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The problem of determining whether a given quantum state is entangled lies at the heart of quantum infor-
mation processing, which is known to be an NP-hard problem in general. Despite the proposed many methods
such as the positive partial transpose (PPT) criterion and the k-symmetric extendibility criterion to tackle this
problem in practice, none of them enables a general, effective solution to the problem even for small dimensions.
Explicitly, separable states form a high-dimensional convex set, which exhibits a vastly complicated structure.
In this work, we build a new separability-entanglement classifier underpinned by machine learning techniques.
Our method outperforms the existing methods in generic cases in terms of both speed and accuracy, opening up
the avenues to explore quantum entanglement via the machine learning approach.

Born from pattern recognition, machine learning possesses
the capability to make decisions without being explicitly pro-
grammed after learning from large amount of data. Beyond its
extensive applications in industry, machine learning has also
been employed to investigate physics-related problems in re-
cent years. A number of promising applications have been
proposed to date, such as the Hamiltonian learning [1], auto-
mated quantum experiments generation [2], identification of
phases and phase transition [3–5], efficient representation of
quantum many-body states [6, 7], just to name a few. Never-
theless, there are yet a myriad of significant but hard problems
in physics to be assessed, in which should machine learn-
ing provide more novel insights. For example, to determine
whether a generic quantum state is entangled or not is a fun-
damental and NP-hard problem in quantum information pro-
cessing [8], and machine learning is demonstrated to be ex-
ceptionally effective in tackling it as shown in this work.

As one of the key features in quantum mechanics, entangle-
ment allows two or more parties to be correlated in a way that
is much stronger than they can be in any classical way [9]. It
also plays a key role in many quantum information processing
tasks such as teleportation and quantum key distribution [10].
As a result, one question naturally arises: is there a universal
criterion to tell if an arbitrary quantum state is separable or
entangled? This is a typical classification problem, which re-
mains of great challenge even for bipartite states. In fact, such
an entanglement detection problem is proved to be NP-hard
[8], implying that it is almost impossible to devise an efficient
algorithm in complete generality.

Here, we focus on the task of detecting bipartite entangle-

ment. Consider a bipartite system AB with the Hilbert space
HA ⊗HB , where HA has dimension dA and HB has dimen-
sion dB , respectively. A state ρAB is separable if it can be
written as a convex combination ρAB =

∑
i λiρA,i ⊗ ρB,i

with a probability distribution λi ≥ 0 and
∑
i λi = 1. Here

ρA,i and ρB,i are density operators acted on HA, HB respec-
tively. Otherwise, ρAB is entangled [11, 12]. To date, many
criteria have been proposed to detect bipartite entanglement,
each with its own pros and cons. For instance, the most fa-
mous criterion is the positive partial transpose (PPT) crite-
rion, saying that a separable state must have PPT; however, it
is only necessary and sufficient when dAdB ≤ 6 [13, 14]. An-
other widely used one is the k-symmetric extension hierarchy
[15, 16], which is presently one of the most powerful crite-
ria, but hard to compute in practice due to its exponentially
growing complexity with k [17].

In this work, we employ the machine learning techniques
to tackle the bipartite entanglement detection problem by re-
casting it as a learning task, namely we attempt to construct
a separability-entanglement classifier. Due to its renowned
effectiveness in pattern recognition for high-dimensional ob-
jects, machine learning is a powerful tool to solve the above
problem. In particular, a reliable separability-entanglement
classifier in terms of speed and accuracy is constructed via the
supervised learning approach. The idea is to feed our classi-
fier by a large amount of sampled trial states as well as their
corresponding class labels (separable or entangled), and then
train the classifier to predict the class labels of new states that
it has not encountered before. It is worthy stressing that, there
is also a remarkable improvement with respect to universality
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FIG. 1. (a) In the high-dimensional space, the set of all states is
convex, while separable states form a convex subset. Many crite-
ria, such as the linear (green straight line) or nonlinear (green curve)
entanglement witnesses [9, 18] and PPT tests, are based on this ge-
ometric structure and detect a limited set of entangled states. (b)
Classifier built from supervised learning has a decision boundary of
highly complex shape.

in our classifier compared to the conventional methods. Previ-
ous methods only detect a limited part of the state space, e.g.
different entangled states often require different entanglement
witnesses. In contrast, our classifier can handle a variety of
input states once properly trained, as shown in Fig. 1.

