sk, which is uniform and
consistent.

e Uniformity: The subelement (k,yx) should be uni-
formly sampled from (J, ({k} x [0, Sk]), i.e., the proba-
bility of selecting the k-th element is proportion to Sk,
and yy, is uniformly distributed on [0, Sk].

Consistency: Given two non-empty weighted sets, S
and T, if Vk, T}, < Sk, a subelement (k, yx) is selected
from S and satisfies yr < T, then (k,yx) will also be
selected from T .

CWS has the following property
Pr[CWS(S) = CWS(T)] = generalizedJ(S,T).

In the following we briefly review how to deduce ICWS
to meet the two conditions of CWS, uniformity and consis-
tency. Firstly we note that the exponential distribution has
an important and interesting property about the distribu-
tion of the minimum of exponential random variables: Let

Xi1,..., X, be independently exponentially distributed ran-
dom variables, with the parameters being A1, ..., A,, respec-
Ak

tively, then we have Pr(Xy = min{X1,..., Xn}) = 57755
Therefore, one can employ this property to implement the
uniformity for CWS — If each hash value aj of the k’-th
element is drawn from an exponential distribution parame-
terized with its corresponding weight, i.e., aps ~ Exp(Sks),
the minimum hash value a; will be sampled in proportion
to Sk,

Sk

=5 g (1)
Zk/ K’

In addition, note that k& and yx are mutually independent,

which means that a; and y; are mutually independent as

well. Formally, the condition of uniformity in terms of (yx, ax)
can be expressed as

Pr(ax = min{a,...,an})

Sk
where yi ~ Uniform(0, S;) and ar ~ Exp(Sk).

In order to make yx uniformly distributed in [0, Sk], ICWS
employs the following equation

(Ske™ %) = p(ye)par), 2)

P(Yk, ar) =

lnyk = h’lSk — kak,

®3)

where r, ~ Gamma(2,1) and by ~ Uniform(0,1). Eq. (3)
is used to prove the uniformity in [13]. However, in its al-
gorithmic implementation of ICWS, the above equation is

(CONSISTENT WEIGHTED SAMPLING [19]).

1037

replaced with the following equation

N (V“Sk mJ —ﬁk) (1)

Tk

where (8 ~ Uniform(0,1). It is indicated in [13] that via
Eq. (4), Inyx is sampled from the same uniform distribution
in [In Sk — 7k, 1n Sk] as that sampled through Eq. (3). The
floor function and the uniform random variable 8 in Eq. (4)
ensures that a fixed yi is sampled in an interval of r,. Obvi-
ously, Eq. (4) gives rise to consistency because small changes
in S cannot affect the value of y.

In order to sample k in proportion to its corresponding
weight Sk, in addition to an “active index”, yx, ICWS [13] in-
troduces a second “active index”, zj € [Sk, +00), and builds
the relationship among yi, zr and rg:

()

Furthermore, by using the two “active indices”, ICWS im-
plicitly constructs an exponential distribution parameterized
with Sk, i.e., ar ~ Exp(Sk):

e =Inzr — Iny.

Ck
ar = —,
Zk

(6)

where ¢, ~ Gamma(2,1).

Essentially, ICWS proceeds the sampling process as fol-
lows: It first samples y;, using Eq. (7), which is derived from
Eq. (4). Then the sampled yi, as an independent variable,
is fed into Eq. (8), which is derived from Egs. (5) and (6),
and outputs a hash value conforming to the exponential dis-
tribution parameterized with the corresponding weight Si.

Yk = exp <mqlif’“+ﬁkJ—ﬂk)), (7)
“ = el v

In ICWS [13], a Min-Hash code (yx,ax) for a weighted el-
ement Sy is calculated using the hash functions, Eqgs. (7)
and (8), respectively. The hash functions seem already sim-
ple but mysterious. Why does Eq. (8) work? Can we further
improve the efficiency of ICWS?

3. PRACTICAL CWS

In this section we propose a more practical algorithm for
consistent weighted sampling. First, we revisit ICWS [13]
and transform its original form Eq. (8) for sampling ay into
an equivalent version. Based on this equivalent form, we
find some interesting properties which inspire us to make
the ICWS algorithm simpler and more efficient in both space
and time complexities. We also demonstrate that the pro-
posed PCWS algorithm still complies with the uniformity
and consistency of CWS [19].

