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Abstract 

A phenomenological model for plain concrete under compression is formulated within the framework 

of the coupled elastoplastic-damage theory. Phenomenological elastoplastic-damage models have been 

widely used for concrete because of their capability of representing both the permanent inelastic 

deformations and the degradation of material moduli beyond the elastic range. The essential contribution 

introduced in this paper is the proposed partitioning of the strain tensor within the coupled elastoplastic-

damage framework which simplifies the selection of the failure surface and the potential function. 

Proposed partitioning permits the use of single failure criterion and single potential surface that are 

effective for both damage and plasticity models during inelastic deformations. Therefore, the coupled 

elastoplastic-damage model can be easily calibrated to fit the observed concrete behaviour based on 

well-established non-associated plasticity rules for concrete. The proposed approach also simplifies the 

numerical procedure by eliminating iterations that is required to equilibrate the stresses in plastic and 

damage components of the model. The numerical implementation is explained, and the results predicted 

by the model are compared with experimental data provided in the literature.  

 

KEYWORDS:  Concrete; Inelastic model; Phenomenological model; Coupled damage-plasticity; 

Cyclic loading 
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1. Introduction 

Coupled elastoplastic-damage models have been applied extensively for the description of the 

progressive failure of materials such as concrete, geomaterials, woods, steel and composites. These 

models have the capability of representing both the permanent inelastic deformations due to plastic 

component and the degradation of elastic moduli due to damage component. While the framework for 

plasticity is well established with the additive decomposition of the strain tensor into elastic and plastic 

parts, flow rule and Kuhn-Tucker conditions, approach to damage has been rather diverse. One of the 

main distinction between the alternative formulations is the way the strain tensor is decomposed. An 

initial attempt for merging elastoplastic and damage constitutive models can be found in Lemaitre 

(1985), where the total strain was partitioned as the elastic and plastic strains, while the effect of damage 

on the elasticity modulus was considered based on energy dissipation and thermodynamic principles. 

Simo and Ju (1987) employed the effective stress and effective strain concepts for the damage 

component and developed strain and stress based formulations and algorithms for the coupled 

elastoplastic-damage constitutive modelling. They also applied their theories for the simulation of the 

concrete material behaviour. Later, Ju (1989) developed an energy-based coupled elastoplastic-damage 

modelling approach. Constitutive models that are capable of coupling elastoplasticity and damage were 

also used for plain concrete by Meschke et al. (1998), in which the inelastic strains were decomposed 

into plastic and damage components and their share was determined based on a scalar parameter which 

was calibrated based on experimental results. Algorithmic issues in their analysis have also been 

discussed in Meschke et al. (1998). Lee and Fenves (1998) successfully coupled plastic and damage 

models to simulate the cyclic behaviour of concrete in both tension and compression. Vaz and Owen 

(2001) developed an algorithm for failure predictions of multi-fracturing materials based on the 

elastoplastic-damage modelling approach. Al-Rub and Kim (2010) used a coupled plasticity-damage 

model for the simulation of the fracture process of plain concrete. Brünig (2003) developed an 

elastoplastic-damage model to capture the phenomenological behaviour of metals considering finite 
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strains and anisotropic damage development. Later, Brünig and Michalski (2017) used the model to 

capture the behaviour of concrete in both tension and compression. Other coupled plasticity and damage 

models include the works of Benallal et al. (1988), Lubliner et al. (1989), Hansen and Schreyer (1994), 

Doghri (1995), Luccioni et al. (1996), Jason et al. (2006), Grassl and Jirasek (2006), Wu et al. (2006), 

Einav et al. (2007) and Voyiadjis et al. (2008). 

In this work, we follow the idea which proposes the partitioning of the total strain into elastic, plastic 

and damage strain components. According to the authors’ knowledge, the work of Klisinski and Mroz 

(1988) was the first in which the constitutive equations were constructed by partitioning the total strain 

into the elastic, plastic and damage strain components. Yazdani and Schreyer (1990), Armero and Oller 

(2000), Al Rub and Voyiadjis (2003), and Brünig (2003) also partitioned the total strain considering a 

damage strain component. Armero and Oller (2000), however, introduced a novel framework in which 

the sharing of the total strain was determined based on equilibrium conditions between the updated 

stresses of the plastic and damage components of the model. In their framework, the problem for damage 

is posed in a similar form to plasticity, in which given the damage strain, flow rule and Kuhn-Tucker 

conditions are applied to determine the damage evolution and stress update within the damage 

component. It is interesting to note that in Armero and Oller (2000), damage strain component is 

reversible in parallel to the elastic strain, however, the damage evolution is irreversible which is 

represented by a separate damage variable. This definition of reversible damage strain differs from 

irreversible damage strain used in alternative studies, e.g. Al Rub and Voyiadjis (2003), and Brünig 

