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Abstract

Building structures, subject to dynamic loadings or external disturbances, may

undergo destructive vibrations and encounter different degrees of deformation.

Modeling and control techniques can be applied to effectively damp out these

vibrations and maintain structural health with a low energy cost. Smart struc-

tures embedded with semi-active control devices, offer a promising solution to

the problem. The smart damping concept has been proven to be an effective ap-

proach for input energy shaping and suppressing unwanted vibrations in struc-

tural control for buildings embedded with magnetorheological fluid dampers

(MRDs). In this paper, the dissipation energy in MRD is studied by using

results from induced hysteretic effect of structural vibrations while the fluid is

placed under a controlled magnetic field. Then, a frequency-shaped second-order

sliding mode controller (FS2SMC) is designed along with a low-pass filter to im-

plement the desired dynamic sliding surface, wherein the frequency responses

of the hysteretic MRD is represented by its magnitude and phase describing

functions. The proposed controller can thus shape the frequency characteristics

of the equivalent dynamics for the MRD-embedded structure against induced

vibrations, and hence, dissipate the energy flow within the smart devices to

prevent structural damage. Simulation results for a 10-floor building model

equipped with current-controlled MRDs, subject to horizontal seismic excita-
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tions validate the proposed technique for low-energy structures with smart de-

vices. The closed-loop performance and comparison in terms of energy signals

indicate that the proposed method allows not only to reduce induced vibrations

and input energy, but also its spectrum can be adjusted to prevent natural

modes of the structure under external excitations.

Keywords: Low-energy structure, smart damping, energy dissipation,

modeling and control, frequency-shaped sliding mode, magnetorheological

damper.

1. Introduction

Analysis of life cycle cost for energy-efficient buildings is evaluated based on

energy consumption, assessment of environmental impact or natural hazards,

and prediction of structural or non-structural damage [1]-[2]. Various elements

equipped with energy-efficient features of the engineering structures likely ex-5

perience different levels of damage subject to external dynamic loadings such

as seismic events or gusty winds, depending on the specific geographic region

where the structures are situated [3]. Thereby, it may increase future costs as-

sociated with post-event repair or replacement to maintain structural health or

reinstate an acceptable level. Studies have shown that cumulative damage cost10

can be higher than energy-efficient features and accordingly payback time for

building energy efficiency investment will be prolonged [1]-[3].

Modern structures involve not only energy management [4, 5] but also con-

dition assessment and safety management, whereby the integration of modeling,

control and health monitoring is of crucial importance [6]. In quake-prone areas,15

building structures often undergo vibrations in response to the ground motion

caused by the seismic energy and fail to dissipate inelastic energy due to exces-

sive lateral motion, resulting in structural deformation [7],[8]. Moreover, taller,

slimmer and lighter structures using high-strength materials with the same mod-

ulus of elasticity, i.e. less stiff structures, may make them more prone to dynamic20

loading sources, which cause discomfort and eventually, structural deterioration
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[9]. Thus, adequate strength and energy dissipation capacity should be ren-

dered in the structure to limit the overall structural motion and shift away its

natural frequency from the resonance region under the disturbance excitation

to maintain the structural health at a controllable embodied energy level. For25

example, the structural stiffness and damping can be adjusted whilst keep the

amount of material utilized to a minimum.

It is possible to increase the stiffness of a building through selecting an appro-

priate structural configuration. Damping can be increased through the instal-

lation of auxiliary robust damping devices, since the damping characteristics,30

such as inherent damping, of the core structural system is relatively ambiguous

until the building is completed [10]. Alternatively, damping from external de-

vices can be promising thanks to the extensive research conducted in the last

decades, which make them a competent solution for mitigating the structural

vibration problems in any dynamic application. However, active devices require35

a large supply of energy, for example in active mass dampers.

Energy-dissipative semi-active devices, such as the magnetorheological (MR)

fluid damper (MRD) [11],[12], MR elastomer base isolator [13], MR pin joint [13]

provide supplementary robust damping for the attenuation of vibrations induced

by excitation sources into the structure. The semi-active control systems can40

dissipate vibration energy into heat through the adjustment of damping and

stiffness characteristics of the system under a low-power control signal and fail-

safe operations. The controlled damping forces always oppose the motion of

the structure, hence, promoting stability, as well as reducing the consequence

of system uncertainties. [9, 10].45

The level of possible damage of individual structural members, e.g., beams,

columns, and roof/floor slabs can be determined by the transmitted external

dynamic loading into structural vibrations. The induced energy can then be

decomposed into different forms, i.e. kinetic, damping, recoverable elastic strain

and irrecoverable hysteretic dissipation in the structure during a loading event50

[14],[15], [7]. Semi-active control with MR fluid devices provides energy-efficient

protection of engineering structures [11]-[18] by dissipating excess energy into
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heat through the fluid. This heat is then transferred to the environment by

convection and/or conduction [17]-[20].

