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GRAPHICAL ABSTRACT 

 

 

 

Highlights  

 

 Potential mechanisms for HOC sorption were studied 

 H-bond formation and EDA interactions were the main sorptive mechanism 

 Specific direction of π-π EDA interactions was identified by 1H NMR analysis 

 fBC domains were responsible for different sorptive mechanisms at different pH 

 fBC showed excellent removal efficiency of hydrophobic organic contaminants 

 

Abastract 

The sorption of five potent endocrine disruptors as representative hydrophobic organic 

contaminants (HOCs) namely estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol 

(EE2) and bisphenol A (BPA) on functionalized biochar (fBC) was systematically examined, with 

a particular focus on the importance of π-electron-donor (phenanthrene: PHEN) and π-electron-

acceptors (1,3-dinitrobenzene: DNB, p-amino benzoic acid: PABA) on sorption. Experimental 

results suggested that hydrogen-bond formation and π-π-electron-donor-acceptor (EDA) 

interactions were the dominant sorption mechanisms. The sorption of HOCs decreased as E1 > E2 

> EE2 > E3 > BPA based on the Freundlich and Polanyi-Mane-models. The comparison of 
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adsorption coefficient (Kd) normalized against hexadecane-water partition coefficient (KHW) 

between HOCs and PHEN indicated strong π-π-EDA interactions. π-π interactions among DNB, 

PHEN and HOCs were verified by the observed upfield frequency (Hz) shifts using proton nuclear 

magnetic resonance (1H NMR) which identified the specific direction of π-π interactions. UV-vis 

spectra showed charge-transfer bands for π-donors (PHEN and HOCs) with the model π-acceptor 

(DNB) also demonstrating the role of π-π EDA interactions. The role of π-electron-donor and π-

electron-acceptor domains in fBC was identified at different solution pH.  

 

Keywords: HOCs; EDCs; π-π-EDA interaction; Hydrogen bonds; fBC   
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1. Introduction 

Pyrogenic carbonaceous materials (CMs) such as mesoporous carbon, biochar, activated carbon, 

graphene and carbon nanotubes (CNTs) exhibit strong sorption affinities for a wide range of 

organic contaminants including polycyclic aromatic hydrocarbons, benzene derivatives, phenolic 

compounds, and pharmaceuticals such as antibiotics, endocrine disrupting chemicals (EDCs) and 

pesticides [1-7]. The interactions of such contaminants with CMs in water, sediments and soil may 

result in strong or weak bindings that can significantly affect the environmental fate of 

contaminants and their remediation rates [8-10]. The underlying physical and chemical phenomena 

potentially responsible for these apparent interactions of contaminants with CMs are of great 

importance. Further, their persistence and potential risks to aquatic life is also important. Organic 

contaminants comprise broad classes of chemicals, some of which are persistent in soils, sediments 

and water, with potential for long-term impacts. The conventional idea for ionic organic species is 

that they may undergo Coulombic attraction/repulsion at charged sites on the adsorbent in addition 

to the weak forces available to uncharged molecules, including London-van der Waals force, H-

bonding, and the hydrophobic effect (solute exclusion from water) [2, 11]. However, noncovalent 

forces are ubiquitous between chemical interactions as they control diverse phenomena such as 

boiling points of liquids, solvation energies, and the structures of molecular crystals. π-π 

interactions constitute one of the most important classes of noncovalent interactions, contributing 

to biomolecular structure, chemical bonding, and the structure and properties of π-conjugated 

materials (such as biochar and CNTs) of interest having π-structure benzene or aromatic ring [12]. 

The elucidation of molecular-level interactions controlling sorption of non-ionic compounds and 

the influence of solution-phase composition on sorption are of considerable theoretical and 

practical importance. This study is therefore aimed to compare the sorptive mechanism of five 

non-ionic endrocrine disruptor compounds (EDCs) such as E1, E2, E3, EE2 and BPA as 

representative HOCs on funcitionized biochar (fBC) based on their physicochemical properties 

(Table 1). fBC was selected for its higher soprtion capacity of organic pollutants (in both single 
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and competative moods) due to the presence of multifuctional groups on its surface. In addition, 

the production and operation cost of fBC is relatively low. Further, fBC can be used repetatively 

after regeneration [14].  

In this paper, the interaction mechanisms of HOCs and fBC were evaluated based on 

theoretical, experimental and analytical findings. The magnitude of non-hydrophobic interactions 

was assessed by “normalizing” the hydrophobic effect. The fundamental role of non-hydrophobic 

interactions namely hydrogen-bond formation and π-π interaction based on adsorption-pH profiles 

of HOCs by fBC was examined. Further, we also identified the probes of structure-adsorption 

property relationships for different π-electron-donor rings of HOCs (due to –OH groups on arene 

units) and PHEN (as model HOC) vs π-electron-acceptor rings of model compounds (DNB and 

PABA). The potential role of π-electron-donor-acceptor domains in fBC at different pH was 

predicted based on equilibrium sorption distribution coefficient and sorption capacity in the π-

electron-donor-acceptor systems. We also evaluated several potential causes of sorption 

interactions, including pH effects on sorbent hydrophobicity, π-H-bonding, effects of solution 

acidity on solute activity coefficient and the occurrence of π-π EDA interactions with the π-

electron-acceptor and donor sites of fBC. The role of π-π interactions was assessed by solution-

phase proton nuclear magnetic resonance (1H NMR) and ultraviolet-visible (UV-vis) spectroscopic 

studies by inspecting the behaviour of π-electron-donor compounds (HOCs and PHEN) in 

comparison with π-electron-acceptor (DNB) systems. 