(2003), which naturally leads to alternative expressions for constitutive equations. Ibrahimbegovic and 

his co-workers adopted the framework proposed by Armero and Oller (2000) for the analysis of concrete 

in Ibrahimbegovic et al. (2008), and mild steel in Ayhan et al. (2013). In this study, however, by defining 

an a-priori relationship between the total strain and the damage strain components based on the damage 

variable, we depart from Armero and Oller (2000) in order to provide a simpler and more efficient 

computational framework. We limit our approach to isotropic damage development. 
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The outline of this paper is as follows: In the next section, we review the coupled elastoplastic-damage 

model and set forth the relationship between damage and plasticity components. In Section 3, the 

numerical implementation of the coupled model is presented in the discrete form. Section 4 is allocated 

to the specifics of the adopted concrete material model. At Section 5, we present validation examples of 

the numerical methods; and we conclude at Section 6. 

2. Coupled elastoplastic-damage phenomenological model  

2.1. Basic Hypothesis 

Following Armero and Oller (2000) and Ibrahimbegovic (2009), the coupled damage and plasticity 

constitutive equations can be built on three basic hypotheses: additive decomposition of the total strain 

field, the strain energy and finally the plasticity and damage initiation criteria. 

• The additive decomposition implies that the total deformation can be decomposed into elastic 

part 𝛆𝛆𝑒𝑒, plastic part 𝛆𝛆𝑝𝑝 and damage part 𝛆𝛆𝑑𝑑 as  𝛆𝛆 = 𝛆𝛆𝑒𝑒 + 𝛆𝛆𝑝𝑝 + 𝛆𝛆𝑑𝑑. 

• The strain energy stored during deformation can be written as the sum of elastic and damage 

strain energies plus the energies due to hardening effects of plastic and damage parts: 

Ψ(𝛆𝛆, 𝛆𝛆𝑝𝑝, 𝜅𝜅𝑝𝑝,𝜙𝜙, 𝛆𝛆𝑑𝑑 , 𝜅𝜅𝑑𝑑)=Ψ𝑒𝑒(𝛆𝛆𝑒𝑒)+Ψ𝑑𝑑(𝛆𝛆𝑑𝑑,𝜙𝜙)+Ξ𝑝𝑝(𝜅𝜅𝑝𝑝) + Ξ𝑑𝑑(𝜅𝜅𝑑𝑑) 

where hardening effects can be accounted with the hardening potentials for the plastic behaviour 

Ξ𝑝𝑝(𝜅𝜅𝑝𝑝) and damage behaviour  Ξ𝑑𝑑(𝜅𝜅𝑑𝑑), which are functions of hardening variables 𝜅𝜅𝑝𝑝 and 𝜅𝜅𝑑𝑑 

for plasticity and damage, respectively.  

Elastic strain energy can be written as Ψ𝑒𝑒(𝛆𝛆𝑒𝑒) = 𝛔𝛔T𝛆𝛆𝑒𝑒 − 𝜒𝜒𝑒𝑒 in which 𝜒𝜒𝑒𝑒(𝛔𝛔) = 1
2
𝛔𝛔T𝐄𝐄−1𝛔𝛔, where 

𝛔𝛔 is the stress vector and 𝐄𝐄 is the elastic constitutive matrix. It should be noted that elastic 

response is assumed linear. 

The damage strain energy is Ψ𝑑𝑑(𝛆𝛆𝑑𝑑,𝜙𝜙) = 𝛔𝛔T𝛆𝛆𝑑𝑑 − 𝜒𝜒𝑑𝑑(𝛔𝛔,𝜙𝜙) in which 𝜒𝜒𝑑𝑑(𝛔𝛔,𝜙𝜙) = 1
2
𝛔𝛔T𝜙𝜙𝐄𝐄−1𝛔𝛔

  
 

is the complementary damage energy, where 𝜙𝜙 is the damage parameter indicating the level of 

isotropic damage state. The reason for introducing Ψ𝑑𝑑 is to accommodate the degradation in the 
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material stiffness. The presence of  Ψ𝑑𝑑 identifies the recoverable nature of the damage strains. 

The damage parameter 𝜙𝜙 can be written in terms of the reduction factor as                                          

𝜙𝜙 = 𝜑𝜑 (1 − 𝜑𝜑)⁄ , where 𝜑𝜑 ∈ [0,1] is a measure of reduction in the load carrying area. 