Supervised learning – The bipartite entanglement detec-
tion problem can be formulated as a supervised binary clas-
sification task. Following the standard procedure of super-
vised learning [19, 20], the feature vector representation of
the input objects (states) in a bipartite system AB is first cre-
ated. Indeed, any quantum state ρ, as a density operator act-
ing on HA ⊗ HB can be represented as a real vector in
X = Rd2Ad2B−1, which is due to the fact that ρ is Hermi-
tian and of trace 1 (see Supplementary Material [17]). In the
machine learning language, we refer x as the feature vector of
ρ and X the feature space.

Next, a dataset of training examples is produced, with the
form Dtrain = {(x1, y1), ..., (xn, yn)}, where n is the size of
the set, xi ∈ X is the i-th sample, and yi is its correspond-
ing label signifying which class it belongs to, i.e., yi equals to
1 if xi is entangled or −1 otherwise. When dAdB ≤ 6, the
labeling process can be directly computed via the PPT crite-
rion. For higher-dimensional cases, we attempt to estimate the
labels by convex hull approximation, which we will describe
later. The task is to analyze these training data and produce an
inferred classifier that predicts the unknown class labels for
generic new input states.

Explicitly, the aim of supervised learning is to infer a func-
tion (classifier) h : X → {−1, 1} among a fixed class of
functions H such that h is expected to be close to the true
decision function. One basic approach to choose h is the so-
called empirical risk minimization, which seeks the function
that best fits the training data among the class H . In partic-
ular, to evaluate how well h fits the training data Dtrain, a loss
function is defined as

L(h,Dtrain) =
1

|Dtrain|
∑

(xi,yi)∈Dtrain

1(yi 6= h(xi)), (1)

where 1(·) is the truth function of its arguments. For a generic
new input test dataset Dtest that contains previously unseen
data, function L(h,Dtest) gives a quantification of the gener-
alization error from Dtrain to Dtest.

Numerous supervised learning algorithms have been devel-
oped, each with its strength and weakness. These algorithms,
which have distinct choices of class H , include support vec-
tor machine (SVM) [21], decision trees [22], bootstrap aggre-
gating [23], and boosting [24], etc. We have applied these
algorithms to the separability problem directly, but neither of
them provided an acceptable accuracy, which is mainly due to
the lack of prior knowledges for training, e.g., the geometric
shape of the set of separable states S. Taking the kernel SVM
approach [21] as an example, it uses a kernel function to map
data from the original feature space to another Hilbert space,
and then finds a hyperplane in the new space to split the data
into two subclasses. It turns out that using common kernels
such as radial basis function and polynomials, the error rate
on the test dataset is always around 10% (see Supplementary
Material [17] for details). This suggests that the boundary of
S is too complicated to be portrayed by manifolds with ordi-
nary shapes.

Convex hull approximation – The above discussions sug-
gest that it is desirable to examine the detailed geometric
shape of S in advance. One well-known approach is to ap-
proximate S from outsize via k-symmetric extendible set Θk,
where Θk ⊃ Θk+1 and Θk converges exactly to S as k goes
to infinity [31]. Unfortunately, it is impractical to compute the
boundary of Θk for large k, while it is still far from approxi-
mating S for small k [17].

However, it is much easier to approximate S from inside,
since S is a closed convex set, and its extreme points are
exactly all the separable pure states, which can be straight-
forwardly parameterized and generated numerically. We ran-
domly samplem separable pure states c1, ..., cm ∈X to form
a convex hull C := conv({c1, ..., cm}). C is said to be a con-
vex hull approximation (CHA) of S, with which we can ap-
proximately tell whether a state ρ is separable or not by testing
if its feature vector p is in C. This is equivalent to determin-
ing whether p can be written as a convex combination of ci by
solving the following linear programming:

max α s.t αp ∈ C,

i.e. αp =

m∑
i=1

λici, λi ≥ 0,
∑

i
λi = 1. (2)

Here α = α(C, p) is a function of C and p. If α(C, p) ≥ 1, p is
in C and thus ρ is separable; otherwise, ρ is highly possible to
be an entangled state. In principle, C will be a more accurate
CHA of S if we construct C with more extreme points. We test
the error rate of CHA on a set of 2 × 104 random two-qubit
states, which is sampled under a specified distribution [17]
and labeled by PPT criterion. The results are shown by the
blue curve in Fig. 3(c), where the error rate decreases quickly
to 3% when the number of extreme points m increases to 104.
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FIG. 2. (a) Illustration of the iterative algorithm for detecting the
separability. Initially we build a CHA C. For a state ρ with feature
vector p, we find the maximum α such that αp is still in C. If α ≥ 1,
then ρ is surely separable. Otherwise, suppose αp lies on a hyper-
plane P , such that P ∩ C is the boundary of C. Let ci1 , . . . , ciD
be extreme points of C that are in P ∩ C. We enlarge C by sam-
pling separable pure states that are near ci1 , . . . , ciD , then repeat the
above procedure for many times, until α ≥ 1 or α converges. (b)
Illustration of the learning algorithm: ensemble methods are models
composed of multiple weaker models that are independently trained
and whose predictions are combined in some way to make the overall
prediction. For example, each time we draw a subset of training data
(marked as yellow dots in the figure), and we train a model based on
this subset, which is a weak model on the whole training set. We re-
peat the process for many times and obtain a batch of weak models,
and combine them as a committee.

However, we can not directly test the accuracy of CHA on
generic two-qutrit states, since PPT criterion is no longer suf-
ficient for detecting separability. To illustrate the power of
CHA beyond the PPT criterion, we use a specific example
that is previously well-studied. Consider a set of two-qutrits
pure states {|v1〉, . . . , |v5〉} that form the well-known unex-
tendible product basis [26], where |v1〉 = (|00〉 − |01〉)/

√
2,

|v2〉 = (|21〉 − |22〉)/
√

2, |v3〉 = (|02〉 − |12〉)/
√

2, |v4〉 =
(|10〉 − |20〉)/

√
2, and |v5〉 = (|0〉 + |1〉 + |2〉)⊗2/3. It is

known that ρtiles = (I−
∑5
i=1 |vi〉〈vi|)/4 is an entangled state

with PPT [27]. Due to the fact that S is convex and closed,
there must exist a unique critical point αtiles ∈ [0, 1) such that
αtilesρ + (1 − αtiles)I/(dAdB), the probabilistic mixture of ρ
and the maximally-mixed state I/(dAdB), is on the boundary
of S. Ref. [28] compared the effectiveness of various sepa-

m 2000 5000 10000 20000 50000 100000

α(C, ptiles) 0.5264 0.5868 0.6387 0.6759 0.7150 0.7459

TABLE I. Numerical results for approxmiating αtiles by α(C, ptiles).
Here, m is the number of random extreme points for building C.

rability criteria, and concluded that αtiles ∈ (0.5643, 0.8649].
Note that for a CHA C, α(C, ptiles) actually provides a lower
bound approximation of αtiles, where ptiles is the feature vector
of ρtiles. Now we apply CHA and attempt to improve the lower
bound of αtiles, and the result is shown in Table I.

We find that the lower bound of αtiles has been raised to
0.7459. However, in Table I, the value of α(C, ptiles) has not
converged yet. To reach the convergence of α(C, ptiles), we
have to enlarge C by adding more extreme points. However,
note that the point α(C, ptiles) lies on a part of the boundary
of C, which is the intersection of a hyperplane and C. Let
ci1 , . . . , ciD be the extreme points of C that lie on the hyper-
plane as well. Clearly, if we enlarge C by sampling the separa-
ble pure states that are near ci1 , . . . , ciD rather than sampling
uniformly over the whole set of separable pure states, it will
boost the value of α(C, ptiles) more effectively.

Subsequently, we refine CHA as an iterative algorithm
[17], with the idea shown in Fig. 2(a). The iterative algorithm
gives the result αtiles > 0.8648. As the upper bound of αtiles is
0.8649 [28], we can explicitly conclude that αtiles ≈ 0.8649.
It is worthy emphasizing that the algorithm also gives the crit-
ical point for a generic entangled state with small error, and
detects the separability for generic separable states [17].

Combining CHA and supervised learning – There is yet a
noticeable drawback of the above CHA approach from the
perspective of the tradeoff between the accuracy and time con-
sumption. Boosting the accuracy means adding additional ex-
treme points to enlarge the convex hull, which leads to more
time costs to determine if a point is inside the enlarged convex
hull or not. To overcome this, we combined CHA with super-
vised learning, as machine learning has the power to speed up
such computations.