3.1 ICWS Revisited

Recall that in ICWS [13] one need to sample two Gamma
variables, 7, ~ Gamma(2,1) and ¢ ~ Gamma(2,1), in
Egs. (7) and (8) to directly generate yr and ax. In fact,
the simplest programming implementation® to generate a
random variable z from Gamma(2,1) is to first sample two

1Some programming languages may provide built-in func-
tions to generate random variable from Gamma(a, 8), which
however has a complexity no better than this method in the
case of « = 2,8 = 1.

uniform random variables, u1,u2 ~ Uniform(0,1) and then

conduct a transformation as ¢ = — In(ujuz). Thus if we rep-
resent the two independent Gamma variables rx and ¢ in
terms of uniform random variables, 7, = — In(uk1ur2) and
¢k = — In(vg1vke), where ug1, k2, Vk1, Vg2 ~ Uniform(0, 1),
we can obtain an equivalent version of Eqs. (7) and (8):
ye = exp(—In(uprur2)(te — Br)), 9)
—1
a =) (10)
yk(ukluk2)7
where
InS
ty = \‘716 + 6kJ .
— ln(umukg)

Now, the ICWS algorithm in [13] can be presented equiva-
lently in Algorithm 1 for producing D Min-Hash codes.

Algorithm 1 is the standard implementation of ICWS. If
we further slightly rearrange Eq. (10) as follows

— In(vk1vk2)uk2 (11)

ap = 1)
YrUpy

we can find two interesting properties: (1) the denominator,
yku;117 is essentially an unbiased estimator of the weight Sk;
and (2) the numerator — In(vg1vk2)uke is actually a standard
exponential distribution.

The first property can be easily verified based on the
uniformity yx = ur1Sk, where ugi ~ Uniform(0,1), be-
cause the derivation of the ICWS algorithm [13] is based
on yi = uk1Sk. However, in its algorithm, ICWS [13] sam-
ples yi through Eq. (9) instead of yx = wkg1Sk. Thus ykugll
is not exactly equivalent to S but its unbiased estimator:

E(yrugy') = E(Sk) = Sk (12)

To see the second property, let my = — In(vi1vk2)ure =
cruk2 then we have

1
1 Mk
pdfy, (mi) = ‘/0+ Tmpdew(u’“Q)pdka (u—m> duga
1 ,
1 _mg -
= / — 1. DBk vk2 dugy =€ "
o+ Uk2 Uk2

which implies that
mig = — 1n(vk1vk2)uk2 ~ Exp(l). (13)
Substituting Egs. (12) and (13) into Eq. (11) we obtain

ar = 7;: Through the Jocobian transformation, we have
pdf 4, (ar) = pdfy,, (mk)|TT:| = Spe 5% which further

implies ax ~ Exp(gk). Thus far, we have found that the
mystery of ICWS is to implicitly employ an exponential dis-
tribution parameterized with Sy to sample ax, that is

ar = ”Si““ ~ Exp(Sk).- (14)

k

In this case, the probability of the k-th element being sam-
pled is equal to the probability of the k-th element being
assigned with the minimum exponential random variable
ar, where the probability is in proportion to its weight:

— _ Sk
yan}) = S S

3.2 The PCWS Algorithm

By transforming the original ICWS algorithm into an equiv-
alent version in terms of five independent uniform random

Pr(ar = min{ay,- -

Algorithm 1 The ICWS Algorithm (equivalent to [13])

Input: S = {Si1,, Snp}; number of samples D

d
Output: {(k{",y' ()i

1: fork=1,...,n do
ford=1,...,D do
uwl® u!? ~ Uniform(0, 1)
ﬂ;cd) ~ Uniform(0, 1)
’U)(C(? s Ug) ~ Uniform(0, 1)
end for
end for
: for all k such that S > 0 do
ford=1,...,D do

. @ _ In S
1: oy = exp(= In(u i) (e = B("))
12: PO — In(vj 7 vig)

v (uy ug)
13: end for
14: end for
15: ford=1,...,D do
16: k@ = arg miny, a](cd>
17: end for

18: return {(k,ﬁd),y(dzl)}dD:1
o

+ B

variables, we have revealed the mystery of ICWS Eq. (14).
In addition to understanding the underlying mechanism of
ICWS, one may ask what else we have been inspired to im-
prove the ICWS algorithm. In the following, we will make
use of the uncovered property Eq. (13) to reduce both time
and space complexities of ICWS.