 

2. Experimental 

2.1. Chemicals 

E1 (99%), E2 (> 98%), E3 (> 97%), EE2 (98%), BPA (99%), phenanthrene, 1,3-dinitrobenzene, 

p-aminobenzoic acid, hexadecane, 2-nonanone (NON-2), and organic solvents such as methanol, 

methanol-d4, formic acid (99.9%), and acetonitrile of HPLC grade were purchased from Sigma-

Aldrich, Australia. 
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2.2. Materials 

Eucalyptus globulus wood was used to produce biochar by heating the wood particles at 380 °C 

for 2 h in a reactor under continuous nitrogen gas supply and then activated using phosphoric acid 

according to our previous studies [13-15]. Brifely, biomass and phosphoric acid mixture was then 

heated at 600 °C for 2 h under continuous nitrogen supply at 2.5 psi, cooled at room temperature, 

and washed with distilled water 4 times while adjusting pH to 7, followed by drying overnight at 

120 °C, to obtain the activated biochar. The activated biochar product named as functionalized 

biochar (fBC) based on its surface characteristics [14-15]. Structural analysis of carbon network 

showed that fBC was composed of mesopore (2-50 nm) and macrospore (> 50 nm) structure. X-

ray photoelectron spectroscopic (XPS) results indicated that fBC surface was rich in different 

functional groups especially graphitic carbon (~57%), phenolic or alcoholic (C-O-, ~13.5%), 

carbonyl or quinone (C=O, ~4%), carboxylic or ester (COO-, ~3%), π-π* transition (~1%), 

quarternary nitrogen (~1%), and polyphosphates and/or phosphates (C-O-PO3, ~1%) (Table A1). 

The point of zero charge for fBC was pH 2.2.  

 

2.3. Batch sorption experiments 

HOC sorption experiments in distilled water were conducted in 50 mL glass vials with Teflon-

lined screw caps at 25 oC in triplicate on an orbital shaker over 48 hours using fBC. The sorption 

of HOCs using prestine biochar was not studied due to its lower sorption capacity. The effects of 

pH and sorption isotherm experiments of HOCs (at pH 3.0-3.5) were performed at the same 

conditions. The control experiments without sorbents were also conducted. The fBC dosage was 

selected for 15-99% sorption of each HOC at different concentrations. Single sorption experiments 

of PHEN, NON-2; DNB and PABA were carried out at three different pH ranges i.e. pH 1.5-1.7, 

3.0-3.5, and 8.0-9.5, in triplicate. The effects of competitors such as PHEN, PABA, and DNB for 

HOC sorption were also carried out under the same conditions. The supernatants were filtered 

through a 0.45 μm PTFE filter and analyzed by high-performance liquid chromatography (HPLC) 
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and by UV-vis spectroscopy. Detailed methods for all solutes are presented in supporting 

information.    

 

2.4. 1H NMR and UV-Vis studies for π-π EDA interactions in solution 

UV-Vis Spectroscopic spectra of test solution of HOCs, π-donor-DNB and π-acceptor-PHEN in 

water were measured at room temperature using Shimadzu (UV-1700) instrument. Proton nuclear 

magnetic resonance (1H NMR) spectra were recorded at a specific concentration of HOCs and 

donor-acceptor solutes at room temperature using an Agilent 500 MHz NMR instrument. Samples 

were prepared in methanol-d4 and measured after 24-30 hours. The chemical shifts (δ) were 

recorded by internally referenced to methanol-d4 solvent and observed proton frequency shift was 

calculated based on NMR instrument frequency and chemical shift.   

 

2.5. Data fitting 

Different models employed to fit the adsorption isotherms are as follows:  

Freundlich model: 𝑆𝑒 =  𝐾𝑓 𝐶𝑒
𝑛

       (1) 

Polanyi-Mane model (PMM): 𝑆𝑒 = 𝑆𝑚𝑎𝑥
𝑝 + (𝑍 × (𝑅𝑇 ln (

𝐶𝑠

𝐶𝑒
))

𝑑

)   (2) 

where Se is the solid-phase sorbed capacity (μg kg-1) of HOCs, 𝑆𝑚𝑎𝑥
𝑝

 is the maximum adsorption 

capacity (μg kg-1) from PMM, n is a dimensionless number related to surface heterogeneity, and 

Kf is the Freundlich affinity coefficient (μg1-n Ln kg-1). Ce represents the aqueous-phase 

concentration of solute (μg L-1) at 25 0C, whereas Cs (μg L-1) stands for solubility of each HOC at 

25 0C. Z and d are PMM adsorption fitting constants, R is universal gas constant (8.314 × 10-3 kJ 

mol-1 K-1), and T (K) is absolute temperature. All model equations were fitted by origin-pro, with 

model parameters being obtained with standard coefficient of determination (r2) and adjusted 

coefficient of determination (radj
2). 
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The single point adsorption distribution coefficient (Kd) of HOCs was calculated using 

equation (3): 

Partition model: Kd = Se/Ce       (3) 

where Ce = 0.002Cs based on the fitting results using PMM. We used Ce/Cs ration of 0.002 to get 

maximum distribution coefficient. 

Equilibrium sorbed volume of each HOC can be calculated based on initial and equilibrium 

concentrations using following equation: 

Sv = (C0-Ce) V/ (1000 m ρHOC)   (4) 

where Co and Ce (μg L-1) are the initial and equilibrium concentration of HOCs; V (L) is the 

solution volume in the system; m (g) is the mass of fBC sorbent in the system; and ρHOC (cm3 g-1) 

is the density of the solute. 