To design a learning process that is suitable for our prob-
lem, for each state ρ with feature vector p, we extend the
feature vector as (p, α(C, p)) in order to encode the ge-
ometric information of the CHA C into the dataset. In
this manner, the training dataset is written as Dtrain =
{(x1, α1, y1), ..., (xn, αn, yn)}, where αi = α(C, xi). A clas-
sifier h is now a binary function defined on X × R, and the
loss function of a classifier h is then redefined as

L(h,Dtrain) =
1

|Dtrain|
∑

(xi,αi,yi)∈Dtrain

1(yi 6= h(xi, αi)). (3)

Subsequently, we employ a standard ensemble learning ap-
proach [23] to train a classifier with training data Dtrain, de-
scribed as follows.

The essential idea of ensemble learning is to improve the
predictive performance by combining multiple classifiers into
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a committee. Even though the prediction from each con-
stituent might be poor, the combined classfier could often still
perform excellent. For the binary classification problem, we
can train different classifiers to give their respective binary
votes for each prediction, and use the majority rule to choose
the value which receives more than half votes as the final an-
swer, see Fig. 2(c) for a schematic diagram.

Here, we choose bootstrap aggregating (bagging) [29] as
our training ensemble algorithm. In each run, a training
subset is randomly drawn from the whole set Dtrain, and a
model is trained from the training subset using another learn-
ing algorithm, e.g., decision trees learning. We repeat the
process for L = 100 times and obtain L different models,
which are finally combined together as the committee. Since
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FIG. 3. Results of the CHA approach and BCHA classifier. More
details of the BCHA classifier can be found in [17]. (a) Test re-
sults of BCHA when m = 103 for the two-qubit case. The random
density matrices in the test dataset are projected on a plane by pro-
jection π : (x, α) → (x1, α

−1). Here H1 = |0〉〈0| ⊗ σz/
√

2. The
red points are states predicted as separable, while the blue points
are states predicted as entangled. Some states with α < 1 are
predicted as separable, which is different from CHA. (b) Test re-
sults of BCHA when m = 2 × 104 for the two-qutrit case. Here
P1 = (|00〉〈00| − |01〉〈01|)

√
3/2. All the states in the test dataset

are PPT states. The red points are states predicted as separable,
while the blue points are states predicted as bound entangled. (c)
Comparison between CHA and BCHA for two-qubit states. For
the same m, BCHA clearly suppresses the error rate significantly.
And to achieve the same error rate, BCHA requires much less run-
ning time (which mainly depends on the value of m). For instance,
to decrease the error rate to less than 3%, CHA requires a convex
hull with m ≈ 7 × 103, while BCHA only requires a convex hull
with m ≈ 103, which considerably reduces the computational cost.
(d) Comparison between CHA and BCHA for two-qutrit PPT states.
From the data, similar to the two-qubit case, BCHA also outperforms
CHA in terms of speed and accuracy.

αi = α(C, xi) contains the geometric information of CHA C,
our method is indeed a combination of bagging and CHA. We
call this combined method BCHA.

The computational cost contains two parts: the cost of com-
puting αi via linear programming, and the time of computing
each constituent in the committee. The latter cost is much
smaller than the former. Therefore, by using a convex hull
of much smaller size and implementing a bagging algorithm,
a significant boost in terms of accuracy is anticipated if the
total computational cost is fixed. For the two-qubit case, we
have demonstrated such a remarkable boost of accuracy in our
BCHA classifier, as shown in Fig. 3(c), where the advantages
of the BCHA classifier in terms of both accuracy and speed
are shown.

We further extend the classifier to the two-qutrit scenario.
Unlike the two-qubit case, the critical question now is how to
set an appropriate criterion to evaluate whether the classifier
is working correctly, since PPT criterion is not sufficient for
detecting separability in two-qutrit systems. As the convex
hull is capable of approximating the set of separable states S
to an arbitrary precision, we use 105 random separable pure
states as extreme points to form the hull, and assumed it to
be the true S. The learning procedure is analogous to the one
used for two qubits. Figure 3(d) shows the accuracy of the
BCHA classifier compared to that of the sole CHA approach,
Similar as the two-qubit case, the BCHA classifier shows clear
advantage in terms of both accuracy and speed in comparison
with the sole CHA method.

Conclusion – In summary, we study the entanglement de-
tection problem via the machine learning approach, and build
a reliable separability-entanglement classifier by combining
supervised learning and the CHA method. Compared to the
conventional criteria for entanglement detection, our method
can classify an unknown state into the separable or entan-
gled category more precisely and rapidly. The classifier can
be extended to higher dimensions in principle, and the devel-
oped techniques in this work would also be incorporated in
future entanglement-engineering experiments. We anticipate
that our work would provide new insights to employ the ma-
chine learning techniques to deal with more quantum infor-
mation processing tasks in the near future.
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A. Generalized Gell-Mann Matrices

To represent a n-by-n density matrix ρ as a real vector x
in Rn2−1, we can find a Hermitian orthogonal basis that con-
tains identity such that ρ can be expanded in such a basis with
real coefficients. For example, the Pauli basis is a commonly
used one. In our numerical tests, we take the generalized Gell-
Mann matrices and the identity as the Hermitian orthogonal
basis. In this section, we recall the definition of the general-
ized Gell-Mann matrices, which is shown in [30].

Let {|1〉, . . . , |n〉} be the computatioal basis of the n-
dimensional Hilbert space, and Ej,k = |j〉〈k|. We now define
three collections of matrices. The first collection is symmet-
ric:

sj,k = Ej,k + Ek,j

for 1 ≤ j < k ≤ n. The second collection is antisymmetric:

aj,k = −i (Ej,k − Ek,j)

for 1 ≤ j < k ≤ n. The last collection is diagonal:

dl =

√
2

l(l + 1)

 l∑
j=1

Ej,j − lEl+1,l+1


for 1 ≤ l ≤ n− 1.

The generalized Gell-Mann matrices are elements in the set
{λi} = {sj,k} ∪ {aj,k} ∪ {dl}, which gives a total of n2 − 1
matrices. We can easily check that

tr (λi) = tr (λiI) = 0

and

tr (λiλj) = 2δij ,

which implies that {λi} ∪ {I} forms an orthogonal basis of
observables in n-dimensional Hilbert space.
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For every n-by-n density matrix ρ, ρ can be expressed as a
linear combination of λi and I as follows:

ρ =
1

n

(
I +

√
n(n− 1)

2
x · ~λ

)
,

where x = (x1, x2, . . . , xn2−1) ∈ Rn2−1 satisfies

xi =

√
n

2(n− 1)
tr (ρλi) .

B. The set of k-extendible states

In this section, we recall facts regarding k-extendible states
and its relationship to separability.

A bipartite state ρAB is said to be k-symmetric extendible
if there exists a global state ρAB1...Bk

whose reduced density
matrices ρABi

are equal to ρAB for i = 1, . . . , k. The set
of all k-extendible states, denoted by Θk, is convex with a
hierarchy structure Θk ⊃ Θk+1. Moreover, when k → ∞,
Θk converges exactly to the set of separable states [31].

The Θk is known to be closely related to the ground state
of some (k+ 1)-body Hamiltonians [32]. To be more precise,
consider a 2-local Hamiltonian H of a (k + 1)-body system
with Hilbert space CdA

⊗k
i=1 CdBi of dimension dAd

k
B , as

given in the following form H =
∑k
i=1HABi

. Here HABi
is

any Hermitian operator acting nontrivially on particles A and
Bi, and trivially on other k−1 parties. In other words, we will
have HAB1

= HAB ⊗ I2,...,k (I2,...,k is the identity operator
of B2, . . . , Bk), and given the symmetry of Bis, we can al-
ways write the nontrivial action of HABi

on CdA
⊗k

i=1 CdBi

in terms of some HAB acted on dAdB-dimensional Hilbert
space.

For any given H , denote its normalized ground state by
|ψg〉 ∈ CdA

⊗k
i=1 CdBi , and ρg = |ψg〉〈ψg|. Then the ex-

treme points of Θk are given by the marginals of ρg on parti-
cles ABi, which are the same for any i. Denote this marginal
by ρH , since it is completely determined by H .

To generate random extreme points of Θk, we will need
to first parametrize them. Denote {OlmAB} as set of orthonor-
mal Hermitian basis for operators on HA ⊗ HBj (see sec-
tion A), then we can always write HAB =

∑
lm almO

lm
AB ,

with parameters alm. Without loss of generality, we assume
O00
AB = I , and we will assume a00 = 0, so there are only

d2Ad
2
B − 1 terms in the sum. Since HAB is a Hermitian ma-

trix, alm can be chosen as real, and we can further require that∑
l,m a

2
lm = 1. Consequently, ρH will be a point in Rd2Ad2B−1,

which is parametrized by {alm}. And the coordinate of ρH
are explicitly given by blm = tr(ρHO

lm
AB).