Recall in Eq. (11), the numerator employs three indepen-
dent uniform random variables to produce a sample in the
form of — In(viv2)us2, which is proved to be a standard ex-
ponential distribution, m; ~ Exp(1) in Eq. (13). Obvi-
ously, it is costly in terms of both time and space to produce
—In(vivz)uz. Due to the fact that —Inz, ~ Exp(1), zx ~
Uniform(0, 1), we can adopt — Inxy insted of —In(viva)us
to achieve the same goal.

; ; — _—In(vkivk2)
To this end, we can simply replace ar = Tr (kL ona) T
(Line 12 in Algorithm 1) with a;, = —2Z& and obtain the

YkUp1
proposed PCWS algorithm (see Algorithm 2). The only two
differences between ICWS and PCWS lie in

e ICWS has to generate one more uniform random vari-
able than PCWS for each element k (Line 5).

e ICWS has a relatively more complicated expression
than PCWS to calculate aj (Line 12).

Complexity: In programming implementation, ICWS
requires sampling five global uniform random variables for
each element k (i.e., uk1, Uk2, Bk, Vk1, Vk2); while PCWS only
requires sampling four (i.e., w1, uk2, Bk, xx). From Algo-
rithm 1 and Algorithm 2 it is easy to see that the space
complexity of PCWS is O(4nD) while the space complex-
ity of ICWS is O(5nD), where n denotes the size of the
universal set and D the number of samples (number of Min-
Hashes). Although the uniform random variables can be
sampled off-line, it is worth noting that these variables have
to be cached in the memory during the hashing process. In
text mining applications, the size of the universal set (num-
ber of features) can easily reach 107; if we adopt 10% samples,
an additional memory footprint of 10'° floats have to be al-

Algorithm 2 The PCWS Algorithm
Input: § = {S1, -, S,}; number of samples D

d
Output: {(kal) , y;(;))}c?:l

1: fork=1,...,n do
ford=1,...,D do
Uy ,ug) ~ Uniform(0, 1)
B,(cd) ~ Uniform(0, 1)
$§vd) ~ Uniform(0, 1) // different from Algorithm 1
end for
end for
. for all k such that S > 0 do
ford=1,...,D do
S _ In Sy,

k T (@) ()
- ln(ul(cl)ugcQ))
y,(gd) = exp(— ln(ugﬁ)ug)
—1n :1:<d)

k

10: + B,id)J

)P — BLMy)

() // different from Algorithm 1

ol — 7k
" yi D (ug?) 1
end for
end for
ford=1,...,D do
kid) = arg ming a](:”
end for

(d) (D)
return {(k; 7ykid)

12:

13:
14:
15:
16:
17:
18:

Vi1

located. Thus, using one less uniform random variable can
save substantial amount of memory cost on large-scale data
sets. The simpler expression of PCWS for calculating ay
also saves time complexity O(nD). On a large-scale data
set, the aggregated time saving due to one less uniform ran-
dom variable and simpler expression can be substantial (see
empirical test in Section 4). Compared to ICWS, PCWS
enjoys 20% lower memory footprint and saves 1/5 ~ 1/3
empirical runtime.

3.3 Analysis

In this subsection, we will prove that our PCWS algorithm
generates (Y, ar) which indeed satisfy uniformity and con-
sistency of the CWS scheme [19] .

3.3.1 Uniformity

We drop the element index k for conciseness. Following
ICWS [13], the random variable Iny = r (L% + BJ - ,3),
where 7 = —In(ujuz) ~ Gamma(2,1), § ~ Uniform(0,1),
shares the same distribution as Iny InS — rb, where
b ~ Uniform(0,1). In the both situations, Iny is uniformly
sampled from [InS — r,In S]. Since our PCWS algorithm
still employs two “active indices”, y and z, as ICWS does,
we have r = Inz — Iny for the sake of proof of uniformity.
The distribution pdf(y, z,a), defined for y < S, z > S and
a > 0, can be obtained by transforming the distributions of
the random variables as

pt(y. 0) = paf(b,2) [det 523
where r = Inz — Iny, b = 1125:11:3’ and z = exp(—ayu;).

Recall that r, b,z are mutually independent and have the
following probability density functions: pdf(r) = re™" and
pdf(b) = pdf(z) = 1. By computing the Jacobian determi-
nant, we obtain

o~ (wur a

1 _
pdf(y7 2y a) = Zig(yul 1)

1039

Marginalizing out z in pdf(y, z, a) gives

pdf(y,a)

/Jroo 1 -1 —(yu_l)a
= pdf(y, z,a)dz = = (yu; ")e 19
g S
Actually pdf(y, a) is still conditioned on u;. We can do an
expectation over the distribution of yufl and, according to
Eq. (12), obtain E(yu; ") = S. Therefore, we have
pdi(y, @) = ¢ (Se™5) = pdf(y)pdi(a).

It is easy to see that y is uniformly distributed in [0, S] and
a complies with an exponential distribution parameterized
with S, that is, a ~ Exp(S); meanwhile, y and a are inde-
pendent. For all the weights {S1,...,5»} in weighted set S,
there exist a set of exponential distributions parameterized
with the corresponding weights. According to Eq. (1), ax,
is the minimum hash value with a probability in proportion

to Sk., Pr(ax, = mingay) = Es:gk' Therefore, (k«,yr,) is

uniformly sampled from |J, ({k} x '[O, Sk])-

3.3.2 Consistency

Following ICWS [13], we will demonstrate that, for two
non-empty weighted sets S and T, if Vk, Ty, < Sk, a subele-
ment (k«,yr,) is sampled from S and satisfies yr, < Tk,
then (K., yx,) will be sampled from 7.

o \‘ In Sy,

)+ﬂk*J,

Considering an element k., t7 —
? TR —In(ug,1uk,2

In Sy, S In Sy,
and thus —In(ug, 1uk,2) e —1< IS —In(ug,1uk,2) +Bk...
. InT
By hypothesis, ;. = yx. < Tk, < Sk., thus W
s _ lnyk.* lnTk*
Br., —1 <ty = Tn(aruns) + Br, < m-Fﬁk*-
Obviously,

tS o \\ ll’lTk*
b —In(uk, 1uk,2)

which indicates y,i = Y, = y,i. Thus y,i and y,{* will be
sampled from the k.-th elements of S and T, respectively.

On the other hand, we note that, for any k, ax is essen-
tially a monotonically non-increasing function of Sy:

+ﬂk*J =ti.,

a —Inxy
k=)
_ InS
it (o ([4]-2)
Tk
where 7, = —In(ugiugz). Therefore, Vk,al > af due to

T, < Sk, while ag* = af* = miny aj because of y;i = y,%;.
As a result, a{* < af < a} and in turn argming al =
argming aj = k., which demonstrates that (k.,ys,) is sam-
pled from S and T simultaneously. Thus consistency holds.

In summary, our PCWS algorithm satisfies the two prop-
erties, uniformity and consistency, of the CWS scheme. Thus,
PCWS not only has an equivalent (but more efficient) algo-
rithm to ICWS but also holds the same theoretical proper-
ties as ICWS.

4. EXPERIMENTAL RESULTS

In this section, we report the performance of our PCWS
algorithm and its competitors on five real-world text data
sets. In Subsection 4.2, we investigate the effectiveness and
efficiency of the compared methods for classification. In Sub-
section 4.3, we investigate the effectiveness and efficiency of
the compared methods for information retrieval.

. o e .
4.1 Experimental Preliminaries
Realsim Realsim
300
ool 1ap
*
w
S =
%) :
© ol
o1 £
=3 -
0 i
9]
<
10 10
Length of Fingerprints Length of Fingerprints
Rcvl Rcvl
®
>
%)
©
I
3
3]
9]
<
10 10
Length of Fingerprints Length of Fingerprints
) Kdd Kdd
00 00 ?
!
P 80 /]
° / /i
— / /
> Z %0 $ iT
B) !
© o] ‘
=t E 40
193 5]
9]
< 200 &7
L
70 0

10
Length of Fingerprints

10
Length of Fingerprints

Figure 1: Classification results in accuracy (left col-
umn) and runtime (right column) of the compared
methods on Real-sim, Rcvl and Kdd. The z-axis
denotes the length of fingerprints, D.

We compare our PCWS algorithm with six state-of-the-
arts: (1) Min-Hash: The standard Min-Hash scheme is
applied by simply treating weighted sets as binary sets; (2)
[Gollapudi et.al., 2006] [8]: It transforms weighted sets
into binary sets by thresholding real-value weights with ran-
dom samples and then applies the standard Min-Hash scheme
(another algorithm is introduced in the same paper which
is however extremely inefficient for real-value weights and
thus not reported). (3) [Chum et.al., 2008] [5]: It ap-
proximates the generalized Jaccard similarity with a bias
for real-value weighted sets despite that the derivation is
based on integer weighted sets; (4) ICWS [13]: It is intro-
duced in Section 3.1, which is currently the state-of-the-art
for weighted Min-Hash in terms of both effectiveness and
efficiency; (5) [Li, 2015] [15]: It approximates ICWS by
simply discarding one of the two components, that is yx in
Eq. (7), of ICWS; (6) [Haeupler et.al., 2014] [10]: It ap-
proximates the generalized Jaccard similarity by rounding
the real-value weights with probability and then quantizing
the integer weights.