 

3. Results and Discussion 

3.1. Interactions of HOCs with fBC 

The maximum single point Kd value was observed for E1 (2.90  106 L kg-1) with the minimum 

for BPA (3.03  104 L kg-1); thus, E1 was found to be adsorbed more strongly onto fBC surface 

than other HOCs (Fig. 1a and Table A2). The adsorption coefficient values followed the order of 

E1 > E2 ≥ EE2 > E3 ≈ BPA. The PMM model parameters for sorption isotherm of each HOC 

shows that the Polanyi theory may be useful to describe the sorption of HOCs on fBC, as the 

Polanyi theory relates to competitive sorption of organic compounds as micropore filling (Fig. A1 

and Table A3). However, we used single solute to check the viability of PMM model. At zero 

adsorption potential, any undeformed sorbent should have a limiting volume to the total available 

pores for adsorption based on Polanyi pore filling model [16]. The adsorbed volume capacities of 

E1, E2, E3, EE2 and BPA, calculated from their mass capacities and respective solid-phase 

density, were 24.0, 23.0, 15.0, 20.0, and 17.0 cm3 kg-1, respectively [2]. The Dubinin-Astakov 

micropore surface area of fBC was 520.0 m2 kg-1 and the limiting micropore volume was 0.24 
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(cm3 kg-1) [15]. Thus, the micropore volume of fBC was at least 63-100% less than that of the 

adsorbed volume capacity of HOCs. This result is contradictory with the pore-filling mechanism 

for un-deformable sorbents [16-17]. Therefore, pore filling cannot be the dominant mechanism for 

the sorption of HOCs by fBC. Polanyi theory, however, is applicable for either pore-filling or flat 

surface adsorption and adsorption parameters correlate with the material surface defects curvatures 

of carbon materials, which can affect the adsorption significantly. BET surface area of fBC was 

found to be 1.18 (m2 g-1) [15]. Thus, we hypothesize that surface adsorption of HOCs (rather than 

pore filling) is the dominant sorption mechanism and which came from different functional groups 

of fBC surface. Therefore, several factors need to be considered for surface adsorption of HOCs: 

(i) potential energy of adsorption sites on solute-coated sorbent surface (i.e. fBC) should be lower 

and more homogeneous than that on un-coated sorbent surface, (ii) sorbed  solute molecules on 

the sorbent surface should have attractive forces for solute molecules, and (iii) the maximum 

sorption capacity depends on the sorbent surface area and its relative functional groups [16]. 

However, the higher solid phase concentration of HOCs could be attributed to the functionalization 

of biochar resulting in the formation of additional sorption sites.  

Freundlich isotherm radj
2 values of HOCs provided a slightly better fit than PMM isotherm 

radj
2 values indicating the role of surface functional groups for multilayer sorption of HOCs and 

the heterogeneity of the sorbent. Freundlich parameter ‘n’ values of HOCs ranged from 0.17 to 

0.27, and all solute isotherms were nonlinear for all HOCs indicating that favourable for multilayer 

adsorption and heterogeneous energy distribution of fBC (Tables A3 and A4). Hence, the net 

interactive forces involving the solvent, solute, and the adsorbent are assumed to be responsible 

for the solute adsorption by sorbent surface activity in addition to pore filling in our fBC [18]. 

Among different forces of attraction, van der Waals force is primarily considered the dominant 

force for gas or vapour adsorption onto any hydrophobic adsorbent surface (such as CNTs), which 

may also be significant for adsorption from the aqueous phase [18]. Considering only van der 

Waals forces, however, may not be applicable in cases when dipole-dipole, induced-dipole, and 
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H-bonding or π-π donor-acceptor interactions exist, typically in the aqueous phase, where these 

forces can be necessary especially for chemicals and adsorbents with specific functional groups. 

Different possible interactions including H-bonds, hydrophobic effects, π-π bonds, covalent and 

electrostatic interactions can be observed and are responsible for the adsorption of organic 

chemicals on the surface of fBC. The strengths of such interactions and their and contribution to 

the overall sorption are a function of the properties of both organic chemicals and fBC surface 

[18]. Based on pH effects as shown in Fig. 1b, lower sorption of HOCs was expected below the 

point of zero charge of fBC due to the repulsion of same charged species (i.e. positive fBC surface 

and protonated phenolic –OH groups of HOCs). Above the point of zero charge of fBC, higher 

sorption of HOCs is expected due to oppositely charged species (negative fBC surface and neutral 

or deprotonated HOCs). Aside from electrostatic interactions, EDA interactions, H-bond 

formation and hydrophobic effects may play vital roles. Hence, at pH below 2.2, lower sorption 

was found, which was mainly due to EDA and hydrophobic effects.  The maximum sorption of 

HOCs at pH 3.0-3.5 could be due to EDA interactions together with strong H-bond formation, 

hydrophobic effects and electrostatic interactions. At pH 8.0-9.5, the sorption for each HOC was 

also slightly higher than pH 3.0-3.5, which might be due to H-bond formations and EDA 

interactions. Details on the noncovalent forces based on experimental findings are presented in the 

following subsections.  

 

3.2. Role of H-bond and π-H bond for HOC sorption 

pH impacted sorption of all HOCs (Fig. 1b), with the most significant effect at pH range 3.0-3.5 

and the least significant effect above pH 9.5. We categorized the adsorption data fall into three 

distinct pH ranges: pH below 2.2, pH 3.0-3.5, and pH 8.0-9.5. In general, the variations of sorption 

at different pH indicated that H-bond formation was involved. 

To ensure that the effect of solution pH on HOC sorption was not a result of changes in the 

aqueous phase and solute activity coefficients, the solubilities of HOCs, PHEN and DNB were 
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measured in three different solution pH values (Table 1). The fact that no significant changes in 

solubilities were observed indicated that the changes in sorption with pH resulted from the effects 

on sorbent-sorbate interactions, not solute-solvent interactions. Previously, Zhu et al. [19] studied 

PHEN interaction mechanisms on soil organic matter and concluded that sorption of PHEN was 

solely due to π-π interactions by rejecting solute hydrophobicity, H-bonding, solute co-planarity, 

solute activity coefficient, and mineral surface proportionating. We also observed that sorption of 

PHEN was high at low pH (Fig. 2a) and the solubility of PHEN was not affected by solution pH. 