Also, each HAB gives an entanglement witness. The
ground state energy of HAB is given by E0 =
〈ψg|H|ψg〉 =

∑
lm almblm/k. For any density matrix ρAB , if

tr(ρABHAB) < E0, then ρAB has no k-symmetric extension,
hence is surely entangled.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

⟨H1⟩

⟨H
2
⟩

Sep

2-Ext

3-Ext

4-Ext

5-Ext

6-Ext

7-Ext

8-Ext

9-Ext

10-Ext

11-Ext

12-Ext

FIG. S4. Projections of the boundaries of the separable states and the
k-symmetric extendible states (k = 2, ..., 12) on the plane spanned
by the operators H1 = |0〉〈0| ⊗σz/

√
2 and H2 = (σy ⊗σx−σx⊗

σy)/2. Here σx, σy, σz are the three Pauli operators. As we can see,
there is still a large gap between Θ12 and separable set.

Since the dimension of H grows exponentially with k, to
generate these extreme points for Θk becomes hard when k
increases. In practice, we can generate the extreme points of
Θk for k = 12 and dA = dB = 2. However, as depicted
in Fig. S4, there is still a large gap between the separable
boundary and the k-extension boundary k.

More general properties on k-extendability and its relation-
ship to the quantum marginal problem can be found in Refs.
[33–38].

C. Generating Random Density Matrices

Since our aim is to determine the separability of generic
bipartite states, we require a bunch of random density matri-
ces with full rank to test the performance of our approaches.
In our numerical tests, we sample random density matrices
under the probability measure µ = ν × ∆λ, where ν is the
uniform distribution on U(n) according to Haar measure, ∆λ

is the Dirichlet distribution on the simplex
∑n
i=1 di = 1. The

probability density function of Dirichlet distribution is

∆λ (d1, . . . , dn) = Cλ

n∏
i=1

d−λi ,

where λ > 0 is a parameter and Cλ is the normaliza-
tion constant. Since every density matrix is unitarily simi-
lar to a real diagonal density matrix, µ is a probability mea-
sure on the set of all density matrices. Such a probability
measure is discussed in Ref. [39], section II.A. We imple-
mented the sampling on ν via directly calling the function
RandomUnitary in [40]. The entire implementation is in
the code RandomState.m on the website of QMLab [41].

For the 2-qubit case, we set λ = 1/2 and generate
5 × 104 random quantum states, which are put in the file
2x2rdm.mat. We have found that 35% of the states are PPT

http://www.qetlab.com/RandomUnitary
http://qmlab.org/downloads/
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states, i.e., separable states, which is consistent with the result
shown in [39].

For the 2-qutrit case, we also set λ = 1/2. As shown
in [39], only 2.2% of the random states are PPT states when
λ = 1/2. However, our main interest is determining whether
a PPT state is entangled. Thus, we reject all the states
with negative partial transpose while sampling, and obtain
2 × 104 PPT states eventually. These states are put in the file
3x3rdm.mat on [41]. We can verify that at least 66.24% of
the PPT states are separable under the probability measure we
have chosen, using the convex hull approximation, which will
be discussed in section E.

We determine whether a state is a PPT state via IsPPT
in [40].

D. Testing CHA and BCHA

To approximate the set of separable states S with a convex
hull C, we generate a bunch of extreme points of S, i.e., ran-
dom separable pure states in HA ⊗ HB in a straightforward
way. The procedure for each time of sampling is demonstrated
as follows:

1. Sample a state vector |ψA〉 ∈ HA ∼= CdA from uniform
distribution on the unit hypersphere in CdA , according
to Haar measure [40].

2. Sample another state vector |ψB〉 ∈ HB ∼= CdB from
uniform distribution on the unit hypersphere in CdB , ac-
cording to Haar measure.

3. Return |ψA〉|ψB〉.

We execute the above procedure for M times to gain M
extreme points c1, . . . , cM . Let

Cm := conv ({0, . . . , cm})

for m = 1, . . . ,M . It is easy to see that Cm ⊆ Cm+1 for
m = 1, . . . ,M −1. Recall that we can decide whether a point
p is in Cm by solving the following linear programming

max α

s.t. αp =

m∑
i=0

λici,

λi ≥ 0,
∑

i
λi = 1. (4)

If α ≥ 1, p is in Cm and thus separable; otherwise, it is possi-
bly an entangled state. The solver for the linear programming
4 is implemented in CompAlpha.m on [41].