All the compared algorithms are implemented in Matlab.
For [Haeupler et.al., 2014], each weight is scaled up by a
factor of 100. We first apply all the algorithms to generate
the fingerprints of the data. Suppose that each algorithm
generates xg and xr, which are the fingerprints with the
length of D for the two real-value weighted sets, S and T,
respectively, the similarity between S and 7T is Sims 1+ =

ZdDzl w, where 1(state) = 1 if state is true, and

1040

webspam
18 o

apudi et.al., 2006]
+,2008]

16 1

14+

12+

-

Runtime
«

Runtime

10 100 100
Length of Fingerprints

10 100
Length of Fingerprints

1000

Figure 2: Retrieval runtime of the compared meth-
ods on Webspam and Url. The z-axis denotes the
length of fingerprints, D.

1(state) = 0 otherwise. The above equation calculates the
ratio of the same Min-Hash values (i.e., collision) between xg
and x7, which is used to approximate the probability that
S and T generate the same Min-Hash value. We set D, the
parameter of the number of hash functions (or random sam-
ples), such that D € {2,4,8,16,32,64,128,256,512,1024}.
All the random variables are globally generated at random.
That is, in one sampling process, the same elements in dif-
ferent sets use the same set of random variables. All the
experiments are conducted on a node of a Linux Cluster
with 8 x 3.1 GHz Intel Xeon CPU (64 bit) and 1TB RAM.

4.2 Results on Classification

We investigate classification performance of the compared
methods using LIBSVM [2] with 10-fold cross-validation on
three binary classification benchmarks?:

1. Real-sim: The data set is a collection of UseNet arti-
cles from four discussion groups about simulated auto
racing, simulated aviation, real autos and real avia-
tion, respectively. The formatted document data set,
with 72,309 samples and 20,958 features, has been ar-
ranged into two classes: real and simulated. Since
the real class and the simulated class of the original
data are unbalanced, data preprocessing is performed
by randomly selecting 10,000 real samples and 10,000
simulated samples as positive and negative instances,
respectively.

. Revl: The data set is a large collection of newswire
stories drawn from online databases. The formatted
data set has 20,242 training samples with 47,236 fea-
tures. The data set has been categorized into two
classes: positive instances contain CCAT and ECAT
while negative ones contain GCAT and MACT on the
website. Similarly, we randomly select 10,000 positive
instances and 10,000 negative ones to compose a bal-
anced data set.

. Kdd: This is a large educational data set from the
KDD Cup 2010 competition. The formatted data set

2Real-sim, Revl, Kdd and Webspam can be downloaded at
https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
binary.html

Webspam Webspam

[Gollapudi et.al., 2006
[Chum et.al.,2008]

[Gollapudi et.al., 2006
h
0.

o

Precision@l

°

Webspam Webspam

MAP@20

10 100 1000
Length of Fingerprints

Webspam

Precision@50

10 100 1000
Length of Fingerprints

Webspam

MAP@100

10 100 1000
Length of Fingerprints

Webspam

°
o

o

o

Precision@500
S

o

°

o 0.8
o~
®
S .
-
)
Bl
3o
9]
I
Qi o.
10 100 1000 10 100 1000
Length of Fingerprints Length of Fingerprints
Webspam Webspam
1 1
So.s
o
®
£ 0.
0
-
1o}
- 0.
9]
o
A o.
10 100 1000 10 100 1000
Length of Fingerprints Length of Fingerprints
Webspam Webspam
1
o
o 0.
o
—
9,
0
-
1o}
2.
9]
9]
0.
ny

10 100 1000
Length of Fingerprints

Webspam

MAP@1000

10 100 1000
Length of Fingerprints

10 100 1000
Length of Fingerprints

10 100 1000
Length of Fingerprints

10 100 1000
Length of Fingerprints

Figure 3: Retrieval results in Precision@K (odd columns) and MAP@K (even columns) of the compared
methods on Webspam. The z-axis denotes the length of fingerprints, D.

has 8,407,752 training samples with 20,216,830 fea-
tures. We also randomly select 10,000 positive in-
stances and 10,000 negative ones to form a balanced
data set for classification.

We repeat each experiment 5 times and compute the mean
and the standard derivation of results.