• The elastic domain can be specified as the domain in stress space where no change of internal 

variables, i.e., 𝛆𝛆𝑝𝑝, 𝜅𝜅𝑝𝑝,𝜙𝜙, 𝛆𝛆𝑑𝑑 , 𝜅𝜅𝑑𝑑, takes place. The boundaries of the domain is determined by the 

plastic failure criterion and the damage failure criterion with  

Φ𝑝𝑝�𝛔𝛔, 𝑞𝑞𝑝𝑝� ≤ 0   and  Φ𝑑𝑑(𝛔𝛔,𝑞𝑞𝑑𝑑) ≤ 0 where  𝑞𝑞𝑝𝑝= − 𝜕𝜕Ξ
𝑝𝑝

𝜕𝜕𝜅𝜅𝑝𝑝
 , 𝑞𝑞𝑑𝑑= − 𝜕𝜕Ξ

𝑑𝑑

𝜕𝜕𝜅𝜅𝑑𝑑
 . 

Within the framework of Armero and Oller (2000), the plastic and damage failure criteria are assumed 

independent from each other; however, herein we assume that plasticity and damage evolve 

simultaneously. Therefore, only one criterion is used, that is  Φ𝑝𝑝�𝛔𝛔, 𝑞𝑞𝑝𝑝� = Φ𝑑𝑑(𝛔𝛔, 𝑞𝑞𝑑𝑑). 

2.2. An interpretation of the model by Armero and Oller (2000) 

An interpretation of the coupled plastic-damage model proposed by Armero and Oller (2000) in the 

uniaxial case is given in Fig. 1. 

 

Fig. 1. Interpretation of the coupled model of Armero and Oller (2000), where plastic and damage 
devices are connected in series. 

 

In Fig. 1, the elastic, plastic dislocation and damage devices are connected in series consistent with the 

kinematic decomposition of the strain, where E, Kp, Kd, σy and σf are the elastic modulus, plastic 

hardening modulus, damage hardening modulus, yield stress limit and the fracture stress limit, 

respectively. While the plastic device introduces irreversible strain εp after unloading, the damage device 

introduces reversible strains εd, due to reduced resistance of the device after damage. This physical 

interpretation allows the mechanisms for damage and plasticity to be considered independent of each 
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other within the framework of Armero and Oller (2000). We diverge from the assumption of independent 

damage and plasticity evolution mechanisms by introducing a kinematic constraint in Section 2.6. 

2.3. Thermo-dynamic considerations 

Here, we would like to introduce the relationship between stress, strain and hardening components 

considering the local form of the second principle of thermodynamics. That is, the total inelastic 

dissipation is always non-negative, i.e., dΩ = 𝛔𝛔Td𝛆𝛆 − dΨ ≥ 0. Subsequently, one obtains 

(Ibrahimbegovic 2009) 

�𝛔𝛔T − 𝜕𝜕Ψ𝑒𝑒

𝜕𝜕𝛆𝛆𝑒𝑒

T
�d𝛆𝛆𝑒𝑒 + 𝛔𝛔Td𝛆𝛆𝑝𝑝 −

𝜕𝜕Ξ𝑝𝑝

𝜕𝜕𝜅𝜅𝑝𝑝
d𝜅𝜅𝑝𝑝 + d𝛔𝛔T �𝜕𝜕𝜒𝜒

𝑑𝑑

𝜕𝜕𝛔𝛔
− 𝛆𝛆𝑑𝑑� + 𝜕𝜕𝜒𝜒

𝑑𝑑

𝜕𝜕𝜙𝜙
d𝜙𝜙 − 𝜕𝜕Ξ𝑑𝑑

𝜕𝜕𝜅𝜅𝑑𝑑
d𝜅𝜅𝑑𝑑 ≥ 0          (1) 

where 𝛔𝛔Td𝛆𝛆𝑑𝑑 = d(𝛔𝛔T𝛆𝛆𝑑𝑑) − d𝛔𝛔T𝛆𝛆𝑑𝑑  has been used. Considering hyperelastic behaviour for the elastic 

device, the stress can be obtained from the elastic strain energy, i.e., 𝛔𝛔 − 𝜕𝜕Ψ𝑒𝑒