For the two-qubit case, we sample M = 104 extreme
points, which is saved in the file 2x2extreme.mat on [41].
We split the data in 2x2rdm.mat into two, one for training
BCHA and the other for testing both CHA and BCHA. To
compare the performance of CHA and BCHA, we test the er-
ror rate of the CHA Cm and BCHA based on Cm on the test

m 1000 2000 3000 4000 5000

error of CHA (%) 8.55 6.01 4.85 4.05 3.60

error of BCHA (%) 3.03 1.97 1.47 1.17 1.15

m 6000 7000 8000 9000 10000

error of CHA (%) 3.25 2.95 2.76 2.64 2.55

error of BCHA (%) 1.01 0.75 0.79 0.71 0.65

TABLE S2. The error rate of CHA Cm for two-qubit separable set
and BCHA based on Cm for some critical m.

dataset. The result is shown in table S2. We also apply differ-
ent supervised learning algorithms with the same training and
test dataset, without combining CHA. The result is shown in
Table S3.

Method Bagging Boosting SVM(rbf) Decision Tree

Error (%) 12.03 14.8 8.4 23.3

TABLE S3. Error rate of classifiers trained by different algorithms.
The error rate is difficult to be reduced due to the lack of prior knowl-
edge.

For the two-qutrit case, we sample M = 105 extreme
points, which is saved in the file 3x3extreme.mat on [41].
It can be verified that 66.24% of the PPT random states in
3x3rdm.mat are in the convex hull C105 , which implies that
at least 66.24% of the PPT random states are separable. We
used C105 as the criterion for separability, i.e., regard C105 as
the true separable set. Similar to the two-qubit case, we also
tested the accuracy of CHA Cm as well as BCHA based on
Cm. The result is shown in table S4.

m 10000 20000 30000 40000 50000

error of CHA (%) 33.40 22.69 16.64 12.60 9.63

error of BCHA (%) 12.23 9.54 7.52 6.07 5.03

m 60000 70000 80000 90000 100000

error of CHA (%) 6.86 4.64 2.95 1.39 0

error of BCHA (%) 3.75 2.73 1.81 1.02 0

TABLE S4. The error rate of CHA Cm for two-qutrit separable set
and BCHA based on Cm for some critical m. Since we used C105 as
the criterion, the error rate of C105 is 0.

E. Iterative Algorithm for Computing the Critical Point

Recall that for an entangled state ρ, there exists a critical
point αρ such that αρ + (1 − α)I/(dAdB) (0 ≤ α ≤ 1) is
separable when α ≤ αρ and entangled when α > αρ. Based
on CHA, we developed an iterative algorithm for approximat-
ing αρ in a more efficient way, which is shown as follows:

1. Randomly sample 1000 extreme points and form a con-
vex hull C. Let p be the feature vector of ρ. Set ε = 1,

http://qmlab.org/downloads
http://www.qetlab.com/IsPPT
http://qmlab.org/downloads/
http://qmlab.org/downloads/
http://qmlab.org/downloads/
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γ = 0.95.

2. Update αρ ← α(C,p).

3. Suppose now C := conv ({c1, . . . , cm}), and αρp =∑
i λici. Let ci1 , . . . , ciD be the extreme points such

that λik > 0. Set C ← conv ({ci1 , . . . , ciD}).

4. For each k = 1, . . . , D, suppose cik is the feature vec-
tor of |ak〉|bk〉. We randomly generate two Hermitian
operators H1 ∈ End(HA), H2 ∈ End(HB) such that
‖H1‖2 = 1 and ‖H2‖2 = 1. Let ξ be a random number

in [0, ε]. Set |a′k〉|b′k〉 =
(
eiξH1 ⊗ eiξH2

)
|ak〉|bk〉. Set

C ← conv ({C, c′k}), where c′k as the feature vector of
|a′k〉|b′k〉.

5. Set ε← γε and back to step 2.

What step 4 does is sampling in the neighborhood of cik .
In practice, we repeat step 4 for 10 times to get a bunch
of neighbors. The detailed implementation is in the code
CriticalPoint.m on [41].
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