For analysis of the energy flow, excitations can be represented in the fre-55

quency domain by their power spectral density functions and dynamic behavior

of the structures are characterized by their frequency response functions (FRFs).

The frequency domain approach to structural control allows for a roll-off of the

control action at high frequencies and specify the disturbance attenuation over

desired bands. The frequency-shaping (FS) technique to the linear-quadratic60

(LQ) design was first proposed in [21] with the cost functional expressed via the

frequency variable ω. A discrete time approach to the frequency-shaping LQ

control using the Parseval’s theorem was reported in [22] for active suspension

system. A challenging requirement for these structural control systems remains

strong robustness in face of system uncertainties and large disturbances. For65

this, sliding mode control (SMC) is known as a discontinuous robust control [23]-

[25], which forcibly confines the system’s states to a user-chosen sliding surface

by varying the control structure in the state space. To extend the SMC design

to the frequency domain, frequency-shaped SMC (FSSMC) has been developed

and applied to various mechanical systems including flexible robot manipulators70

[26], [27], active vibration control [28], and hard disk drives [29].

In FSSMC, the sliding surface is obtained by applying a desired linear opera-

tor to the original sliding function for shaping the system equivalence dynamics

in the frequency domain [30, 28]. An output feedback FSSMC was studied in

[31] for damping out structural vibrations of a smart flexible cantilever beam,75

where the system states are implicitly obtained by measuring the output at a

faster rate than the control input. The works mentioned above have not clearly

explained on the dissipation of vibration-induced energy in the controlled smart

devices. To date the analysis of the energy flow in the structures has not been

directly addressed for control and monitoring to achieve energy-efficient em-80

bedded structures under vibrations induced from external loadings. Here, the

frequency domain advantage is taken into account within a modelling and con-

trol framework to analyze the energy relationships of the smart devices in the
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structures, and to design a robust controller to achieve low-energy and resilient

structures against dynamic loadings such as earthquakes or gusty winds.85

This paper is organized as follows. After the introduction, the properties of

an MRD and energy equations of smart devices in building structure are studied

in Section 2. Using the experimental test data, describing functions (DFs) of

magnitude and phase responses are obtained to interpret the intrinsic current-

dependent hysteretic dynamics of the MRD. A frequency-shaped second-order90

SMC (FS2SMC) is proposed and designed for buildings embedded with smart

devices in in Section 3. Section 4 presents the application and simulation results

obtained with the proposed approach for a 10-floor building. Section 5 presents

a discussion on the energy flow in the structure embedded with smart devices

in the presence of external disturbances. The energy spectra of the structure95

are compared between the uncontrolled case, the Lyapynov-based control and

the proposed FS2SMC in terms of kinetic, damping, strain, and input energy

signals to illustrate the capability of a low-energy smart structure in suppressing

quake-induced vibrations. A conclusion is finally drawn in Section 6.

2. Low-energy Structure embedded with Smart Devices100

The smart device considered in this section is the magnetorheological damper

(MRD). To experimentally study the dissipation and energy-related aspects in

the device for analysis of low-energy resilient structures embedded with MRDs,

the RD-8041-1 damper manufactured by LORD Corporation is characterized

by using a thermal camera.105

2.1. Energy cycle of an MRD

The damping capacity of smart structures embedded with MRDs depends

on the amount of energy dissipated in the devices as a result of their induced

hysteretic effect, during a typical vibration cycle while the MRDs operate at a

constant magnetic field [17],[18]. Let cMR, EMR, fMR, kMR, and ζMR denote the

equivalent damping, dissipated energy, output force function, effective stiffness
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(a) (b)

Figure 1: RD-8041-1 test system and identified temperature versus magnetization current.

and damping ratio of the device. At frequency f , the MRD dissipates its cyclic

energy in the magnetorheological fluid via the formation of a closed-loop me-

chanical lag in the force-displacement trajectory. This energy can be expressed

as

EMR =

∮
fMRdx = 2π2fcMRE

2 = 2πkMRζMRE
2, (1)

where fMR = cMRẋ, the equivalent damping coefficient cMR = kMRζMR/(πf),

x = E sin(ωt) is the sinusoidal displacement of amplitude E and angular fre-

quency ω = 2πf . The derivation of (1) is given in Appendix. To characterize

this hysteretic force-velocity relationship, the MRD is mounted on a Schenck110

machine, the Instron ElectroPulsTM E10000, as shown in Fig. 1(a).

To record the dissipation of the damper RD-8041-1 in response to the mag-

netic field strength at a magnetization current i(t), we used a Testo 875-2i ther-

mal camera. The mechanical energy dissipated in the magnetorheological fluid

inside the damper housing is converted into heat, depending on the magnetic

field strength. Thus, an increase in the magnetization current i will result in a

temperature rise in the fluid inside the MRD housing, as depicted in Fig. 1(b).

Taking into account also the Joule effect of the coil resistance R, the power P
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of the system can be given by

P = −fMR(t)ẋ− i2(t)R, (2)

where R = 5 Ω (7 Ω) at the ambient temperature (at 71◦C) and i ∈ [0 2]A for

the MRD RD-8041-1 used in experiments.

Figure 2 shows that hysteresis occurring in the damper’s dynamic relation

between input-output (I/O) variables represents memory effects involving field-115

dependent friction in the MR fluid suspension, leading to energy dissipation.

Notably, in both the force-displacement (Fig. 2(a)) and force-velocity (Fig.

2(b)) relationships, hysteresis loops representing intrinsic nonlinearity and com-

plex dynamics of the damper are not zero-centered, which account for the effect

of the accumulator at the bottom of the MRD.120

The time responses of the energy and power (energy rate) obtained for the

hysteresis loops of the conjugate force-displacement and force-velocity trajecto-

ries of Figs. 2(a) and (b) are shown in Figs. 3(a) and (b), respectively. They

indicate that the force-displacement hysteresis progresses along clockwise tra-

jectories while the force-velocity hysteresis follows anticlockwise paths. It can125

be interpreted from these figures that the MRD attached to a structure stores its

elastic energy of the structure via its spring component and when the structural

motion and correspondingly the MRD stroke is to reverse their direction, the

damper would transfer the energy back to the structure. The energy alterations

can be seen at the enclosed area of quadrants II and IV in Figs. 2(b) and 3(b),130

that is −fMR · ẋ. The corresponding negative values occur in only a short dura-

tion, ∆tII + ∆tIV = 0.042 + 0.048 = 0.09 s, about 18% of one vibration period

2π
ω = 0.5s, as shown in Fig. 3(b). The cyclic dissipation and energy rate of the

smart device not only depend on the oscillation amplitude of the MRD stroke,

but also vary with respect to the applied magnetization current and excitation135

frequency, as shown in Figs. 3(c) and (d), respectively. In the following, de-

scribing function models are developed for the MRD to comprehensively capture

these complicated relations [13].
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(a) fMR vs x trajectories. (b) fMR vs ẋ trajectories.

Figure 2: Measured RD-8041-1 hysteresis.

(a) One energy cycle, 2π/ω = 0.5 s. (b) x = E sin(2× 2πt) mm, i = 2 A.

(c) x = 8 sin(2× 2πt) mm. (d) x = 8 sin(2πft) mm, i = 2 A.

Figure 3: MRD (a) dissipated energy and (b)-(d) energy rate during a vibration cycle operated

at a constant magnetic field: i ∈ [0 2] A, E = [4, 8, 12, 15] mm, f = [0.5, 1, 2, 3] Hz, R = 5 Ω,

θ ∈ [25.6 43.9]◦C.
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(a) DF gain at i = 2 A. (b) DF phase at i = 2 A.

Figure 4: RD-8041-1 hysteresis DF magnitude and phase.

2.2. MRD describing function model

To obtain the energy spectrum of the smart structure, the describing func-140

tion (DF) technique, or the harmonic balance method, is used to dervive the

frequency response of the MRD embedded. DF is a mathematical approach for

the design and analysi s of systems containing nonlinearity [23]. Here, by using

a computational implementation of the DF [32], the magnitude and phase DFs

for RD-8041-1 are plotted in Fig. 4 from its experimentally obtained characteri-145

zation data. In general, the gain N(E, f, i) decreases as the amplitude E and/or

frequency f increases. On the other hand, the DF gain of MRD increases with

the magnetization i within its operational range.

Since the DF is a complex quantity, i.e. Nejφ, DF of MRD exhibits a phase

shift φ as shown in Fig. 4(b). A rational approximation technique yields the

following expressions [13]:

N(E, f, i) =
n0 + n1i+ n2i

2

E +m0 +m1f
=

0.102 + 2.23i− 1.08i2

E − 0.33 + 0.24f
,

φ(E, f, i) =
h0 + h1i+ h2i

2

E + g0 + g1f
=
−0.7 + 7.6i− 2.9i2

E + 1.9− 0.08f
,

(3)

where current i ∈ [0 2] A, frequency f ∈ [0.1 3] Hz, and displacement amplitude

E ∈ [0.1 20] mm.150
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2.3. Energy balance equation of buildings with smart devices

The problem of energy balance in a building structure embedded with smart

dampers is considered in this section. Since internal forces within an engineering

structure can be derived using relative displacements and velocities, we herein

compute the input energy in terms of the relative motion.155

Given an n degree-of-freedom (dof) shear structure of mass M , stiffness K,

and viscous damping C, embedded with n MRDs subject to dynamic loading

sources with acceleration vector ẍg, the governing equation can be described by

Mẍ+ Cẋ+Kx = ΓfMR(x, i)−Mẍg, (4)

where Γ ∈ Rn×n is a factor matrix taking into account the location and number

of MRDs; fMR(x, i) is the controllable damping force vector; x = r−xg denotes

the relative displacement between the ground and each mass as shown in Fig.