One may assume that the variation of Kd values at different pH for sorption of PHEN was related 

to H-bond formation. However, H-bond and π-H-bond formation at low pH by fBC can be ruled 

out based on the following assumptions. NON-2 is a compound commonly known as stronger H-

acceptor and non π-donor than aromatic hydrocarbons [19]. If the hypothesis was correct, plausible 

explanation of NON-2 sorption (at low pH) is that NON-2-sorption should increase as pH 

decreases. This is due to H-bond formation by a polar ketonic group of NON-2 with proton groups 

of sorbent, and π-H-bond formation by NON-2 with the aromatic π-system of sorbent (i.e. graphitic 

unit of fBC). However, the opposite trend where the sorption of NON-2 on fBC was decreasing 

with pH decrease was observed (Fig. A2). We also carried out the solubility test for NON-2 and 

found no changes in solubilities at pH 1.8 and pH 3.5 but at pH 8.5 solubility decreased by ~25%. 

Also, PHEN molecule does not have any oxygenated functional group to form H-bonds with a 

surface functional group of fBC. However, sorption of NON-2 at different pH was mainly due to 

hydrophobic effect. Thus, H-bonding and π-H-bonding (by the withdrawal of electron density from 

the ring by the H-bond) of fBC cannot explane the acid-enhanced sorption of PHEN19. Therefore, 

sorption of PHEN was mainly due to hydrophobic effects and π-π-EDA interactions between 

PHEN and fBC. On the other side, selected HOCs have at least one hydroxyl group along with 

other groups connected with arene units in their structure. Consequently, sorption interactions of 

HOCs will not be similar in all cases as PHEN. For example, a variation of solution pH indicates 

that H-bond formation is associated with surface functional groups on fBC and HOCs. Hence, 
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after excluding π-H-bonding, it can be concluded that the pH-dependent sorption of HOCs is 

undoubtedly due to their H-bonding involvement plus other interactions such as π-π EDA 

interactions, and hydrophobic interactions. However, the contribution of H-bonding to the overall 

adsorption of HOCs is unknown. 

 

3.3. Normalization to hydrophobic effects  

The role of hydrophobic interactions was premeditated using inert solvent-n-hexadecane. Higher 

single point adsorption coefficient (Kd) of HOCs attributed to the higher sorption of HOCs by fBC. 

Thus, the normalization of Kd values by hexadecane-water partition coefficient (KHW) could rule 

out the hydrophobic effect, and potential adsorption mechanism could be due to π-π interactions. 

We measured the hexadecane-water partition coefficient (KHW) of HOCs and PHEN at 25 oC 

(Table 1). The hydrophobicity followed the order of PHEN > E1 > E2 > EE2 > E3 > BPA. The 

resulting parameters are listed in Tables 1 and A4. The normalized partition coefficient (Kd/KHW) 

of HOCs showed significantly higher values than PHEN (Fig. 3a) indicating the significant role 

of π-π interactions for HOCs sorption by fBC. Moreover, this relationship was directly related to 

Kd and KHW of HOCs (Fig. 3b).   

 

3.4. Evidence for π-π EDA interactions 

3.4.1. Evidence from experimental finding 

From literature, it has been reported that the adsorption of chemical contaminants on CMs 

increases with increasing oxygen-containing functional groups, which is partially attributed to π-

π EDA interactions [3,13,20]. Surface carboxylic acid, nitro, and ketonic groups of CMs can act 

as an electron acceptor to form π-π EDA interactions with aromatic molecules and thereby enhance 

sorption [21]. On the other hand, graphitic carbon like structure, hydroxyl and amine groups 

present in different CMs can serve as π-electron-donor site depending on the type of 

functionalization. The strongest π-π interactions are between oppositely charged arene units, while 
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the weakest one are between like polarized units [21]. All HOCs used in this study have at least 

one hydroxyl group connected with arene unit and we hypothesis that this arene unit could act as 

the π-electron-donor site due to resonance effects. If the hypothesis is correct, then the presence of 

a competitor (π-electron acceptor) in the same solution should affect sorption capacity to some 

extent. Thus, to prove this concept, we provided both π-electron-donor (PHEN) and π-electron-

acceptors (DNB and PABA) at different concentrations in each HOC solution at three different pH 

(pH 1.5-1.8, 3.0-3.5, and 8.5-9.5) individually and observed their effects.  

Apparent view of the Figs 4 and A3 provided an overall idea of the competitors’ effects on 

HOC sorption. DNB has a higher influence on the reduction of sorption capacity of HOCs than 

PHEN. This change is high at pH 3.0-3.5 compared to other pH values. For example, in the 

presence of PHEN, no significant change in the solid-phase sorption capacity of BPA observed. 

This indicates the minor role of π-electron-donor-donor interactions as arene unit in BPA served 

as the π-electron-donor site. In contrast, the presence of DNB reduced the solid-phase sorption 

capacity of E1 and BPA by ~48% and ~25%, respectively, clearly supporting the role of EDA 

interactions. However, the presence of PHEN also affect sorption capacity to few extent, and this 

might be due to co-solute effects. Similar strong EDA interactions have also happened for E2, E3 

and EE2 (Fig. A3). Thus, DNB had a negative effect on the adsorption of HOCs. This result is 

consistent with the π-π-EDA interactions after normalizing hydrophobic effects as shown in Fig. 

3a, indicating the protagonist role of the EDA interactions in solution.  In addition, we also used 

another model π-electron-acceptor such as PABA and obtained similar results (Figs A4 and A5). 

Thereby, these findings indicated the protagonist role of EDA interactions in the sorption of EDCs 

by fBC.   

Moreover, a previous study hypothesised that increasing solution pH apparently facilitated 

deprotonation of the acidic functional groups (-COOH, -OH) of CMs [3]. Deprotonated functional 

groups ( e.g. -COO- and -O-)  might modify the hydrophobicity and the net charge on the carbon 

surface, which can further promote the π-electron-donor ability of the graphene surface (-COO- is 
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a strong electron donor), thereby enhancing π-π EDA interactions of two nitroaromatics (e.g. DNB 

and 1,3,5-trinitrobenzene as π-electron acceptors) [3].  They observed that sorption of 

nitroaromatics to single-walled CNTs increased by 2-3 times with the increase of solution pH. 

Thus, similar interactions may apply to the system in this study. We observed that sorption of DNB 

by fBC was slightly increased when pH was increased from 3.0-3.5 to 8.5-9.5, indicating the role 

of EDA interactions between DNB and deprotonated acid functional group (-COO-) of fBC (Fig. 

2b). All these results indicated that π-π-electron-donor-acceptor interaction was one of the 

significant forces responsible for the overall HOC-fBC interactions.  

3.4.2. UV-Vis spectroscopic evidence 

Fig. 5 shows the presence of π-π charge-transfer absorbance band in the UV region for the mixture 

of DNB (as an acceptor), PHEN (as a donor) and HOCs (such as BPA, E3 and E1 as π-donor). 

Noteworthy deviation of adsorption intensity was observed for PHEN and DNB solutions (Fig. 

5a). A similar result was also observed for DNB and E1 or BPA interactions indicating the π-π 

EDA interactions took place (Fig. 5b-d). On the other hand, no interaction (no deviation of 

adsorption intensity) was observed for the mixture of PHEN and E1/BPA/E3.  We also increased 

the donor-acceptor concentration and similar result observed which indicate the EDA interactions 

between π-electron-donor site and π-electron-acceptor site of the selected model compounds (Fig. 

5b). Hence, we predict same interactions in solutions at different pH happened between π-electron 

donor and π-electron acceptor sites of fBC and π-electron donor site in the target HOCs.  

3.4.3. 1H NMR spectroscopic evidence: specific direction of π-π EDA interactions 

Previously, Zhu et al.[19] and Wijnja et al.[22] used 1H NMR spectroscopy to examine π-π 

interactions in solutions among PHEN, quinones, N-heteroaromatic cations, naphthalene, 

pentamethylbenzene, 1,3,5-benzenetricarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid 

and pyridine. In this study, we also used 1H NMR tool to demonstrate molecular complexation in 

solution between π-electron-donor (PHEN) and π-electron-acceptor (DNB) and their effect on π-

π interactions in a solution of E1 and BPA (as π-donor due ), separately.  We assume that π-π 
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interactions might occur between subunits attached to fBC surface due to π-electron-donor (i.e., 

graphitic carbon, OH, and NH2) and/or π-electron-acceptor (e.g., COOH, C=O, C-O-PO3) groups. 

Our assumption is reasonable because π-π interactions occur, in here, readily in a nonaqueous 

solvent (methanol-d4) and π-π interactions have already been demonstrated in solid-liquid-phase 

systems based on donor-acceptor competitor experimental proof.    

In 1H NMR, it has long been known that placing a nucleus above or below the plane of an 

aromatic structure causes electronic shielding due to “ring current” effects. Moreover, placing a 

magnetic nucleus along the edge of an aromatic ring results in the opposite ring current effects so-

called deshielding effect. Hence, because of the parallel-planner geometry of a π-π complex 

system, one may easily expect an upfield chemical shift (δ) of protons on one ring induced by the 

ring current effect of the opposing ring [3]. This has been used as a tool to identify π-π interactions 

in solution for different compouds [3, 19]. Similarly, our case is entirely consistent with the 

formation of π-π complexes as a function of interactions due to observed upfield chemical shift in 

complex mixtures of π-donor and π-acceptor model compounds.  

Therefore, we calculated the observed frequency (Hz) shift for specific proton (in 

respective carbon of arene unit) in the same orientation for the respective solute. The specific 

direction of π-π interactions orientation was identified for each solute. Upfield shifts of protons at 

different positions of each solute occurred for the following combinations: (i). PHEN (positions a, 

b, c in Figs 6a & d) in a mixture solution of PHEN and DNB; (ii). DNB (positions a, b, and c in 

Figs 6a & d) in a mixture solution of PHEN and DNB; (iii). E1 (positions b, and c in Figs 6b & 

d) in the mixture solution of E1 and DNB; (iv). DNB (positions a, b, and c in Figs 6b & d) in the 

mixture solution of E1 and DNB; (v). BPA (positions b, and c in Figs 6c & d) in the mixture of 

BPA and DNB; (vi). DNB (positions a, b, and c in Figs 6c & d) in the mixture of BPA and DNB.  

No upfield frequency changes for respective protons were observed (Hz = 0) from the interactions 

of E1 and BPA with PHEN (Fig. 6).  
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These results show that arene unit of HOCs served as a π-electron-donor unit due to 

presence of hydroxyl group. Hence, clear π-π EDA interactions observed for DNB and π-electron-

donors (i.e. E1 and BPA) in solution and the interactions were specific toward defined protons in 

each arene unit (i.e. π-π-electron-donor-acceptor system). We predict that the similar interactions 

also responsible for other HOCs such as E2, EE2 and E3. As fBC consists of both π-electron-

donors and π-electron-acceptors groups, thereby, π-π EDA interactions happened at different pH. 

In addition, the NMR results for different HOCs did not provide evidence of π-H-bonding, as no 

downfield shifts of protons were observed for different complexes indicating the insignificant 

involvement of π-H-bonding [19]. 

 

3.5.  Role of π-donor and π-acceptor domains in fBC structure at different pH  

CMs consist of graphitic sheets and different functional groups. For example, CNTs contain more 

than 95% graphitic carbon. Hence, the hydrophobicity of CNTs is an important factor affecting 

the sorption of solutes. Functionalization of CMs can introduce hydrophilic moieties to the surface 

of CMs and thereby affecting the sorption affinity of the contaminants [23, 24]. For example, the 

introduction of O-containing moieties either increases or decreases sorption of organic 

contaminants and might act as π-electron-donor (e.g. -OH group) and π-electron-acceptor (e.g. -

COOH, C=O, -COO-) sites [14, 25, 26]. The presence of aromatic amine groups (hetero) in the 

polyaromatic surface of CMs can act as π-electron-acceptor in forming π+-π EDA interactions with 

the π-electron-rich surface of CMs [2]. XPS result of our fBC showed that fBC consist of 81.76% 

C, 13.32% O, 0.8% N and 2.3% P. Hence, fBC surface composed of C=C, –C-OH, -COOH, C=O, 

heteroaromatic amine and pentavalent tetra coordinated phosphorus (PO4 i.e. C-O-PO3) groups. 

These functional groups can serve as either π-electron-donor and π-electron-acceptor or both. 

Therefore, we can predict π-π interactions based on solution chemistry and effects of competitors 

(π-donor or acceptor) at different solution pH. Thence, the presence of π-electron-donor and 
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acceptor compounds in the solution can hamper the sorption significantly, and this result can reveal 

that the presence and the role of π-donor/acceptor domains in any materials.  

In general, π-electron-donor site of any material binds to a π-electron acceptor compound and 

vice versa. At pH 8.0 to 9.5, fBC surface might serve as the π-electron-acceptor site due to surface 

ketonic, ester, and hetero-N-cyclic aromatic groups [2]. Also, zeta potential of fBC was found 

profoundly negative at this pH (-48.0 mV) indicating the presence of the deprotonated carboxylic 

(-COO-, a strong electron-donor), which could serve as hydrophobic moiety and form H-bonds 

together with EDA interactions. The π-electron-donor ability also came from graphitic carbon; 

surface –OH (if not dissociate); and –NH2 groups. Therefore, at this pH range, from the 

comparison of Kd values of PHEN and DNB, it can be concluded that π-electron-donor ability of 

fBC is stronger than π-electron-acceptor groups (Fig. 2). However, both groups are active for EDA 

interactions. Furthermore, sorption of HOCs did not change significantly in the presence of π-

donor PHEN (indicating HOCs served as π-donor groups) and changed a lot in the presence of 

DNB and PABA (Figs 4 and A3-A5). Therefore, we assume π-electron-donor groups dominants 

over π-electron-acceptor groups for EDA interactions, but this domination is not strong as like as 

acid enhanced sorption of HOCs; PHEN; PABA and DNB (at pH 1.5-1.7).  

At pH 3.0-3.5, we predict both π-electron-donor and π-electron-acceptor domains of fBC were 

active to form strong EDA interactions and strong H-bonds. This can be confirmed by the higher 

sorption of all HOCs (Fig. 1b). Thus, maximum pH is from EDA interactions as fBC surface 

comprises of π-electron-acceptor (e.g. –COOH, C=O, hetro-N-cyclic, C-O-PO3) and π-electron-

donor (e.g. graphitic carbon of fBC, –OH, –NH2) groups. Similar interpretation for EDA 

interactions can be made based on Fig. 2, where sorption of PHEN was significance over pH 8.0-

9.5. The zeta potential value of fBC at this pH was -18.0 mV and deprotonation of surface –OH 

groups was insignificant at this pH (due to pKa sorption at this value of surface –OH group is 8.5-

10) indicating the role of H-bonds formations together with EDA interactions [27]. Also, pKa value 

of each HOC is more than 10 (Table 1). Thus, charge-assisted H-bond formation also played an 

ACCEPTED M
ANUSCRIP

T



 
 

18 
 

imported role for the maximum sorption of HOCs. H-bonds formation can also come from ketonic 

groups or ester groups of fBC as the maximum sorption of NON-2 (as H-acceptor) was found at 

pH 3.0-3.5 indicating the role of H-bond formation. These findings indicated the role of both π-

electron-donor and acceptor domains of fBC surface for the sorption of HOCs, PHEN and DNB.  

The sorption of PHEN, PABA and DNB was increased considerably when the solution pH was 

low (1.5-1.7) indicating the presence of both π-electron-donor and π-electron-acceptor groups on 

fBC surface (Figs 2 and 7). Also, at pH below 1.8, fBC surface became positive (+4.5 mV), 

indicating that the surface hydroxyl, carboxyl and amino groups of fBC became protonated (i.e. 

COOH2
+, -OH2

+, -NH3
+). Therefore the H-bonds formation by fBC at this pH would play a minor 

role. Graphene surface of fBC could serve as the π-electron-donor site [28], and ketonic group, 

ester groups, C-O-PO3 and hetero-N-cyclic groups of fBC might serve as the π-electron-acceptor 

groups. Hence, EDA was the main sorption mechanism. Finally, HOC sorption in the presence of 

PHEN, PABA and DNB (Figs 4 and A3-A5) also indicated the duel behaviours of fBC surfaces 

at this pH. Hence, at this pH range, both π-electron-donor and π-electron-acceptor groups were 

significantly active for the sorption of opposite π-electron compounds. The EDA interactions were 

the strongest interactions among other interactions at this pH range. Therefore, fBC surface 

consists of different functional groups, and their behaviours change significantly with the change 

of solution chemistry.  

 

4. Conclusions 

The affinity of functinalized biochar toward HOC sorption showed excellent results. The main 

causes of this affinites are π-π-EDA interactions and hydrogen bond formation together with other 

sorption mechnisms such as pore filling, electrostatic attractions and hydrophobic effect. Different 

theoritical, instrumental and experimental results for potential cause of hydrogen bond and π-π-

EDA interactions were undertaken. Most importantly, specific direction of π-π-EDA interactions 

was identified. In addition, π-electron-donor and π-electron-acceptor domains in fBC were 
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responsible for different sorptive mechanism at different solution pH. Therefore, functinalized 

biochar  has the capability for the sorptive removal of a wide range of HOCs from aqueous 

solutions. 

 

Conflict of Interests 

The authors declare no competing financial interest. 

 

Acknowledgements 

We thank New Forest Asset Management Pty Ltd., Portland, Victoria, Australia for 

donating Eucalyptus globulus wood sample. We acknowledge a scholarship from the University 

of Technology Sydney.  

 

Appendix A: Supporting data 

 

References 

[1] X. Zhang, B. Gao, A. E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered 

carbon materials: A review, J. Hazard. Mater. 338 (2017) 102-123. 

[2] F. Xiao, J. J. Pignatello, π+–π Interactions between (Hetero) aromatic amine cations and the 

graphitic surfaces of pyrogenic carbonaceous materials, Environ. Sci. Technol. 49 (2015) 

906-914. 

[3] J. Chen, W. Chen, D. Zhu, Adsorption of nonionic aromatic compounds to single-walled 

carbon nanotubes: effects of aqueous solution chemistry, Environ. Sci. Technol. 42 (2008) 

7225-7230. 

[4] T. Matteo, F. Engel, P. G. Weidler, T. Scherer,  A. I. Schäfer, Adsorption of steroid 

micropollutants on polymer-based spherical activated carbon (PBSAC), J. Hazard. 

Mater. 337 (2017) 126-137. 

ACCEPTED M
ANUSCRIP

T



 
 

20 
 

[5] R. Febelyn, A. K. Sarmah, W. Gao, Synthesis of magnetic biochar from pine sawdust via 

oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution, J. 

Hazard. Mater. 321 (2017) 868-878. 

[6] S. Danna, S. Deng, T. Zhao, B. Wang, Y. Wang, J. Huang, G. Yu, J. Winglee,  M. R. 

Wiesner, Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical 

adsorption and subsequent degradation by ball milling, J. Hazard. Mater. 305 (2016) 156-

163. 

[7] A. U. Rajapaksha, M. Vithanage, M. Ahmad, D.C. Seo, J.S. Cho, S.E. Lee, S. S. Lee,  Y. S. 

Ok, Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar,  J. 

Hazard. Mater. 290 (2015) 43-50. 

[8] M. T. Jonker, A. A. Koelmans, Sorption of polycyclic aromatic hydrocarbons and 

polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: 

mechanistic considerations, Environ. Sci. Technol. 36 (2002) 3725-3734. 

[9] J. Zhou, R. Liu, A. Wilding, A. Hibberd, Sorption of selected endocrine disrupting chemicals 

to different aquatic colloids, Environ. Sci. Technol. 41 (2007) 206-213. 

[10] L. Joseph, Q. Zaib, I. A. Khan, N. D. Berge, Y.G. Park, N. B. Saleh, Y. Yoon, Removal of 

bisphenol A and 17α-ethinyl estradiol from landfill leachate using single-walled carbon 

nanotubes, Water Res. 45 (2011) 4056-4068. 

[11] M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, Adsorptive removal of antibiotics from water 

and wastewater: progress and challenges, Sci. Total Environ. 532 (2015) 112-126. 

[12] C. D. Sherrill, Energy component analysis of π interactions, Account. Chem. Res. 46 (2012) 

1020-1028. 

[13] M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, M. A. H Johir, K. Sornalingam, Single and 

competitive sorption properties and mechanism of functionalized biochar for removing 

sulfonamide antibiotics from water, Chem. Eng. J. 311 (2017) 348-358. 

ACCEPTED M
ANUSCRIP

T



 
 

21 
 

[14] M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, M. A. H. Johir, K. Sornalingam, M. S. 

Rahman, Chloramphenicol interaction with functionalized biochar in water: sorptive 

mechanism, molecular imprinting effect and repeatable application, Sci. Total Environ. 609 

(2017) 885-895. 

[15] M. B. Ahmed, J. L. Zhou, H. H. Ngo, M. A. H. Johir, K. Sornalingam, Sorptive removal of 

phenolic endocrine disruptors by functionalized biochar: Competitive interaction 

mechanism, removal efficacy and application in wastewater, Chem. Eng. J. 335 (2018) 801-

811. 

[16] K. Yang, X. Wang, L. Zhu, B. Xing, Competitive sorption of pyrene, phenanthrene, and 

naphthalene on multiwalled carbon nanotubes, Environ. Sci. Technol. 40 (2006) 5804-5810. 

[17] Z. Yu, W. Huang, Competitive sorption between 17α-ethinylestradiol and 

naphthalene/phenanthrene by sediments, Environ. Sci. Technol. 39 (2005) 4878-4885. 

[18] K. Yang, B. Xing, Adsorption of organic compounds by carbon nanomaterials in aqueous 

phase: Polanyi theory and its application, Chem. Rev. 110 (2010) 5989-6008. 

[19] D. Zhu, S. Hyun, J. J. Pignatello, L. S. Lee, Evidence for π−π electron donor− acceptor 

interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter 

through pH effects on sorption, Environ. Sci. Technol. 38 (2004) 4361-4368. 

[20] H. Peng, D. Zhang, B. Pan, J. Peng, Contribution of hydrophobic effect to the sorption of 

phenanthrene, 9-phenanthrol and 9,10-phenanthrenequinone on carbon nanotubes, 

Chemosphere 168 (2017) 739-747. 

[21] J. Pignatello, W. A. Mitch, W. Xu, Activity and reactivity of pyrogenic carbonaceous matter 

toward organic compounds, Environ. Sci. Technol. 51 (2017) 8893-8908. 

[22] H. Wijnja, J. J. Pignatello, K. Malekani, Formation of π–π complexes between phenanthrene 

and model π-acceptor humic subunits, J. Environ. Qual. 33 (2004) 265-275. 

[23] K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes, Small 1 

(2005) 180-192. 

ACCEPTED M
ANUSCRIP

T



 
 

22 
 

[24] M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, M. Chen, Progress in the preparation and 

application of modified biochar for improved contaminant removal from water and 

wastewater, Bioresour. Technol. 214 (2016) 836-851. 

[25] X. Wang, Y. Liu, S. Tao, B. Xing, Relative importance of multiple mechanisms in sorption 

of organic compounds by multiwalled carbon nanotubes, Carbon 48 (2010) 3721-3728.  

[26] X. R. Jing, Y.Y. Wang, W.J. Liu, Y.K. Wang, H. Jiang, Enhanced adsorption performance 

of tetracycline in aqueous solutions by methanol-modified biochar, Chem. Eng. J. 248 

(2014) 168-174. 

[27] M. Teixidó, J. J. Pignatello, J. L. Beltrán, M. Granados, J.  Peccia, Speciation of the ionizable 

antibiotic sulfamethazine on black carbon (biochar), Environ. Sci. Technol. 45 (2011) 

10020-10027. 

[28] Z. Pei, L. Li, L. Sun, S. Zhang, X.Q. Shan, S. Yang, B. Wen, Adsorption characteristics of 

1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and 

graphene oxide, Carbon 51 (2013) 156-163. 

  

ACCEPTED M
ANUSCRIP

T



 
 

23 
 

 

 

 

 

 

  

 

 

 

 

 

Fig. 1. (a) Adsorption isotherms of estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-

ethynylestradiol (EE2) and bisphenol A (BPA) on fBC at pH 3.0-3.5. Solid lines are the 

polynomial fitting curves using PMM. (b) Effect of pH on solid phase concentration (g kg-1) 

during HOC sorption (initial concentration of each HOC was ~500 g L-1) by fBC with dosage of 

40-60 mg L-1, 25 oC. 
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Fig. 2. Individual sorption of different concentrations of (a) phenanthrene (PHEN) and (b) 1,3-

dinitrobenzene (DNB) on fBC at different pH, 25 0C using fBC dosage of 18-25 mg L-1 and 40-

60 mg L-1, respectively for PHEN and DNB. 

 

 

 

 

 

 

 

 

0.0

7.0x10
4

1.4x10
5

2.1x10
5

2.8x10
5

3.5x10
5

For DNB

         0.25 ppm                      0.50 ppm                        1.00 ppm

K
d
 (

L
 k

g
-1
)

(b)

0.0

2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

 At pH 1.5-1.7

 At pH 3.0-3.5

 At pH  8.5-9.5

 At pH 1.5-1.7

 At pH 3.0-3.5

 At pH  8.5-9.5

(a)

         0.25 ppm                      0.50 ppm                        1.00 ppm

For PHEN

ACCEPTED M
ANUSCRIP

T



 
 

25 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) Comparison of Kd/KHW between PHEN and HOCs such as E1, E2, E3, EE2 and BPA. 

Kd/KHW was calculated at Ce = 0.002 Cs. The differences among them are consistent with the 

explanation that π-π bonds played a major role after eliminating hydrophobic effects. The π-π 

bonds formed among HOCs and fBC were a donor/acceptor system, and much stronger than those 

between PHEN and fBC. (b) Relationship between log KHW vs log Kd as calculated at Ce = 0.002 

Cs. 
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Fig. 4. Sorption performance of (a) E1 and (b) BPA in the absence and presence of competitor 

such as π-electron-donor PHEN and π-electron-acceptor DNB. Their interactions indicated the role 

of co-solutes and the role of π-π electron-donor-donor or donor-acceptor multi-system on the 

sorption performance of HOCs by fBC. Error bar representing the standard deviation. Sorption 

performance of E2, E3 and EE2 in the absence and presence of π-electron-donor-acceptor system 

is represented in Fig. S3. Each HOC initial concentration was ~1000 μg L-1 and fBC dosage was 

maintained 40-60 mg L-1. 
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Fig. 5. UV-Vis spectra difference in the acceptor-donor mixture showing the charge-transfer 

absorption band of π-π complexes. (a) Donor-PHEN, acceptor DNB and their mixing interaction, 

(b) Donor-PHEN, acceptor-DNB and HOC-E1 interactions, (c) Donor-PHEN, acceptor-DNB and 

HOC-E3 interactions, and (d) Donor- PHEN, acceptor-DNB and HOC-BPA interactions clearly 

indicating the difference of absorption band of π-π complexes. 
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Fig. 6. 1H NMR observed frequency (Hz) shift for different protons in specific carbon bonded 

protons in E1, BPA, DNB, and PHEN (a-c). ΔHz of proton in each compound with a mixture 

specified within bracket. Data obtained from a series of mixing solution of solutes and their 

increased shielding by extra-nuclear electrons (i.e. increasing magnetic field at fixed frequency) 

from a fixed concentration of solute in methanol-d4. Observed frequency shift (ΔHz) for each 

solute in solution was measured by multiplying the chemical shift (δ) of each solute and 

spectrophotometer frequency (Hz) for different proton positions (marked as green color) as shown 

in (d). Structural proton positions labelled based on 1H NMR peaks accessible at 

http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_result.cgi?STSI=151281072529897. (d) Illustration of 

proton number in the structure of HOCs, PHEN and DNB. 
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Fig. 7. Sorption of PABA at different concentrations and different pH using fBC dosage of 40-60 

mg L-1. 
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Table 1 

Physicochemical Properties of Selected HOCs. 

Name Abbreviation Chemical formula pKa
b Solubilitya 

(Cs, mg L-1) 

KHW
a logPb 

Estrone E1 C18H22O2 10.33 1.17 7.26 ± 0.48 4.03-4.31 

17-Estradiol E2 C18H24O2 10.33 2.15 2.29 ± 0.21 3.57-3.75 

Estriol E3 C18H24O3 10.33 13.96 0.65 ± 0.02 2.54-2.67 

17α-Ethynylestradiol EE2 C20H24O2 10.33 7.64 4.45± 0.12 3.63-3.93 

Bisphenol A BPA C15H16O2 9.78 313.15 0.34 ± 0.02 3.81-4.04 

Phenanthrene PHE C14H10  1.10 c 17.30 ± 1.86 4.46 c 

1,3-Dinitrobenzene DNB C6H4N2O4 13.86 b 185b - 1.49c 

a: Measured at 25 oC. 

b: http://www.t3db.ca/toxins/T3D0782  

c: https://pubchem.ncbi.nlm.nih.gov 
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