Discussions on Real-sim: The subplots in the first row
in Figure 1 show the comparison results on Real-sim. One
can see that our PCWS algorithm achieves almost the same
accuracy as ICWS, [Li, 2015] and [Chum et.al., 2008]. The
comparison between PCWS and ICWS demonstrates that
our PCWS algorithm indeed satisfies the CWS scheme. The
reason that [Chum et.al., 2008] also performs similarly with
[Li, 2015] may be the one discussed in [15], that is, one com-
ponent of ICWS, yx, is trivial to approximate the generalized
Jaccard similarity for most data sets. In terms of runtime,
our PCWS algorithm performs similarly with ICWS and
[Li, 2015] when D ranges from 2 to 128, and subsequently,
the gap between PCWS and ICWS clearly widens. Particu-
larly, PCWS takes around 3/4 of ICWS runtime and nearly
3/5 of [Li, 2015] runtime, when D = 1024.

Discussions on Rcv1l: The subplots in the second row of
Figure 1 show the comparison results on Rcvl. Our PCWS
algorithm preserves almost the same accuracy as ICWS. Fur-
thermore, the two CWS algorithms clearly perform better
than the standard Min-Hash scheme and other algorithms
which biasedly estimate the generalized Jaccard Similarity.
In terms of runtime, our PCWS algorithm maintains the
same level as ICWS and [Li, 2015] with D varying from 2 to
64. Our PCWS algorithm is remarkably superior to ICWS
and [Li, 2015] when D varies from 128 to 1024. Again, the

1041

runtime of PCWS is reduced by a factor of 1/3 compared to
ICWS and [Li, 2015] when D = 1024.

Discussions on Kdd: In order to evaluate the classifi-
cation ability on data with a large number of features (i.e.,
size of the universal set), we test the compared methods on
the Kdd data set. The comparison results are reported in
the subplots in the third row of Figure 1 (in this experiment,
each algorithm is given a cutoff time of 100 seconds). Our
PCWS algorithm still preserves the same accuracy as ICWS.
In terms of runtime, PCWS runs much more efficiently than
ICWS and [Li, 2015] this time on the data set with a large
number of features. The performance gain of our PCWS
algorithm in terms of runtime starts in the very beginning;
as the length of fingerprint D increases, the gap becomes
more significant: 1/3 faster than ICWS and [Li, 2015] when
D approaches to 1024.

4.3 Results on Top-K Retrieval

In this experiment, we carry out top-K retrieval, for K =
{1, 20, 50, 100, 500, 1000}. We adopt Precision@K and Mean
Average Precision (MAP)Q@QK to measure the performance in
terms of accuracy because precision is relatively more impor-
tant than recall in large-scale retrieval; furthermore, MAP
contains information of relative orders of the retrieved sam-
ples, which can reflect the retrieval quality more accurately.
To this end, we select two large-scale public data sets:

1. Webspam: It is a web text data set provided by a
large-scale learning challenge. The data set has 350,000
instances and 16,609,143 features. We randomly select
1,000 samples from the original data set as query ex-
amples and the rest as the database.

url url url url
1 1 1
0.8 o 0.
° ~
€]
5]
O 0.6 50
. 5 o.
A o
a ©
D ous g
. 3o
I 5}
H “
B2 Ao,
0
10 100 1000 10 100 1000 10 100 1000 10 100 1000
Length of Fingerprints Length of Fingerprints Length of Fingerprints Length of Fingerprints
url url url url
1 1 1
o
o 0. 0. So. 0.
® —
] o (€] o
0. 0. £ o. © 0.
o 0 o =
o ® - [S]
“ a [oy
o, < o. o 0. 0.
4] = 9] g
o)
[0 o 0
0. . Ao .
10 100 1000 10 100 1000 10 100 1000 10 100 1000
Length of Fingerprints Length of Fingerprints Length of Fingerprints Length of Fingerprints
url url url url
1
o
So. 0. S 0. 0.
a o
s = 3 g
£ 0. < 0. a0, S 0.
o 9 9] —
- ®
w a Pt ®
o w | o
. 0. < 0. Bo. 0.
¢} = |9} g
I @
Ho. 0. Ho0. 0.
o o

10 100 1000 10 100 1000
Length of Fingerprints Length of Fingerprints

10 100 1000
Length of Fingerprints

10 100 1000
Length of Fingerprints

Figure 4: Retrieval results in Precision@K (odd columns) and MAPQK (even columns) of the compared
methods on Url. The z-axis denotes the length of fingerprints, D.