5(a). Here, r and xg are vectors of the absolute displacements of the floors and

ground with respect to a reference frame xx−yy and an inertial frame xx−yy′,160

respectively. As shown in Fig. 5(b), the intelligent devices are rigidly mounted

to the fixtures between each floor, and the midpoint of each damper coincides

with the intersection of axes xx and yy, i.e. xk = xdk for the k-th floor.

Suppose the model (4) satisfies the following assumptions:

(A1.) M−1 exists and M−1K has a set of n linearly independent eigenvectors165

υ1, . . . , υn

(A2.) the unknown dynamic disturbance fd(t) = −Mẍg and its time-

derivative are bounded for t ∈ [0 ∞),

(A3.) zero initial conditions, i.e., x(t0) = 0, ṙ(t0) = 0, and

(A4.) x = [x1, . . . , xn]T, ẋ ∈ Rn and ẍ ∈ Rn are available for on-line mea-170

surement.

By integrating both sides of (4) over the structural response path from t0
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(a) (b)

Figure 5: Smart building integrated with energy-dissipative devices; xdk = xk, k ∈ [1, n].

(when the ground motion excitation starts) to t, we obtain:∫ x(t)

x(t0)

ẍTMdx+

∫ x(t)

x(t0)

ẋTCdx+

∫ x(t)

x(t0)

xTKdx =

∫ x(t)

x(t0)

fTMRΓTdx−
∫ x(t)

x(t0)

ẍTgMdx∫ x(t)

x(t0)

ẋTMdẋ+

∫ t

t0

ẋTCẋdt+

∫ x(t)

x(t0)

xTKdx =

∫ t

t0

fTMRΓTẋdt−
∫ t

t0

ẍTgMẋdt

1

2
ẋTMẋ+

∫ t

t0

ẋTCẋdt+
1

2
xTKx =

∫ t

t0

fTMRΓTẋdt−
∫ t

t0

ẍTgMẋdt

Ek + Eζ + Es = EMR − Ei,

where Ek, Eζ , Es, and Ei represent the relative kinetic, damping, strain, and

input energies, respectively. The absolute kinetic and input energies can also

be defined respectively by 1
2 ṙ

TMṙ and
∫ t
t0
r̈TMẋgdt. Consequently, the residual

absolute energy terms can be derived in the same way.175

3. Frequency-shaped Structural Control

After having established the energy relations a building structure embedded

with smart dampers, we now proceed with the robust control design to inject a a

small amount of control energy to dissipate vibration energy induced by external

11



disturbances to the structure. To directly adjust the structural frequency re-180

sponse and to improve robustness performance, the second-order sliding mode

control method is adopted here to achieve resilience of smart structures. In-

deed, by incorporating the frequency response functions of the embedded de-

vices, the control design can be proceeded in the frequency domain to facilitate

the low-energy structure analysis. Thus, in the following a frequency-shaped185

second-order sliding mode controller (FS2SMC) is developed and applied to the

structural model of buildings embedded with intelligent dissipation devices.

3.1. FS2SMC design

It can be shown that the nonlinear non-affine dynamic system (4) of a single-

input embedded smart structure can be rendered to an n-th order nonlinear

system of the form [11]:

ż = a(z) + b(z, u), (5)

where z ∈ Rn is the state, u ∈ R is the control, a(.) and b(., .) are some smooth

nonlinear functions. Our goal is to design a robustly stabilizing control u = U(z)190

that can steer the system dynamics onto a desired manifold σ ≡ 0 in finite

time. The manifold or sliding surface can be defined as the static intersection

in the state space by σ(z) = zn +
∑n−1
k=1 ρkzk = 0. The parameters ρ1 to ρn−1

are chosen such that the characteristic polynomial sn−1 +
∑n−1
k=1 ρks

k−1 = 0 is

Hurwitz, where s is the Laplace operator [23].195

In order to dynamically shape the frequency response of the equivalent dy-

namics, the sliding function is cast by using a dynamic linear operator L(s),

a function of s, instead of ρk. We design the dynamic sliding surface with a

second-order low-pass filter (LPF) as

σ = L(s)z =

n−1∑
k=1

L(s)zk + zn, L(s) = [L(s), . . . , L(s), 1], (6)

for example, to get a steeper roll-off of |L(jω)|, ω ∈ [0,∞) for large values of

frequency ω. Herein, L(s) = b0
s2+a1s+a0

gives a |L(jω)| with an asymptotic slope

of −40 dB/decade above cut-off frequency. The algebraic manipulation of (6)
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gives

σ =
b0

s2 + a1s+ a0
z1 + · · ·+ b0

s2 + a1s+ a0
zn−1 + zn

⇒σ̈ + σ(a1s+ a0) = b0

n−1∑
k=1

zk + z̈n + zn(a1s+ a0)

⇒σ̈ = b0

n−1∑
k=1

zk + z̈n − (a1s+ a0)
( b0

∑n−1
k=1 zk

s2 + a1s+ a0

)
⇒σ̈ = b0

( s2

s2 + a1s+ a0

) n−1∑
k=1

zk +
∂h

∂z
ż +

∂g

∂z
żu+ g(z)u̇.