𝜕𝜕𝛆𝛆𝑒𝑒
= 0. Thus the first term 

vanishes in Eq. (1), in which dΩ𝑝𝑝 = 𝛔𝛔Td𝛆𝛆𝑝𝑝 −
𝜕𝜕Ξ𝑝𝑝

𝜕𝜕𝜅𝜅𝑝𝑝
d𝜅𝜅𝑝𝑝  and dΩ𝑑𝑑 = 𝜕𝜕𝜒𝜒𝑑𝑑

𝜕𝜕𝜙𝜙
d𝜙𝜙 − 𝜕𝜕Ξ𝑑𝑑

𝜕𝜕𝜅𝜅𝑑𝑑
d𝜅𝜅𝑑𝑑 are non-negative 

plastic and damage dissipations, respectively. On the other hand, the damage strain is defined through 

stress and the current value of damage compliance, i.e., 

 𝛆𝛆𝑑𝑑 = 𝜕𝜕𝜒𝜒𝑑𝑑

𝜕𝜕𝛔𝛔
            (2) 

By using Eq. (2) and substituting into Eq. (1), the dissipation inequality reduces to  

𝛔𝛔Td𝛆𝛆𝑝𝑝 + 𝑞𝑞𝑝𝑝d𝜅𝜅𝑝𝑝 +  𝜕𝜕𝜒𝜒
𝑑𝑑

𝜕𝜕𝜙𝜙
d𝜙𝜙 + 𝑞𝑞𝑑𝑑d𝜅𝜅𝑑𝑑  ≥ 0       (3) 

where  𝑞𝑞𝑝𝑝= − 𝜕𝜕Ξ
𝑝𝑝

𝜕𝜕𝜅𝜅𝑝𝑝
 and 𝑞𝑞𝑑𝑑= − 𝜕𝜕Ξ

𝑑𝑑

𝜕𝜕𝜅𝜅𝑑𝑑
 have been defined. In associated plasticity, maximization of the 

expression 𝛔𝛔Td𝛆𝛆𝑝𝑝 + 𝑞𝑞𝑝𝑝d𝜅𝜅𝑝𝑝 for plastic energy dissipation in Eq. (3) produces the flow rule. However, 

for pressure sensitive frictional materials such as concrete, non-associated flow rule produces more 

accurate results in plasticity based models. Therefore, in the following, we adopt a non-associated flow 

rule for plasticity. It can be shown that under non-associated flow rule, the energy dissipation stays non-
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negative, hence thermo-dynamically consistent, e.g. (Houlsby and Puzrin 2000). The damage energy 

dissipation can be written from Eq. (3) as 𝜕𝜕𝜒𝜒
𝑑𝑑

𝜕𝜕𝜙𝜙
d𝜙𝜙 + 𝑞𝑞𝑑𝑑d𝜅𝜅𝑑𝑑 and its non-negativeness is assumed herein.  

2.4. Plastic model 

By using the non-associated flow rule, the plastic strain increment can be written as 

d𝛆𝛆𝑝𝑝=d𝜆𝜆𝑝𝑝𝐛𝐛             (4) 

where 𝐛𝐛 = 𝜕𝜕Θ𝑝𝑝�𝛔𝛔,𝑞𝑞𝑝𝑝�
𝜕𝜕𝛔𝛔

 is the direction of the plastic strain increment,  Θ𝑝𝑝�𝛔𝛔, 𝑞𝑞𝑝𝑝� is the potential function 

for plasticity and d𝜆𝜆𝑝𝑝  is the proportionality factor. Note that a negative proportionality factor d𝜆𝜆𝑝𝑝 would 

imply plastic unloading which cannot occur. There is only elastic unloading allowed in which case the 

proportionality factor d𝜆𝜆𝑝𝑝 is zero. The flow rule indicates that during the loading which causes plastic 

deformations, the stress increments should be tangential to the potential surface. Since the stress 

increments are produced by the elastic strain increments only, i.e., d𝛔𝛔 = 𝐄𝐄d𝛆𝛆𝑒𝑒, the plastic strain 

increments do not produce stresses and their directions are normal to the potential surface. On the other 

hand, from the consistency condition, when plastic flow occurs, the stresses remain on the plastic failure 

surface, i.e.,  

 dΦ𝑝𝑝 = 𝜕𝜕Φ𝑝𝑝T

𝜕𝜕𝛔𝛔
d𝛔𝛔 + 𝜕𝜕Φ𝑝𝑝

𝜕𝜕𝑞𝑞𝑝𝑝
d𝑞𝑞𝑝𝑝 = 0   (5) 

By using d𝛔𝛔 = 𝐄𝐄(d𝛆𝛆 − d𝛆𝛆𝑝𝑝 − d𝛆𝛆𝑑𝑑) and  d𝛆𝛆𝑝𝑝 = d𝜆𝜆𝑝𝑝𝐛𝐛 in the equation above, d𝜆𝜆𝑝𝑝 becomes 

 d𝜆𝜆𝑝𝑝 = 𝐚𝐚T𝐄𝐄

𝐚𝐚T𝐄𝐄𝐛𝐛−𝜕𝜕Φ
𝑝𝑝

𝜕𝜕𝑞𝑞𝑝𝑝
 
𝜕𝜕𝑞𝑞𝑝𝑝
𝜕𝜕𝜅𝜅𝑝𝑝

  
𝜕𝜕𝜅𝜅𝑝𝑝
𝜕𝜕𝜆𝜆𝑝𝑝

  
 (d𝛆𝛆 − d𝛆𝛆𝑑𝑑)    (6) 

in which 𝜅𝜅𝑝𝑝 is the hardening parameter for plasticity and 𝐚𝐚 = 𝜕𝜕Φ𝑝𝑝

𝜕𝜕𝛔𝛔
 was used. From Eqs. (4) and (6), by 

substituting into the relation d𝛔𝛔 = 𝐄𝐄(d𝛆𝛆 − d𝛆𝛆𝑝𝑝 − d𝛆𝛆𝑑𝑑)  one obtains 

 d𝛔𝛔 = �𝐄𝐄 − 𝐄𝐄𝐛𝐛𝐚𝐚T𝐄𝐄

𝐚𝐚T𝐄𝐄𝐛𝐛−𝜕𝜕Φ
𝑝𝑝

𝜕𝜕𝑞𝑞𝑝𝑝

𝜕𝜕𝑞𝑞𝑝𝑝
𝜕𝜕𝜅𝜅𝑝𝑝

  
𝜕𝜕𝜅𝜅𝑝𝑝
𝜕𝜕𝜆𝜆𝑝𝑝

  
� (d𝛆𝛆 − d𝛆𝛆𝑑𝑑) =  𝐂𝐂𝑒𝑒𝑒𝑒(d𝛆𝛆 − d𝛆𝛆𝑑𝑑)    (7) 
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2.5. Damage model 

The damage model can be cast in a similar form as the one given for plasticity (Armero and Oller 2000, 

Ibrahimbegovic et al. 2008), i.e.,  

𝛔𝛔d𝜙𝜙 =  d𝜆𝜆𝑑𝑑𝐄𝐄𝐛𝐛              (8) 

which can be interpreted as the evolution equation of the damage model with d𝜆𝜆𝑑𝑑 as the proportionality 

factor. From the consistency condition, when damage occurs, the stresses remain on the damage failure 

surface, i.e.,                                                                                                                                                                                                                                                                                              

dΦ𝑑𝑑 = 𝜕𝜕Φ𝑑𝑑T

𝜕𝜕𝛔𝛔
d𝛔𝛔 + 𝜕𝜕Φ𝑑𝑑

𝜕𝜕𝑞𝑞𝑑𝑑
d𝑞𝑞𝑑𝑑 = 0        (9) 

Differentiation of Eq. (2), and using  𝜙𝜙d𝛔𝛔 = d(𝜙𝜙𝛔𝛔) − 𝛔𝛔d𝜙𝜙 =𝐄𝐄d �𝜕𝜕𝜒𝜒
𝑑𝑑

𝜕𝜕𝛔𝛔
� − 𝛔𝛔d𝜙𝜙, together with Eq. (8) 

produces 

 
d𝛔𝛔 = 𝜙𝜙−1𝐄𝐄d𝛆𝛆𝑑𝑑 − 𝜙𝜙−1𝐄𝐄𝐛𝐛d𝜆𝜆𝑑𝑑 

         (10) 

By using Eqs. (9) and (10) and the relation 𝐚𝐚 = 𝜕𝜕Φ𝑑𝑑

𝜕𝜕𝛔𝛔
 , d𝜆𝜆𝑑𝑑 can be obtained as 

 

d𝜆𝜆𝑑𝑑 = 𝐚𝐚T𝐄𝐄𝜙𝜙−1d𝛆𝛆𝑑𝑑

𝐚𝐚T𝐄𝐄𝜙𝜙−1𝐛𝐛−𝜕𝜕Φ
𝑑𝑑

𝜕𝜕𝑞𝑞𝑑𝑑
 𝜕𝜕𝑞𝑞𝑑𝑑𝜕𝜕𝜅𝜅𝑑𝑑

   
𝜕𝜕𝜅𝜅𝑑𝑑
𝜕𝜕𝜆𝜆𝑑𝑑

  
    (11) 

Substituting Eqs. (11)  into Eq. (10) produces, 

 d𝛔𝛔 = �𