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ABSTRACT Person re-identification (ReID), aiming to identify people among multiple camera views,
has attracted an increasing attention due to the potential of application in surveillance security. Large
variations in subjects’ postures, view angles and illuminating conditions as well as non-ideal human
detection significantly increase the difficulty of person ReID. Learning a robust metric for measuring the
similarity between different person images is another under-addressed problem. In this paper, following the
recent success of part-based models, in order to generate a discriminative and robust feature representation,
we first propose to learn global and weighted local body-part features from pedestrian images. Then, in the
training phase, angular loss and part-level classification loss are employed jointly as a similarity measure
to train the network, which significantly improves the robustness of the resultant network against feature
variance. Experimental results on several benchmark datasets demonstrate that our method outperforms the
state-of-the-art methods.

INDEX TERMS Person Re-identification, Metric Learning, Part-Based Model, Angular Loss

I. INTRODUCTION

PERSON re-identification (ReID) aims at matching per-
son images obtained from non-overlapping camera

views and finding the person-of-interest (query/probe) a-
mong a large gallery of pedestrian images [1]. In recent years,
person ReID has attracted an increasing attention due to its
wide applications in video surveillance, such as surveillance
security and retrieval of suspects. Given a query image,
person ReID spots his/her appearance at another time or from
another camera view. Although the person ReID problem has
been studied in recent years, applying person ReID in real
world is still a challenging problem due to the variance of
illumination, body pose, occlusion and resolution [2]. More-
over, problems such as misaligned detections and similar
clothing among different people further increase its difficulty
in real world applications. Recently, there has been a boom in

the research community of interest with several deep learning
based approaches [3]–[5] being reported and becoming the
state of the arts with much better results than traditional
approaches [6].

Existing solutions for person ReID mainly consist of t-
wo stages, i.e., 1) extracting features from input pedestrian
images, and 2) computing the similarity among samples
by comparing their features in order to find the matching
ones. The first stage is mainly concerned with extracting
discriminative features which can effectively describe per-
sons under different camera views. The convolutional neural
network (CNN) has now been widely used to automati-
cally extract discriminative features from both the query
and the gallery images [6], [7]. The second stage involves
learning a robust distance metric, i.e., a mapping function
which minimizes the same-person distance and maximizes
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FIGURE 1. Examples of misaligned detection in person ReID. (a) and (b) Excess
background. (c) and (d) Missing body parts.

the different-person distance. Most of the existing person
ReID methods focus on either robust feature extraction to
describe the whole person images [1], [3], [8], [9] or distance
similarity measurement for comparing features [10]–[12], or
a combination of both [4], [13]. In this work, we propose
innovative and effective solutions to address the above two
aspects respectively, i.e., body-part based feature extraction
and fusion, and angular-loss based deep metric learning.

A. JOINT LEARNING OF GLOBAL AND LOCAL BODY-PART
FEATURES FROM ALIGNED PEDESTRIAN IMAGES

When it comes to extracting features, the deep learning based
methods typically learn invariant global features without
considering their spatial relationship and therefore do not
distinguish different body parts. Recently, the effectiveness
of adopting part-based CNN models for person retrieval has
been verified in [2], [4], [14]–[17]. Some of these methods
equally partition an input pedestrian image into several non-
overlapping horizontal stripes and learn features from each
part. These local features have been shown to be more
discriminative than those global features extracted from the
whole image. The premise of learning discriminative features
using the part-based models is that the body parts are well
aligned in different images. However, object misalignment
problems such as excess background or missing parts are
inevitable in machine-detected pedestrian images, as shown
in Fig. 1. Such misalignment can result in mismatched body
part regions across camera views and has become a critical
issue for high-accuracy person ReID. Fig. 1(a) shows such
an example, where in the first pair of images the upper body
of the first image is aligned with the head of the second
image. As its consequence, the feature descriptors extracted
from these regions for different parts of a body cannot be
compared directly using an effective similarity measurement.
Therefore, equally partitioning horizontal stripes does not
work well when severe misalignment occurs. Moreover, the
noise caused by the excess background also significantly
compromises the body feature learning and matching pro-
cess. Both types of misalignment can result in identification
failure and degrade the performance of person ReID.

The experiments reported in [13], [18], [19] have shown
that the accuracy of person ReID with sample alignment and
cropping preprocessing is usually higher than that without
such preprocessing. In particular, for person ReID using the
part-based methods, aligning pedestrian’s body parts in the
image is even more important. More effective methods need

to be developed to address the deficiency of existing part-
based methods in terms of sensitivity to partial occlusions
and misalignment.

To resolve the above issues, following the success of the
part-based models, we propose a solution to align body
parts in detected pedestrian images and learn more discrim-
inative local features and global features for person ReID.
Our method first utilizes the OpenPose technique [20] to
estimate human key points. Then, based on the locations of
the estimated head and lower-body key points, we align the
input images by removing excessive background or padding
zeros to image borders. The aligned pedestrian images are
then fed into ResNet [21] which learns feature descriptors. In
this way, the features of different body regions can be better
represented and aligned across images.

Moreover, since individual local and global feature learn-
ings are suboptimal [13], [17], [18] but complementary with
each other, we propose a two-branch framework to learn
more discriminative global full-body features and local body-
part features simultaneously.

When learning local body-part features, Wei et al. [2]
proposed the framework of global-local-alignment descriptor
(GLAD), which cropped body parts before extracting local
features. However, in this way the local feature map of a
cropped body part may become too small so that the discrimi-
nation of the extracted features becomes too weak, especially
for the low-resolution head region. Therefore, different from
the GLAD approach [2], we conduct partition on the con-
volutional layer (ResNet-50) for learning part-level features.
To that end, we formulate the local and global branches
on a shared convolution network to extract the feature map
so that the model parameter size and overfitting risks are
reduced [13].

Moreover, feature fusion, which has been demonstrated
to be effective in image search [14], [22], [23], is able
to capture complementary information. Existing part-based
methods treat each body part equally. However, our experi-
mental results have shown that different body parts contribute
differently to the pedestrian ReID. Therefore, in our work,
the body-part features extracted from each of the body part
regions are concatenated with different weights to form the
final feature representation. The effectiveness of this strategy
will be shown in our experiments in Section IV.

B. MEASURING SIMILARITY JOINTLY USING THE
OVERALL ANGULAR LOSS AND PART-LEVEL
CLASSIFICATION LOSS

In terms of measuring similarity, representation learning [3]
and deep metric learning [10] are two types of method-
s commonly used for measuring the target loss function.
Recently, different loss functions, such as triplet loss [24],
quadruplet loss [10] and n-pair loss [25], have been proposed
to measure the feature similarity among different samples.
These methods mainly use distance-based metrics to measure
the similarity, which are sensitive to scale changes. Moreover,
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setting a fixed margin threshold does not suit for samples with
significantly different intra-class distributions [4].

Person ReID is mostly considered as a special task of
image retrieval problem [23], both of which look for images
from gallery containing the same pedestrians or objects ac-
cording the probe image. Very recently, an angular loss [26]
is proposed to solve the image searching task. Inspired by
this work, we propose to use angular relationships to learn a
more robust similarity metric for the person ReID task.

The main contributions of this work are three folded.

1) Firstly, we propose a two-module framework to jointly
learn global and local body-part features from pedes-
trian images. In order to learn a more discriminative
body-part features, input pedestrian images are aligned
based on estimated body key points. Learned body-
part features are then fused by taking into consideration
their contributions to identification.

2) Secondly, for a more robust similarity measurement,
we propose to use an overall angular loss and part-
level classification loss jointly in metric learning, re-
sulting in better convergence and performance. For this
purpose, we encode the relation in terms of the angle
inside triplet at the negative point.

3) Last but not the least, to demonstrate the superior
performance over the state of the arts, our proposed
method is compared with the state-of-the-art methods
on three person ReID datasets, i.e., Market1501 [23],
DukeMTMC-reID [27], [28] and CUHK03 [1].

The rest of the paper is organized as follows. In Section II,
a more focused literature review on the recent, highly rele-
vant works is first presented. Then, Section III details our pro-
posed method. Comparative experiments and performance
analysis are presented in Section IV. Finally, the paper is
concluded in Section V.

II. RELATED WORKS
In this section, we review the recently published approaches
on part-based deep learning methods for the person ReID and
metric learning problem.

A. PART-BASED DETECTION FOR PERSON REID

Recently, deep learning has become the main method for
person ReID showing remarkable performance [1], [6], [9].
The above-mentioned methods learn full-body features while
ignoring the spatial local information of different body parts,
so it is difficult for them to capture detailed information
in pedestrian images. When the detection outcome is not
well aligned or there are partial occlusions, these features’
discriminability is compromised.

In most recent works, part-based methods have achieved
much better performance for person ReID than just learning
full-body discriminative features [2], [4], [15], [17], [18],
[29]. Cheng et al. [4] proposed a multi-channel part-based
network to independently learn the feature maps of four
body parts. Similar to the approach in [4], there are several

methods that equally partition the input pedestrian images
into several stripes and learn part features independently [2],
[17]. Li et al. [17] captured the local context knowledge
by stacking multi-scale convolution layers on each layer.
Lin et al. [30] introduced a multi-structure strategy to handle
spatial misalignments. Their strategy of tackling the mis-
alignment problem works well on relatively small datasets.
However, in large-scale personal ReID datasets, their ap-
proach appears to be computationally expensive and time
consuming. Wei et al. [2] coarsely divided a pedestrian
image into three parts according to human body structure.
However, in these works, image partitioning is carried out
at the bottom of the network, which results in the areas being
very small for a CNN and therefore the features generated are
too weak. Moreover, when utilizing local information, these
methods simply divide each image into several horizontal
parts without considering alignment.

In addition, human pose estimation methods have been
reported with encouraging improvement for pedestrian par-
tition [14], [16], [31]. Besides, Zhao et al. [29], [32] em-
bedded the attention mechanism in the network. Similarly,
Bai et al. [33], [34] focused on body parts and combined
CNN with long-short-term memory (LSTM) components.
Qian et al. [35] used generative adversarial network (GAN)
to generate images of different human body poses to solve the
problem of large pose variations and insufficient cross-view
pairing pictures of the target pose. They also proposed “pose
normalization”, which converts each input human image
correspondingly to one of the eight pre-set standard poses.
However, this work, same as most other existing works, has
assumed equal contributions from different body parts to
the ReID results. They did not make any effort to handle
the detection errors. Instead, we use OpenPose to extract
pedestrian’s key points in order to address the issue with mis-
aligned detection, which is one of our major contributions.

Feature fusion has been proven effective in person ReI-
D [22], [36]. Generally, there are mainly two kinds of feature
fusion, i.e., early fusion and late fusion. In early fusion, de-
scriptors were combined at feature level [14], where the pre-
trained human pose was used to estimate person joint points
and then features were extracted. The main contributors to the
accuracy results in [14] come from the whole image, and the
regional features of the body enhance the overall accuracy
very little. This method tends to produce a large number
of parameters at the fully connected layer. Furthermore,
the fine-grained part extraction mentioned in the paper is
computationally expensive [2]. On the other hand, late fusion
refers to the fusion at the score or decision level [22] leading
to a trade-off between the information contents. We adopt the
adaptive late fusion method as proposed in [22] to calculate
the weight of each body-part.

B. METRIC LEARNING APPROACHES
In terms of the loss function, traditional metric learning meth-
ods for person ReID learn a Mahalanobis distance metric in a
Euclidean space to calculate the similarity of two pedestrian
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images [6]. Recently, several deep metric learning methods
have been reported, and they usually extract features from
pedestrian images using CNNs or other deep models, and
then compute a feature distance as the similarity measure
of pedestrian images. The Triplet loss function [4], [12] has
been used to investigate the relative similarity of people ap-
pearing in pairs of images and has been widely used in person
ReID retrieval [3] and face recognition [24]. Cheng et al. [4]
used an improved triplet loss function to train a CNN, jointly
learning body and body-part features of people in images.
However, the triplet loss needs mining hard samples for
efficient mining of similar features; otherwise the training
process will stagnate, take long time or unable to converge
if the samples are too complicated [10].

To address the above problems, some variants of the triplet
loss and hard negative/positive mining methods have been
proposed [10]–[12], [26]. The performance of the quadruplet
loss [10] on the testing set can be improved by further re-
ducing the intra-class variations and enlarging the inter-class
variations. Hermans et al. [11] proposed a generalization of
the lifted embedding loss taking into account all anchor-
positive pairs. The margin sample mining loss (MSML) [12]
introduced the idea of hard sample mining, which only picks
out the hardest positive sample pair and the hardest negative
sample pair to calculate the loss.

Recently, Wang et al. [26] used a triangular geometry in-
stead of a distance to capture the local structure of triplet loss.
Angular in a triangle has rotation and scale invariance, and
meanwhile can capture additional local structure of triplet
triangles by imposing a geometric constraint.

In this work, we use the angular loss function to define
the core component of a metric learning loss. We do not
need to select a margin threshold, which has a large range of
values like a triplet loss. Instead, we only need to determine
the angular relationship between the samples in a triangular
structure. Our experimental results demonstrate the benefits
of this approach.

III. METHODOLOGY
A. OVERVIEW OF THE PROPOSED FRAMEWORK
Fig. 2 illustrates the framework of our proposed network.
As shown in this figure, our proposed model addresses both
discriminative feature generation and robust image similar-
ity computation and ranking. During the training stage, the
proposed network relates to two parallel and complementary
branches, i.e., 1) Global full-body feature representation and
local body-part feature representation, and 2) Softmax clas-
sification and ranking with the angular loss to predict the
identities of training images. Weighted features of multiple
body parts are concatenated to form the feature descriptor of
an input image.

In our proposed framework, these two branches share a
convolutional network to extract a feature map. The features
extracted from the bottom layer have some commonalities,
which can greatly reduce the number of parameters. As
pointed out in [13], [33], the global representation of full-

body (i.e., pose, shape, background) and part-based local
representation (i.e., head, upper body or lower body) are
complementary to each other. Therefore, combining the full-
body representation with the part-based representation gains
the learned features more discriminative power and maxi-
mizes the same person identity matching. The global feature
is extracted by applying global pooling directly on the feature
map. For the local feature representation, one 1 × 1 convo-
lutional layer is applied after an unequal horizontal stripe
pooling. For model training, we utilize the cross-entropy
classification loss function at the local layer and angular loss
function at the global layer to optimize person identification
and ranking task.

B. PEDESTRIAN ALIGNMENT
The outcomes of pedestrian detection may contain excess
background due to non-ideal detection results. When using
part-based models, the misalignment and occlusion of human
body parts between pedestrian images become a critical
factor affecting the person ReID accuracy. In this work,
given originally detected pedestrian images, we first use
the OpenPose toolkit [20] to crop images when excessive
background exists or pad zeros to the corresponding image
borders when there is part missing. The OpenPose technique
is a real-time multi-person system in order to jointly detect
human body. As illustrated in Fig. 3, it produces 18 key points
for front-body estimation (the top-left figure) or 15 key points
for back-body estimation (the bottom-left figure), and their
connections for each input person image. The values of the
positions where no key points are detected are set to zero. In
the case of a pedestrian’s backside image, the values of the
0-th, 14-th and 15-th key points are zero. Even in the case
of partial occlusions, the key points of the pedestrian’s main
part can be detected at least, e.g., the 1-th, 8-th and 11-th key
points.

Based on the detected key points values of the head and
lower body, we first align the pedestrian images by removing
excess background. An example is shown in the second
column of Fig. 3, where the excess background above the
person’s head is removed. We then design a procedure to deal
with image misalignment, as illustrated in Alg. 1, where α
is a hyperparameter used to determine whether there is an
excessive background or need padding border in the image.
In our experiments, we empirically set the values of α to 0.1
according to the statistics of the detected key points.

As shown in the second row of Fig. 3, body parts are
roughly aligned to their corresponding positions in the im-
ages. Thus, preprocessing the misaligned images reduces the
scale and position variance and roughly aligns the parts of the
human body, so it benefits the subsequent matching steps.

C. LOCAL BODY-PART FEATURE EXTRACTION
The effectiveness of using part-based features for person ReI-
D has been reported in several latest works [2], [4], [15], [18],
[33]. The existing part-based methods evenly divide an input
pedestrian image into predefined parts without considering
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FIGURE 2. The framework of our proposed network. The OpenPose toolkit [20] is first used to estimate human key points and process input images. Excess background is
removed and image borders are padded with zero based on the information of the key points. Then, the aligned images are fed into ResNet-50 to extract feature maps. In the
body-part branch, the processed image is unequally partitioned into several horizontal stripes. After a 1 × 1 kernel-sized convolutional layer and a fully connected (FC) layer,
a classifier is trained with cross-entropy loss. In another branch, ranking is carried out using the angular loss function.

Algorithm 1 Image misalignment preprocessing
Step 1. Use the OpenPose to produce 15 or 18 key points
of the input pedestrian image.
Step 2. Determine whether the pedestrian image is with
excess background or missing part based on the ordinates
of the 16th, 17th, 9th, 12th, 10th and 13th key points:
if y16 > α · Himage or y17 > α · Himage then

The ordinate range of the cropped image is
ycrop ∈ [0, y16 − α · Himage].

else if y16 = 0 and y17 = 0 and y1 > 0 then
Padding zeros to the image’s upper border.
The height of padding is 2 · α · Himage.

end if
if y10 < (1 − α) · Himage and y13 < (1 − α) · Himage then

The ordinate range of the cropped image is
ycrop ∈ [y10 + α · Himage,Himage].

else if y10 > (1 − α) · Himage or y13 > (1 − α) · Himage then
Padding zeros to the image’s lower border.
The height of padding is α · Himage.

else if y9 > (1 − α) · Himage or y12 > (1 − α) · Himage then
Padding zeros to the image’s lower border.
The height of padding is 3 · α · Himage.

else if y8 > (1 − α) · Himage or y11 > (1 − α) · Himage then
Padding zeros to the image’s lower border.
The height of padding is 5 · α · Himage.

end if
Step 3. Stretch the image keeping its height unchanged.

FIGURE 3. Examples of the estimated key body points. The first column shows
the estimated key points of front body and back body respectively. The images on
the right show the person samples with inaccurate detection (excess background
and missing part in the first row) and aligned images according to key points
information (in the second row on the right).

the alignment of different body parts. Moreover, the partition
of images occurs at the bottom layer of a CNN, resulting in
that each partition becomes too small to contain sufficient
context information. This significantly reduces the discrim-
inability of the produced features [2]. Besides, none of the
existing works has considered the unequal contributions of
different parts of a body for feature representation.

In our work, in order to retain the spatial contextual in-
formation, aligned person images are fed into ResNet-50 to
extract features without segmentation. Moreover, the lower
convolution layer intends to capture low-level features, such
as object-oriented edges or corners, which are similar for the
images containing the same person. Therefore, we construct
a two-branch framework where the lower convolution layer is
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FIGURE 4. Each vector in the feature sequence describes the corresponding
region in the original image, which is unequally partitioned into five horizontal
stripes according to the statistics of human key points.

shared by the two branches, as shown in Fig. 2. This reduces
the size of the model’s parameters and the risk of over-
fitting [13], [15]. Furthermore, we remove the last spatial
down-sampling operation and the fully connected layer in the
ResNet-50 to enrich the granularity of features, as suggested
in [15], [37].

As depicted in Fig. 2, we use ResNet-50 for learning
the shared low-level features, which have the same size of
N × 2048 × H × W, where N is the batch size, 2048 is the
channel number and H × W is the image size. In the local
representation layer, according to our observation, different
body parts show different levels of discriminativity. Unequal-
ly partitioning an image according to the natural structure of
the human body in the image can therefore produce better
results than equally partitioning.

According to the statistics of estimated key points, we
divide an input pedestrian image into five horizontal, over-
lapping parts. We denote the k-th key point of a body
joint location by pk for k = 1, 2, . . . , 17. The 18 lo-
cated body joints are assigned to five sets, i.e., head
part B1 = {p0, p1, p14, p15, p16, p17}, shoulder part B2 =

{p1, p2, p3, p5, p6}, abdomen part B3 = {p3, p4, p6, p7},
leg part B4 = {p8, p9, p11, p12} and foot part B5 =

{p9, p10, p12, p13}, as illustrated in the five overlapped, color
coded boxes in Fig. 4. The corresponding sub-region Bi ∈

{B1, B2, B3, B4, B5}, (i = 1, 2, . . . , 5) can be obtained based on
the vertical coordinates of the key points in each part set.

Denote the vertical coordinate of the sub-region Bi by yBi ,
and the vertical coordinate of the key point pk by ypk ,

yBi =

{
[0, (µyBi

+ ξ)], i = 1
[(min(µyBi

) − ξ), (max(µyBi
) + ξ)], i = 2, 3, 4, 5 ,

(1)
where µyBi

= 1
NumBi

∑NumBi
i ypk,i for i = 1, 2, . . . , 5 and

k = 0, 1, . . . , 17, µyBi
is the mean value of the key points

ypk,i and it reduces the inaccurate part detection results due
to occlusion, and ξ is a parameter controlling the overlapping
between neighboring part regions. ξ is set to 5 for the 128×64
sized pedestrian images in our experiments.

The learned features of each stripe then undergo an average
pooling operation with a kernel size of S tripeheight[i] × W,
which generates the corresponding feature vector of a size
of [N, 2048, 1, 1]. Then, 1 × 1 convolution is applied

to decrease the channel number from 2048 to 256 (size of
[N, 256, 1, 1]). As shown in Fig. 4, each local feature vector
describes a horizontal region part of the original image.
Different from the method in [2], our method divides each
image at a higher level, instead of directly cropping the
image.

Then, we use the late feature fusion method described
in [22] to calculate the feature importance of each body-part.
In this way, all the resultant feature vectors are fused together
as a person’s feature representation.

During training, the body-part classification sub-branch
learns a softmax classifier with a cross-entropy loss for
identity prediction. After the feature fusion, a softmax layer
with T nodes are then connected, where T is the unique
person number in the training set. We use the cross-entropy
loss [15] (the “CrossEntropyLoss” function available in the
PyTorch library) as a loss function LCross, which is defined
as:

LCross(p, q) = −

T∑
t=1

p(t) × log(q(t)), (2)

where T is the number of classes, and q(t) is the predicted
probability of the input belonging to label t, q(t) is normal-
ized by the softmax layer,

∑T
t=1 q(t) = 1, and p(t) is the

ground-truth distribution.

D. GLOBAL REPRESENTATION AND METRIC LEARNING
Part-based representation focuses on the discriminative
pedestrian details. Global features, containing more high-
level semantic information, can complement to part-based
local features. Therefore, we extract a global representation
directly by inserting a global average pooling and a fully
connected layer after the shared low-level feature extraction.
This feature is adopted as a global descriptor. More specifi-
cally, we adopt angular loss [26] for metric learning to further
improve the performance.

The angular loss [26] used the relationship of angles
rather than distance as a measure of similarity. Traditional
triplet loss and its various variants are based on a distance
measurement, which cannot address the problem of scale
change. It is difficult to select an appropriate global distance
margin γ in Eq. 3 due to that the intra-class distance may
vary significantly. The angular loss constrains the angle n of
the negative sample points as shown in Fig. 2 (the bottom-
right part of the “Angular loss”). The main idea of angular
loss is to encode the relationship in terms of the angle
inside triplet at the negative point. By setting a upper bound
for the angle, the method pushes the negative point away
from the center of positive cluster and drags the positive
points closer to each other. Angle is a similarity-transform-
invariant metric, proportional to the relative comparison of
triangle edges. The traditional triplet only takes two edges
into account. The angular loss is scale-invariant and can
improve the robustness of the objective function to counter
the feature variations due to distance. The additional, third
constraint improves the robustness and effectiveness of the
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optimization. It essentially adds geometric constraints, which
can capture additional local structures in comparison with the
triplet loss or verification loss.

The goal of metric embedding learning is to learn a
function f (x) = RF → RD that maps semantically similar
instances from the data manifold in RF onto metrically
close points in RD [4], [11]. Recently, the triplet loss has
been proved to be effective in learning discriminative image
features and has been widely used in person ReID [10], [12].
There are many methods proposed in the literature to improve
the triplet loss in order to achieve better performance on a
testing set.

Every triplet loss {xa, xp, xn} contains an anchor xa, a
positive xp and a negative xn in the iteration of a batch, where
xa and xp are images from the same person, and xn is from
a different person. The philosophy of the triplet loss function
is to try to minimize the distance between an anchor and a
positive person sample meanwhile maximizing the distance
between the anchor and a negative sample. The triplet of
`2-normalized features { fa, fp, fn} is used to calculate the
distances. Thus, the commonly used triplet loss [10] can be
formulated to:

Ltriplet =

N∑
a,p,n

[
‖ f (xa) − f (xp)‖22︸               ︷︷               ︸

minimize

− ‖ f (xa) − f (xn)‖22︸              ︷︷              ︸
maxmize

+γtriplet

]
+

,

(3)
where the threshold γtriplet is a distance margin distinguishing
the positive pairs from the negative. f (xa), f (xp), f (xn) rep-
resent the normalized highly-embedded features and [·]+ =

max(·, 0).
In the original triplet constraint (Eq. 3), it is difficult to

choose a proper distance margin without meaningful refer-
ence. By comparison, setting an angle in the angular con-
straint is an easier task because it has concrete and inter-
pretable meaning in geometry. According to triangle theory,
the sum of the triangle’s inner angles is 180◦. In order to keep
negative samples away from both the anchor and positive
samples, the angle of n needs to be smaller than 60◦, as
shown in Fig. 2. We aim to make the angle n smaller. Using
the tangent theorem and the definition of hyperparameter θ,
the angular loss implies minimizing the following hinge loss
LAngular [26] as shown in Eq. 4. The full derivation and proof
can be found in [26]. It constrains the angle n to be less
than a predefined upper bound θ. We determine the range
of hyperparameter values through statistical data, and finally
optimize the hyperparameter by a hyperparameter optimizer.
The hyperparameter θ is set to be between 30◦ and 50◦, which
works well in our experiments.

LAngular =
[
‖xa − xp‖

2
2 − 4 tan2 θ‖xn − xc‖

2
2

]
+
. (4)

Different branches have complementary advantages for
learning discriminative features. We jointly train the entire
network to predict the identity of each input image for both

part-based and global feature learning. Then, the final loss of
the training network is given in Eq. 5.

L = LAngular + λLCross, (5)

where λ is the hyperparameter, which is set to 2.0 in our
experiments.

IV. EXPERIMENTS
We implement our proposed algorithm with the ResNet-
50 architecture on PyTorch and evaluate its performance
on three large-scale benchmark datasets for person ReI-
D, i.e., Market1501 [23], DukeMTMC-reID [27], [28] and
CUHK03 [1]. In this section, we report the results and com-
pare our proposed method with the state-of-the-art methods.

A. DATASETS

The Market1501 dataset [23] is one of the most widely used
datasets for person ReID. It contains in total 32,668 annotated
bounding boxes of 1,501 identities collected from six cam-
eras (five high-resolution cameras and one low-resolution
camera), among which 19,732 images of 750 identities are
for testing and 12,936 images of 751 identities are for train-
ing. On average, there are 17.2 images per identity in the
training set. All images are automatically detected using the
deformable part model (DPM) approach instead of using
hand-drawn boxes, for a more realistic setting. The misalign-
ment problem of body region across images is common in
the person ReID dataset [8], [14]. There are two kinds of
evaluation settings [23], i.e., single query and multiple query,
using one or several images of one person under one camera
for a query. In this work, both single and multiple query
modes are used for the Market-1501 dataset.

The DukeMTMC-reID dataset is a subset of the newly-
released DukeMTMC dataset [28] used for cross-camera
tracking, which manifests itself as one of the largest and
challenging pedestrian image datasets. We adopt its ReI-
D version provided in [27]. Similar to the format of the
Market-1501 dataset, the DukeMTMC-reID dataset contains
1,404 identities, 16,522 training images, 2,228 queries, and
17,661 gallery images captured by eight high-resolution cam-
eras. The pedestrian images are cropped using hand-drawn
bounding boxes. Pedestrians are similarly dressed, so the
DukeMTMC-reID dataset is more challenging.

The CUHK03 dataset [1] contains in total 13,164 images
of 1,467 identities collected on the CUHK campus. Each
identity is captured by two disjoint cameras and has 4.8
images on average for each view. The CUHK03 dataset
contains two kinds of bounding boxes, i.e., the “detected”
set produced by the DPM algorithm and the hand-drawn
“labeled” set. In our work, we evaluate our model on the
bounding boxes detected by the DPM algorithm, which is
closer to the realistic setting but more challenging. Unless
otherwise specified, CUHK03 indicates the detected set in
this paper. In the training set, there are on average 9.6 images
per identity.
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Experiments on the CHUK03 and DukeMTMC-reID
datasets are performed in single query mode.

B. IMPLEMENTATION DETAILS
The implementation details of the proposed method are de-
scribed as follows.

We use ResNet-50 pre-trained on ImageNet as the base
model where the average pooling and fully connected layer
are discarded. All training and testing images are normalized
to 128×64 pixels. We follow the common data augmentation
strategies such as random horizontal flipping and cropping to
alleviate the over-fitting problem. We use the L2 normalized
person representation and Euclidean metric to measure the
distance between two pedestrian images. A fine-tuning strate-
gy is applied on the training set to avoid overfitting [38], [39].
We empirically set the dropout probability to 0.5 [8], [27],
and use the SGD solver to train our model. All experiments
are conducted on a server of Intel i7 CPU and equipped with
two GeForce GTX 1080 GPU cards. We set batch size to 128.
The increased training time of the model is mainly caused by
the metric learning of angular loss. Adam optimizer [40] is
used and the initial learning rate is set to 0.0001. Then, we
reduce the learning rate to 0.00001 at 50 epochs until con-
vergence is achieved. The hyperparameter optimizer sklearn
is used to search on a hyperparameter space to find the most
reasonable hyperparameter θ for the metric learning model.
The initial range of θ in Eq. 4 is set to 25◦ ∼ 60◦ in our
experiments.

In terms of evaluation, we adopt the commonly used
evaluation protocol [1], [29] for fair comparison with exist-
ing methods. Concretely, we evaluate our method with the
cumulative matching characteristics (CMC) at rank-1, rank-
5, rank-10 accuracies and mean average precision (mAP),
which reflects the precision and recall rates of the retrieval
process. The CMC shows the probability that a query identity
appears in the ranking list. The rank-i accuracy indicates the
probability that a query image is found within the top i ranks
in the ranking list for i = 1, 5 and 10.

In addition, similar to other methods described in [18], we
adopt the re-ranking method proposed in [41] and perform
re-ranking to further improve the retrieval performance of
the initial results. Zhong et al. [41] proposed a k-reciprocal
encoding method to re-rank the results of person ReID. After
obtaining the initial top-k using the normal person ReID
method, a k-reciprocal feature is calculated by encoding its
k-reciprocal nearest neighbors into a single vector. The re-
ranking method with k-reciprocal encoding combines the
original distance and Jaccard distance. The advantage of
re-ranking method is that no labeled data is required and
no human interaction. The re-ranking method effectively
improves the person ReID performance on several large-scale
benchmark datasets for person ReID.

C. COMPARISON WITH THE STATE OF THE ARTS
We compare the results of our method with those of the
representative methods tested on several benchmark datasets.

Table 1. Comparison of results of single and multiple queries on Market1501
dataset. * denotes the use of deep learning methods for body-part features.

Methods Single Query Multiple Query
mAP rank-1 mAP rank-1

BoW + KISSME [23] 20.76 44.42 19.42 44.36
Gated S-CNN [43] 39.55 65.88 48.45 76.04
P2S (ResNet-50) [44] 44.27 70.72 55.73 85.78
CADL (CaffeNet) [45] 47.11 73.84 55.58 80.85
Spindle Net∗ [14] - 76.90 - -
GAN (ResNet-50) [27] 56.23 78.06 68.52 85.12
TOMM (ResNet-50) [3] 59.87 79.51 70.33 85.84
Quad (ResNet-50) [10] 61.10 80.00 - -
MSCAN∗ (CaffeNet) [17] 57.53 80.31 66.7 86.79
PAR∗ (ResNet-50) [29] 63.40 81.00 - -
SSM (ResNet-50) [46] 68.80 82.21 76.18 88.18
SVDNet (ResNet-50) [47] 62.10 82.30 - -
PAN (ResNet-50) [8] 63.35 82.81 71.72 88.18
PDC∗ (CaffeNet) [16] 63.40 84.40 - -
TriNet (ResNet-50) [11] 69.14 84.92 76.42 90.53
JLML (ResNet-39) [13] 65.50 85.10 74.50 89.70
Angular (GoogLeNet) [26] 69.73 85.53 77.02 91.29
MultiScale∗ (ResNet-50) [42] 73.10 88.90 80.70 92.30
GLAD∗ (GoogLeNet) [2] 73.90 89.90 - -
Ours (ResNet-50) 74.57 91.51 81.78 94.71
Ours + re-rank (ResNet-50) 88.50 92.96 91.75 95.31

1) Evaluation on Market-1501
We evaluate the proposed method against the recently pub-
lished works on the Market-1501 dataset. As shown in Ta-
ble 1, our method achieves competitive results on the Market-
1501 dataset. Specifically, our method attains 74.57% in
terms of mAP and 91.51% matching rate at rank-1 under
the single query setting, and outperforms all other person
ReID methods, including hand-crafted methods [23], deep
learning based methods and deep learning methods with part
features [2], [14], [16], [17], [29], [42]. Combined with the
re-ranking approach [41], our performance is further im-
proved, reaching 92.96% matching rate at rank-1 with single
query mode. Note that, in Table 1 other methods did not use
the re-ranking method, which was published only recently
in 2017 and therefore has only got widely used as a default
technique in the last couple of years. Similar improvements
are obtained using multiple query settings on the Market1501
dataset, gaining 81.78% mAP and 94.71% rank-1 matching
rate without re-ranking, and 91.75% mAP and 95.31% rank-1
matching rate with re-ranking, respectively.

2) Evaluation on DukeMTMC-reID and CUHK03
The comparison with several existing models on the
DukeMTMC-reID dataset and CUHK03 dataset are present-
ed in Table 2. As shown in this table, our method outperforms
all other methods with a large margin, achieving 81.14%
and 60.84% in mAP after using re-ranking method on the
DukeMTMC-reID dataset and CUHK03 dataset, respective-
ly. Using the pedestrian bounding boxes detected by the DPM
algorithm in the CUHK03 dataset, our method has achieved
61.57% rank-1 accuracy. These results demonstrate that our
model has consistent superiority and robustness over existing
methods.
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Table 2. Comparison of results of single query on DukeMTMC-reID and CUHK03
(“detected” set). * denotes the use of deep learning methods for body-part
features. # denotes unpublished papers.

Methods DukeMTMC-reID CUHK03
mAP rank-1 mAP rank-1

BoW + KISSME [23] 12.17 25.13 - 24.30
GAN (ResNet-50) [27] 47.13 67.68 - -
PAN# (ResNet-50) [8] 51.51 71.59 34.00 36.30
SVDNet (ResNet-50) [47] 56.80 76.70 37.30 41.50
SVDNet+Era# (ResNet-
50) [48]

62.44 79.31 43.50 48.71

PCB (UP)∗# (ResNet-
50) [15]

66.10 81.80 54.20 61.30

PCB (UP)∗#+re-rank
(ResNet-50)

79.89 85.11 58.96 61.55

Ours (ResNet-50) 64.09 81.73 45.01 49.71
Ours + re-rank (ResNet-
50)

81.14 86.04 60.84 61.57

Table 3. Effectiveness of using the OpenPose based misalignment correction on
Market1501 dataset.

Method Single Query Multiple Query
mAP rank-1 mAP rank-1

Ours without Alignment 73.32 90.65 80.52 93.65
Ours with Alignment 74.57 91.51 81.78 94.71

D. PERFORMANCE ANALYSIS
We further evaluate the impact of several important param-
eters used in our method to demonstrate the effectiveness
of each of them. Since the Market1501 dataset allows the
implementation of person ReID for a pedestrian retrieval
task, the evaluation is performed on this dataset under single
and multiple query settings.

1) Effectiveness of Alignment
Table 3 compares the mAP and rank-1 accuracies obtained
with our model without using the OpenPose technique (“Ours
without Alignment”), where the misaligned pedestrian im-
ages are not corrected. Using the OpenPose (“Ours with
Alignment”), images’ excess background is removed and
body parts are aligned before being input into the training
model. Clearly, the performance using alignment is better
than not using alignment, with an improvement of 1.25%
mAP and 0.86% rank-1 accuracy, respectively, with single
query mode. After a further investigation, it is found there
are approximately 2% of images that are misaligned before
using alignment in the Market1501 dataset.

2) Effectiveness of Different Body Parts and Their
Weighted Fusion
In order to understand the contributions of different body
parts to the accuracy of person ReID, we conduct experi-
ments on the Market1501 dataset with separated body-parts
to empirically show how the various parts of a body influence
the overall performance differently.

We train five different network models, corresponding to
the five different parts of the body from top to bottom as
shown in Fig. 4. Table 4 compares the mAP, and rank-1 and
rank-5 accuracies obtained with different models trained with

Table 4. The comparison of mAP and rank-1, rank-5 accuracies of person ReID
obtained on Market1501 dataset using models trained with the features extracted
from the five different body parts. B refers to the features extracted from the whole
body. Bi (i = 1, 2, 3, 4, 5) denotes the features extracted from each of the five body
parts. “B without B1” refers to the features calculated from the whole body without
the head region. “B without B5” refers to the features calculated from the whole
body without the foot region.

Feature Single Query Multiple Query
mAP rank-1 rank-5 mAP rank-1 rank-5

B1 35.98 48.28 67.40 41.90 60.54 79.56
B2 49.89 65.26 78.11 61.40 78.24 87.59
B3 52.48 68.35 78.56 60.09 75.18 87.50
B4 54.95 72.76 81.62 66.68 79.16 89.25
B5 35.89 53.92 70.40 53.59 69.74 83.49
B 88.50 92.96 95.69 91.75 95.31 97.24
B without B1 86.41 91.92 95.55 90.16 93.97 97.00
B without B5 84.73 91.15 94.83 89.12 93.65 96.35

Table 5. Effectiveness of using the complementary advantages of different
features on Market1501 dataset.

Feature Type Single Query Multiple Query
mAP rank-1 mAP rank-1

Ours without overlap or body-
weight

69.62 88.66 77.81 92.71

Ours + 10% overlap 70.38 88.91 78.43 92.82
Ours + 20% overlap 71.49 89.90 79.32 93.47
Ours + 25% overlap 71.37 89.29 79.04 93.53
Ours + equal-weight 72.02 89.78 79.27 93.35
Ours + bodyweight 73.15 90.53 80.41 93.76
Ours + 20% overlap + body-
weight

74.57 91.51 81.78 94.71

Ours + re-rank 88.50 92.96 91.75 95.31

different body parts and their combination. As detailed in this
table, the discriminative degrees of the feature descriptors
calculated from the head (i.e., B1 in the table) and foot
regions (i.e., B5 in the table) are weaker than those obtained
from the upper and lower body regions (i.e., B2, B3 and
B4 in the table), for both single query and multiple query
modes. Apparently, different body parts (i.e., head, shoulder,
abdomen, leg, foot and full-body) contribute differently to the
person ReID task. The head and foot regions provide less reli-
able features, so they are not as significant for differentiating
different persons as other body parts.

The experimental results (corresponding to “B without B1”
and “B without B5” in Table 4) show the limited impact on the
final accuracy when the head region or foot region is removed
from the pedestrian images. Examining the samples in this
dataset, we have observed that many faces are not with frontal
view and the resolution of faces is too low. Therefore, their
discriminative degree is very limited.

In our work, to reflect the contributions of different body
parts to the overall performance, we propose to use a weight-
ed fusion of feature descriptors, and set weights empirically.
To do this, we use the method in [22] to normalize the results
of Table 4 and empirically obtain five normalized weights for
different parts of a body, i.e., 0.1645, 0.2096, 0.2373, 0.2405
and 0.1481 on Market-1501 dataset, respectively. According
to our experiments, the weights for different parts of a body
are nearly the same for different datasets.

Moreover, we observe that a certain percentage of over-
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Table 6. Effectiveness of using different loss functions on Market1501 dataset
(without using re-ranking).

Loss Types Single Query Multiple Query
mAP rank-1 mAP rank-1

Classification Loss 73.32 90.65 80.52 93.65
Triplet Loss 64.38 82.46 72.96 86.43
Angular Loss 72.66 90.83 80.19 93.82
Classification + Angular
Loss

74.57 91.51 81.78 94.71

lapping between body part regions also helps to improve
the performance. Table 5 shows the comparison results of
using weighted fusion of body-part features (indicated as
“bodyweight” in the table) with and without overlapping
(“overlap” in the table) between body parts. In this table,
“Ours without overlap or bodyweight” refers to the case
when neither of the overlapping nor weighted body-part
feature strategies is used. “Ours + 10% overlap”, “Ours +

20% overlap” and “Ours + 25% overlap” represents there is
10%, 20% and 25% overlapping between neighboring body
part regions respectively. “Ours + equal-weight” represents
equal weighted fusion of features obtained from different
body parts. “Ours + bodyweight” represents weighted fusion
of features obtained from different body parts. “Ours +

20% overlap + bodyweight” means our method with both
overlapping and bodyweight strategies. “Ours + re-rank”
indicates using re-ranking [41] method on the basis of “Ours
+ 20% overlap + bodyweight”. As shown in Table 5, 20%
overlapping between body parts get better performance.

It can be seen from Table 5 that using the weighted fusion
of feature descriptors produces better accuracy than using the
equal-weight fusion. This means that, with proper weighting,
features of different body parts can be fused in a more
effective way and are helpful in improving person ReID per-
formance. Table 5 also shows that the feature descriptors are
helpful in improving performance with proper overlapping.
Simultaneously using the overlapped and weighted body
parts, we have observed a consistent improvement on the
Market1501 dataset. Our method gains 74.57% on mAP and
91.51% on rank-1 matching rate under the single query mode.
When combined with an effective re-ranking approach, the
performance has reached to a rank-1 rate of 92.96%.

3) Effectiveness of Loss Selection

In addition, using the complementary advantages of classi-
fication and angular loss is another important aspect of our
approach. As mentioned earlier in Section III, they can be
combined to capture different pedestrian characteristic from
the aligned images and improve person ReID accuracy. We
follow the settings in Section III, and compare the mAP and
rank-1 accuracy obtained with different loss functions on the
Market1501 dataset. The results are shown in Table 6.

As shown in this table, using classification or angular
loss alone can achieve a rank-1 accuracy of 90.65% and
90.83%, respectively. Using the traditional triplet loss, the
performance of rank-1 accuracy is much worse. Without

FIGURE 5. Comparison of rank-1 accuracies with different values of θ for angular
loss during training on Market1501 dataset.

Table 7. Comparison of different values θ of angular loss during training on
Market1501 dataset.

Angle θ mAP rank-1 rank-5 rank-10
θ = 49.52◦ 85.62 92.68 96.44 97.49
θ = 44.67◦ 88.41 94.13 98.04 98.78
θ = 40.54◦ 88.87 95.12 97.80 99.27
θ = 36.36◦ 87.13 93.74 98.53 98.14
θ = 32.82◦ 85.49 93.97 96.58 97.21

combining part-based methods, the angular loss method
alone is also comparable to most of the recently methods,
as depicted in Table 1. Note that, without combination,
classification loss preforms comparably with angular loss,
and with the combination, the classification loss and angular
loss together perform better than using each of them alone.
Both classification and ranking information are important
to learn discriminative features for person ReID. Using the
global feature representation combined with the part-based
representation enriches some fine details.

The angular loss function involves one hyperparameter θ
(Eq. 4), which determines the degree of the constraint. Ta-
ble 7 shows the effect of hyperparameter θ on the overall
accuracy. θ is set by the hyperparameter optimizer sklearn.
Setting θ to be 40.54◦ for the Market1501 dataset leads to
the best performance for our method. Fig. 5 shows the com-
parison of the rank-1 accuracies with different values of pa-
rameter θ for angular loss during training on the Market1501
dataset. In the experiments, our method always performs
stably well when the value of parameter θ is set to be between
30◦ and 50◦.

As depicted in Fig. 6, we further visualize some re-
trieval results on the three datasets, i.e., Market1501 [23],
DukeMTMC-reID [27], [28] and CUHK03 [1]. The images
in the first column are the query images. The retrieved images
are sorted and shown in the second to the eleventh columns
according to the similarity scores in the order of high to
low. The correct and false matches are shown in green and
red bounding boxes (best viewed in color), respectively. As
shown in this figure, most candidate images can be retrieved
correctly. The DukeMTMC-reID and CHUK03 datasets are
more challenging, which contain pedestrians with occlusions
and similar appearance. Therefore, the proposed model has
retrieved some incorrect candidates.
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FIGURE 6. Examples of pedestrian retrieval results on three datasets using the
proposed method in single query mode. The images in the first column are the
query images. The top-10 retrieved images are sorted and shown in the second
column to the eleventh column according to the similarity scores from high to low.
The correct and false matches are shown in green and red bounding boxes (best
viewed in color), respectively.

V. CONCLUSION AND FUTURE WORK

This paper has proposed a two-branch deep architecture
which leverages the human part cues to learn highly dis-
criminative features and similarity measurements for person
ReID. The OpenPose toolkit has been employed to mitigate
the body misalignment problem of pedestrian images. For the
feature representation, weighted body-part feature fusion and
global full-body feature descriptors are jointly employed for
better performance. We have shown that the weighted and
overlapping body-part feature representation are informative
to capture discriminative details of pedestrian images. The
classification loss and angular loss have been applied to
simultaneously learn discriminative similarity measurement
in a unified framework. Extensive comparative evaluations on
three benchmark datasets have demonstrated the superiority
of the proposed method over the state of the arts.

Even if deep learning features, such as the one extracted
using CNN are very powerful, still they are not very powerful
at extracting similar features regardless of the viewpoint. In
our future work, we hope to extract the features of pedestrian
using the latest Capsule Networks [49].
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