Now, we have

σ̈ = s2L(s)z1 + · · ·+ s2L(s)zn−1 +H(z, u) + g(z)v, (7)

where H = ∂h
∂x ż + ∂g

∂x żu and v = u̇ is denoted as the new control variable [33].

Then, we can derive the best approximation of the continuous control law that

achieves σ̈ = 0:

v̂ = −s
2L(s)z1 + · · ·+ s2L(s)zn−1 + Ĥ

ĝ
,

where ĝ and Ĥ are the nominal models of g and H, respectively. A reaching

control input vR is added to v̂ to ensure that the plant dynamics reach the

sliding surface in finite time [25]. Substituting v = v̂ + vR into (7) results in

[34]:

σ̈ =

n−1∑
k=1

s2L(s)zk +H − g(z)

ĝ(z)

n−1∑
k=1

s2L(s)zk −
g(z)

ĝ(z)
Ĥ + g(z)vR

= H − g(z)

ĝ(z)
Ĥ +

n−1∑
k=1

s2L(s)zk

[
1− g(z)

ĝ(z)

]
+ g(z)vR = δ(z) + g(z)vR,

(8)

where δ(z) := H − g(z)
ĝ(z)Ĥ +

∑n−1
k=1 s

2L(s)zk

[
1− g(z)

ĝ(z)

]
.

Suppose the perturbation term δ(z) satisfies the inequality∣∣∣ δ(z)
g(z)

∣∣∣ ≤ %(z) (9)

for some known positive definite function %(z). With V = 1
2 σ̇

2 chosen as a

Lyapunov function candidate for (7), the time derivative of V can be computed

13



as

V̇ = σ̇σ̈ = σ̇
[
δ(z) + g(z)vR

]
≤ g(z)|σ̇|%(z) + g(z)σ̇vR. (10)

To achieve the control objective, the robust signal vR is selected as

vR = −β(z) sgn(σ̇)− κσ̇, β(z) ≥ %(z) + η, (11)

where κ > 0, η > 0, so that the term g(z)σ̇vR is negative and dominates over

the residual term g(z)|σ̇|%(z) when σ̇ 6= 0, giving the net results to force |σ̇| to

reach zero. Finally, we have

v = −s
2L(s)z1 + · · ·+ s2L(s)zn−1 + Ĥ

ĝ(z)
− β(z) sgn(σ̇)− κσ̇. (12)

Substituting (11) into (10) yields

V̇ ≤ g(z)|σ̇|%(z)− g(z)β(z)σ̇ sgn(σ̇)− g(z)κσ̇2

≤ g(z)|σ̇|%(z)− g(z)
(
%(z) + η

)
|σ̇| − g(z)κσ̇2 = −g(z)η|σ̇| − g(z)κσ̇2

≤ −g0η|σ̇| − g0κσ̇2 ≤ −g0κσ̇2 = −2g0κV.

(13)

By integrating the differential inequality over the time interval t0 ≤ τ ≤ t,200

we obtain V (t) ≤ V (t0)e−2κg0(t−t0). Thus, V (t) will tend to zero exponentially

where κ is the decay rate at which the sliding surface is attained. From (10) and

(13), we obtain σ̇σ̈ ≤ −g0η|σ̇| − g0κσ̇2. Since g0κσ̇
2 ≥ 0, and by neglecting the

nonlinear term, we also have d
dt |σ̇(t)| ≤ −g0κ|σ̇(t)| ⇒ |σ̇(t)| ≤ |σ̇(t0)|e−κg0(t−t0)

to substantially reduce the amplitude of the switching term in the control and205

hence, the commonly encountered chattering problem associated with sliding

mode control.

3.2. Smart structural control

To further implement the proposed control strategy, described in the previ-

ous section, to low-energy MRD-embedded structures, a modal transformation

is first applied to the structure dynamics, e.g. of a multi-floor building. Thus,

with the transform x = Φq (Φ is a nonsingular transformation matrix) for the

14



modal coordinate vector q [28], we can obtain a set of n second-order motion

equations decoupled from (4) for each mode, m ∈ [1, n], as:

q̈m + 2ζmωmq̇m +

n∑
r=1,r 6=m

µmr q̇r + ω2
mqm = um + dm, (14)

where ωm, ζm, um, qm, dm, and µmr are respectively the m-th modal frequency,

damping ratio, entry of the modal control u = Φ−1M−1ΓfMR = ΩfMR, modal

coordinate, disturbance component and the mrth modal coupling term of the

damping matrix. From (6) and (7), the following frequency-shaped sliding func-

tion is designed:

σm =
b0

s2 + a1s+ a0
qm + q̇m = Lm(s)qm + q̇m

⇒ σ̈m = s2Lm(s)qm − 2ζmωmq̈m −
n∑

r=1,r 6=m

µmr q̈r − ω2
mq̇m + vm + ḋm,

(15)

where vm = u̇m is the new control instead of the modal control um. We derive

the equivalent control v̂m to achieve σ̈m = 0 as follows

v̂m = ω̂2
mq̇m + 2ζ̂mω̂mq̈m +

n∑
r=1,r 6=m

µ̂mr q̈r − ˆ̇
dm − s2Lm(s)qm, (16)

where ω̂m, ζ̂m,
ˆ̇
dm, and µ̂mr are desired values chosen for the m-th modal fre-

quency, modal damping, first derivative of the disturbance, and modal coupling

from the damping matrix, respectively. By applying the control law (12) for

vm = v̂m + vRm, we obtain the following FS2SMC

vm = ω̂2
mq̇m + 2ζ̂mω̂mq̈m +

n∑
r=1

µ̂mr q̈r − s2Lm(s)qm− ˆ̇
dm− βm sgn(σ̇m)−κmσ̇m,

(17)

that can ensure the condition σ̇mσ̈m ≤ −ηm|σ̇m| − κmσ̇2
m as in (13), by taking

βm = %m + ηm sufficiently large.210

4. Application and Simulation

For application, we now consider a 10-storey shear building model [35] with

identical values for floor mass mk = 360 tonnes, damping ck = 6.2 MNs/m, and
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stiffness kk = 650 MN/m of each floor, k = 1, 2, ..., 10, that satisfies assumptions

(A1.)-(A4.).215

4.1. Modal decomposition and control design

Since the mass matrix is nonsingular, (4) is written for this case as

ẍ+M−1Cẋ+M−1Kx = M−1ΓfMR +M−1fd, x ∈ R10, (18)

whereby the diagonal and modal coupling terms of the damping matrix, i.e.

2ζkωk and µkr, can be respectively obtained, for r 6= k with no dampers at-

tached, as ωk/2π = 1.01, 3.01, 4.94, 6.76, 8.43, 9.91, 11.18, 12.19, 12.93,

13.37 Hz; ζk = 0.19, 0.57, 0.93, 1.27, 1.59, 1.87, 2.1, 2.29, 2.43, 2.52; and220

µkr ∈ [−1.27 × 10−14, 2.39 × 10−14]. Hence, the off-diagonal damping is taken

as the lower bound of the diagonal elements, i.e., min(2ζkωk) = 0.38 while

designing the FS2SMC.

Under a harmonic excitation at an angular frequency ω, the controlled

smart devices ΓfMR(q, i) can be modelled in the frequency domain [13] as

DFMRQ(jω) ∈ C10. Thus,

[
− ω2 + 2jωζkωk + ω2

k

]
qk(jω) +

10∑
r=1,r 6=k

µkrjωqr(jω) = −

[γkNkejφk
mk

qk(jω) +

10∑
r=1,r 6=k

εkr
mk

qr(jω)
]

+ ΥFd(jω), Υ = Φ−1M−1,

(19)

where εkr ∈ [0 γkNke
jφk ] denotes inter-floor damping from the MRDs mounted

between the k-th and (k−1)-th floors and γk is a factor taking into account the

placement and number of MRDs. Equation (19) can be rewritten as[
− ω2 + 2jωζkωk + ω2

k +
γkNke

jφk

mk

]
Φ−1xk(jω)

+
[ 10∑
r=1,r 6=k

µkrjω +

10∑
r=1,r 6=k

εkr
mk

]
Φ−1xr(jω) = ΥFd(jω).

(20)

Since the damping capability always takes its strongest effect at the level where

the MRDs are installed, DFMR can be considered as diagonally dominant, thus
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including only terms γkNke
jφk . Other the coupling terms from the residual

modes and modal decomposition errors can be lumped to disturbance dk. Taking

the assumption of Rayleigh damping [7],[15], the frequency response function

(FRF) matrix, H(jω), of the smart structure is therefore obtained as H(jω) =

Φ diag(δkk)Υ, where δkk = 1

ω2
k−ω2+2jωζkωk+

γkNke
jφk

mk

. Here, the transfer function

of the DF model (3) is approximated as Nke
jφk ' Nk(1 + τks), where τk =

φ0k

ωkN0k
is the MRD equivalent time constant estimated at normalized values of

amplitude E = 1, current i = 1 and first modal frequency ω1 = 1. Hence, the

FRF of the smart structure is

H(jω) =

10∑
k=1

ΦkΥT
k

ω2
k − ω2 + γkNk

mk
+ jω

(
2ζkωk + γkNkτk

mk

) . (21)

In our design, the controller parameters are chosen as κk = 10, ηk = 1.25 and

L(s) is a Butterworth filter, i.e. L(s) = 1
s2+1.4142s+1 . Notably, for the control

law (17), a boundary layer [23] may be used in lieu of the signum function to

smooth the response if necessary. From the modal control uk =
∫
vk(t)dt, the

damping force can be computed as fMR(k) = Ω−1uk in which Ω−1 is the inverse

mode participation matrix. The controllable force range should be constrained

by the maximum capacity, iM and the residual force at zero current in the passive

control case. For example, the relation between the magnetization current and

damping force has the following form:

ik =

 |a0 + a1fMR(k) + a2f
2
MR(k)|, |ik| < iM,

0, |ik| ≥ iM,
(22)

where a0 = 0.127, a1 = −0.00094 and a2 = 0.0000021 for the RD-8041-1 at

iM = 2 A.225

4.2. Simulation Results

In our simulation, four benchmark earthquake records (El-Centro 1940,

Hachinohe 1968, Northridge 1994, Kobe 1995) are considered to excite the

system as external disturbances. We normalized the structural dynamics and

all quake records to a maximum acceleration level of 0.3g so that we have230
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(a) (b)

Figure 6: Closed-loop and open-loop phase portrait and the spectrum.

xdk = xk < 15 mm corresponding to the operational stroke and capacity of

MRDs. Extensive simulation was conducted with the scaled-down four bench-

mark quake records. Typical results are shown in Fig. 6(a) for the first floor’s

phase portrait of the uncontrolled and closed-loop motion under 0.3g record of

the El-Centro earthquake. Also, the spectrum of the first, fourth, sixth, eight235

and top floor modes for the controlled case is depicted in Fig. 6(b). It can be

seen that not only a significant reduction in displacement and velocity trajec-

tories are observed with the proposed controller, but also the system resonant

frequencies are shifted further due to the proposed FS2SMC to avoid building

collapse from frequency resonance.240

Feasibility of the proposed controller is verified via the time responses of

the controlled current signals, which are positive and constrained to 2 A, of the

MRDs attached to the first and top floors, as plotted in Fig. 7(a). Under the

frequency shaped robust control strategy, not only seismic vibrations can be

effectively suppressed but also the structural control responses involved can be245

kept at a low-energy level. Indeed, the conjugate force-displacement trajectory

of the MRD under the scaled-down seismic disturbance is depicted in Fig. 7(b),

in which xd1 = x1 and fMR(1) = Ω−1u1. The associated kinetic, damping, strain

and input energy processes are analyzed in the next section.
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(a) (b)

Figure 7: MRD force-displacement trajectory and applied current.

5. Discussion250

For analysis of the energy flow in the smart structure, we present in Figs. 8

and 9 the relative kinetic energy (KE), damping energy (DE), strain energy (SE),

and input energy (IE) signals with respect to displacement and velocity under

0.3g record of the El-Centro earthquake in both uncontrolled and controlled

cases, respectively. Generally, from zero initial conditions xk(t0) = ṙk(t0) = 0,255

output energy (OE) components, i.e., Ek, Eζ , Es, and Ei begin to increase from

zero when t ∈ [t0 ∞) under a horizontal ground motion excitation ẍg starting

at t0.

In the uncontrolled case, the input energy received from the external distur-

bance transmitted through the foundation of the smart structural system. The260

induced energy signal distributes to the kinetic, passive damping, and strain en-

ergy of the structure as mechanical OE, i.e. Ek, Eζ , Es and consequently, may

exceed a permissible threshold causing structural damage when the magnitude

of seismic input is too large. Indeed, due to excessive lateral motion results in

structural inability to dissipate the intrinsic Ek, Eζ , Es, constituted from the265

transmitted Ei signal, which may eventually lead to serious structural damage.

For the controlled case, the reference is ideally set at xR = 0 with L(s) =

1
s2+1.4142s+1 , κk = 10, and ηk = 1.25. By controlling the capability of absorbing
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(a) Open-loop Ek. (b) Open-loop Eζ

(c) Open-loop Es (d) Open-loop Ei

Figure 8: Uncontrolled relative energy signals under seismic disturbance.
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excitation energy via the use of MR fluid yield stress to ultimately mitigate

the overall structural vibrations under seismic disturbances, a low-energy smart270

structure can be achieved to withstand dynamic loading source. Figure 9 of the

flow of energy under current control of the embedded MRDs attached to the

structure, i.e. Ek, Eζ , Es and the control energy Ec under the proposed con-

trol, where it can be seen that a small control electrical energy for magnetizing

the fluid in the smart devices can substantially reduce the mechanical energy275

components in the presence of hostile loading sources.

Thus, in semi-active control with FS2SMC, by injecting a control energy

(CE) for magnetization, the MRDs can dissipate a large amount of seismic en-

ergy imparted to the building structure. Under the robustly controlled magnetic

field, the resulting damping force over a finite displacement of MRDs can ad-280

just mechanical parameters of the seismically excited structure and dissipates

the induced IE into heat through the MR fluid itself. This heat is, in turns,

transferred to the environment via conduction and convection mechanisms. A

schematic diagram of the energy flow in the multi-dof smart structure system

under external excitation by a dynamic loading source is illustrated in Fig. 10.285

We now show effectiveness of the proposed FS2SMC by comparing its per-

formance, in terms of output energies, with a Lyapunov-based control (LC)

scheme, designed by employing an optimization algorithm to search for a suit-

able current value for MRDs while minimizing the time rate of change of a

chosen Lyapunov function, V = yTPy, where P is a symmetric positive defi-290

nite matrix, and y is the system state [12]. The peak responses of the relative

energy signals for the uncontrolled (UC), LC, and FS2SMC cases under four

benchmark scaled (0.3g) seismic records, the El-Centro, Hachinohe, Northridge

and Kobe earthquakes, are provided in Table 1. For all excitation records, im-

provements can be noticed in the ability to suppress seismic vibrations via the295

controlled yield stress of the MRDs under control with FS2SMC or LC. It can

be seen that for the controlled case, the output energies, namely Ek, Eζ , Es can

be substantially reduced more than in the uncontrolled case with MRDs used

in the fail-safe passive mode. While both controllers are effective for vibration
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(a) Controlled kinetic energy Ek. (b) Controlled damping energy Eζ .

(c) Controlled strain energy Es. (d) Electrical control energy Ec.

Figure 9: Controlled relative energy signals under seismic disturbance.

Figure 10: Energy flow in the low-energy smart structure system under external excitation.
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Table 1: Peak relative energy responses (J) under various seismic disturbances.

El-Centro Hachinohe

UC LC FS2SMC UC LC FS2SMC

Ek 161.9×103 534.144 406.81 53.48×103 137.89 106.9

Es 126.1×103 8580.7 6042.7 56.01×103 2779.7 1985.5

Eζ 17.1×103 1865.8 1863.9 6628.9 534.89 509.42

Ec - 8815.1 6296.5 - 3065.3 2114.1

Northridge Kobe

UC LC FS2SMC UC LC FS2SMC

Ek 380.3×103 2893.8 2261.2 926.97×103 1695.4 1280.2

Es 293.8×103 34143.9 29691 924.15×103 40834.9 34089

Eζ 38.06×103 11528 9606.4 112.11×103 9211.3 7676

Ec - 39074.3 31011 - 45789 35232

suppression, the FS2SMC is more energy-efficient than the LC since it requires300

a smaller amount of control energy Ec but results in more absorption of input

energy with less stiffness, damping and strain energies at the output. Indeed,

owing to the incorporation of the frequency-depending relationships of force-

displacement and force-velocity of the smart devices into the system model and

control design, and hence, the ability to effectively shape the frequency responses305

of the overall smart structure, the proposed controller can adjust the embodied

energy to alter its spectrum in a desired bandwidth, roll off from the resonance

region to limit the peak value of the mechanical and transmitted input energy

terms, resulting in a low-energy structure while avoiding natural modes of the

integrated structural system in dealing with any external loading source.310

6. Conclusion

We have presented a frequency domain-based method for modeling and con-

trol of low-energy structures embedded with smart devices to mitigate the struc-
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tural vibrations and dissipate the energy induced under external excitations.

The controlled smart devices, here magnetorheological fluid dampers, are repre-315

sented by describing functions of amplitude, frequency and control signal. The

overall frequency response of the structure is obtained via a modal transforma-

tion. A frequency-shaped second-order sliding mode control is then proposed

to achieve the control objective of maintaining structural resilience against any

dynamic loading sources at a low control energy level. The control signal is320

a combination of an equivalent control containing a frequency shaping filter,

and a robust control to drive the system dynamics to the desired mechanical

modes shifted away from the resonance region. Experimental characterization of

a laboratory MRD as well as aseismic building structure simulation have been

conducted. The structural responses of a 10-floor building subject to bench-325

mark earthquakes and comparison results on kinetic, damping, strain and input

energies have indicated effectiveness and feasibility of the proposed method.

Appendix

Energy dissipated per cyclic oscillation:

Given periodic displacement x = E sin(ωt) and velocity ẋ = Eω cos(ωt), the

energy dissipated by a MRD in one vibration cycle can be determined by the

area enclosed within as hysteresis loop, as shown for example in Fig. 2(a):

EMR =

∮
fMRdx =

∫ 2π
ω

0

fMRẋdt =

∫ 2π
ω

0

cMRẋ
2dt,

=
cMR(Eω)2

2

∫ 2π
ω

0

(1− sin(2ωt))dt = 2π2fcMRE
2,

(23)

where the damping force function is fMR = cMRẋ = ±cMRω
√
E2 − x2 and with330

its conjugate variable, the displacement, lying on an ellipse ( fMR

cMRωE
)2+( xE )2 = 1

depicted in Fig. 11.

The loss coefficient or damping ratio ζMR of the MRD can be defined as

the ratio of damping energy loss per radian divided by the strain energy, i.e.,

ζMR = 2π2fcMRE
2

2π(kMRE2) where the effective stiffness is kMR =
f+
MR−f

−
MR

E+−E− . Thus, cMR =335
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Figure 11: Graphical representation of dissipated-energy per cycle at resonance.

kMRζMR

πf . Using the concept of equivalent viscous damping and substituting cMR

into (23) gives EMR = 2πkMRζMRE
2.
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