2. Url [18]: The data set contains 2,396,130 URLs and
3,231,961 features. We randomly select 1,000 samples
from the original data set as query examples and the
rest as the database.

Discussions on Webspam: Figure 3 reports the com-
parison results on the Webspam data set which has more
than 16 million features. We observe that our PCWS al-
gorithm generally outperforms all the competitors under all
configurations. Again, as the length of fingerprints D in-
creases, the performance gain of PCWS compared to the
other algorithms becomes clearer. PCWS outperforms ICWS
and [Li, 2015] by about 5% when D = 1024; this improve-
ment over its counterparts might be due to the positive effect
of using one less random variable. PCWS performs much
better than Min-Hash and [Gollapudi et.al., 2006] and it is
superior to the two algorithms by around 25% and 40%,
respectively, when D = 1024. PCWS also shows better per-
formance than [Chum et.al., 2008] and [Haeupler et.al., 2014]
in most cases. In the left subplot of Figure 2 for compari-
son of runtime, PCWS clearly runs faster than ICWS and
[Li, 2015] as the length of fingerprints D increases. For ex-
ample, PCWS performs approximately 30% faster than the
two algorithms when D = 1024.

Discussions on Url: Figure 4 reports the comparison
results on the Url data set which has more than 2 million in-
stances and over 3 million features (in this experiment, each
algorithm is given a cutoff time of 40,000 seconds). Gen-
erally, our PCWS algorithm performs similarly with other
algorithms, and even does better than ICWS with D ranging
from 2 to 8. In the right subplot of Figure 2 for comparison
of runtime, PCWS clearly outperforms ICWS and [Li, 2015];

in particular, PCWS runs nearly 30% faster than ICWS and
around 1.25 times as fast as [Li, 2015] when D = 1024.

4.4 Discussion on Space Efficiency

Finally, we analyze the advantage of our PCWS algorithm
on space efficiency. Recall that our PCWS algorithm is able
to save O(nD) of memory footprint (see Section 3.2), where
n is the number of features and D is the length of finger-
prints, because PCWS generates one less uniform random
variable than ICWS does. This advantage in space com-
plexity may not be remarkable when the size of the univer-
sal set n is small; however, when n is large in most cases of
real-world data sets, the saved memory footprint can be sub-
stantial. For example, Kdd, Webspam, and Url have 20.2
million, 16.6 million and 3.2 million features, respectively,
and our PCWS algorithm can enjoy 150 GB, 130 GB and
24 GB lower memory footprints in the case of D = 1024,
compared to ICWS without accuracy degradation. If the
number of features becomes even larger or more samples of
Min-Hashes are used, the advantage of PCWS on space ef-
ficiency will be more remarkable. Obviously, our PCWS al-
gorithm significantly improves ICWS in terms of both time
and space efficiency, which indicates that PCWS is more
practical.

S. CONCLUSION AND FUTURE WORK

In this paper, we propose Practical Consistent Weighted
Sampling (PCWS) to further improve the efficiency of Im-
proved CWS [13], which is considered as the state-of-the-art
method for real-value weighted Min-Hash. The proposed
PCWS algorithm is mathematically equivalent to ICWS and

1042

preserves the same theoretical properties as ICWS, but with
reduced theoretical complexity in both time and space. We
conduct extensive empirical tests of our PCWS algorithm
and a number of state-of-the-art methods on five real-world
text data sets for classification and information retrieval.
The experimental results show that PCWS is able to achieve
the same (even better) performance than ICWS with 1/5 ~
1/3 reduced empirical runtime and 20% reduced memory
footprint. In the cases of large number of features, PCWS
can save hundreds of GB of memory footprint, which makes
it more practical in dealing with real-world data sets in the
era of big data.

Existing similarity-preserving hashing techniques can only
deal with nested binary sets [14] and tree-structured categor-
ical data [4]. It will be interesting to extend CWS schemes
to hash nested weighted sets, which not only encode the
importance of feature but also preserve the multi-level ex-
changeability [4] of feature, in our future work.

Acknowledgment

This work is partially supported by ARC Discovery Grant
DP140100545.

REFERENCES

A. Z. Broder, M. Charikar, A. M. Frieze, and

M. Mitzenmacher. Min-wise Independent
Permutations. In STOC, pages 327-336, 1998.

C.-C. Chang and C.-J. Lin. LIBSVM: A Library for
Support Vector Machines. ACM Transactions on
Intelligent Systems and Technology, 2(3):1-27, 2011.
M. S. Charikar. Similarity Estimation Techniques from
Rounding Algorithms. In STOC;, pages 380-388, 2002.
L. Chi, B. Li, and X. Zhu. Context-preserving Hashing
for Fast Text Classification. In SDM, pages 100-108,
2014.

O. Chum, J. Philbin, A. Zisserman, et al. Near
Duplicate Image Detection: Min-Hash and Tf-idf
Weighting. In BMVC, pages 1-10, 2008.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive Hashing Scheme Based on p-stable
Sistributions. In SOCG, pages 253-262, 2004.

E. Dumbill. A Revolution That Will Transform How
We Live, Work, and Think: An Interview with the
Authors of Big Data. Big Data, 1(2):73-77, 2013.

S. Gollapudi and R. Panigrahy. Exploiting Asymmetry
in Hierarchical Topic Extraction. In CIKM, pages
475-482, 2006.

S. Gunelius. The Data Ezxplosion in 2014 Minute by
Minute Infographic, Jul 2014.
http://aci.info/2014/07/12/the-data-explosion-in-
2014-minute-by-minute-infographic.

B. Haeupler, M. Manasse, and K. Talwar. Consistent
Weighted Sampling Made Fast, Small, and Easy.
arXiw preprint arXiv:1410.4266, 2014.

T. H. Haveliwala, A. Gionis, and P. Indyk. Scalable
Techniques for Clustering the Web. In WebDB, pages
129-134, 2000.

P. Indyk and R. Motwani. Approximate Nearest
Neighbors: towards Removing the curse of
Dimensionality. In STOC, pages 604-613, 1998.

[10]

[11]

[12]

1043

[13] S. Ioffe. Improved Consistent Sampling, Weighted
Minhash and L1 Sketching. In ICDM, pages 246—255,
2010.

B. Li, X. Zhu, L. Chi, and C. Zhang. Nested Subtree
Hash Kernels for Large-scale Graph Classification over
Streams. In ICDM, pages 399-408, 2012.

P. Li. 0-Bit Consistent Weighted Sampling. In KDD,
pages 665674, 2015.

P. Li and C. Kénig. b-Bit Minwise Hashing. In WWW,
pages 671-680, 2010.

P. Li, A. Owen, and C.-H. Zhang. One Permutation
Hashing. In NIPS, pages 3113-3121, 2012.

J. Ma, L. K. Saul, S. Savage, and G. M. Voelker.
Identifying Suspicious URLs: an Application of
Large-scale Online Learning. In ICML, pages 681-688,
20009.

M. Manasse, F. McSherry, and K. Talwar. Consistent
Weighted Sampling. Unpublished technical report,
2010.

G. S. Manku, A. Jain, and A. Das Sarma. Detecting
Near-duplicates for Web Crawling. In WW W, pages
141-150, 2007.

M. Mitzenmacher, R. Pagh, and N. Pham. Efficient
Estimation for High Similarities Using Odd Sketches.
In WWW, pages 109-118, 2014.

A. Rajaraman, J. D. Ullman, J. D. Ullman, and J. D.
Ullman. Mining of Massive Datasets, volume 1.
Cambridge University Press Cambridge, 2012.

E. Schonfeld. Google Processing 20,000 Terabytes A
Day, And Growing, Jan 2008.
http://techcrunch.com/2008/01/09/google-processing-
20000-terabytes-a-day-and-growing.

A. Shrivastava. Exact Weighted Minwise Hashing in
Constant Time. arXiv preprint arXiv:1602.08393,
2016.

A. Shrivastava and P. Li. Densifying One Permutation
Hashing via Rotation for Fast Near Neighbor Search.
In ICML, pages 557565, 2014.

A. Shrivastava and P. Li. In Defense of Minhash Over
SimHash. In AISTATS, pages 886894, 2014.

D. Sullivan. Google Still Doing At Least 1 Trillion
Searches Per Year, Jan 2015.
http://searchengineland.com/google-1-trillion-
searches-per-year-212940.

D. Tam. Facebook processes more than 500 TB of data
daily, Jul 2014. http://www.cnet.com/news/facebook-
processes-more-than-500-tb-of-data-daily.

W. Wu, B. Li, L. Chen, and C. Zhang. Canonical
Consistent Weighted Sampling for Real-Value
Weighted Min-Hash. In ICDM, pages 1287-1292, 2016.
D. Yang, B. Li, and P. Cudré-Mauroux. POIsketch:
Semantic Place Labeling over User Activity Streams.
In IJCAI pages 26972703, 2016.

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

24]

25]

[26]

27]

(28]

29]

(30]

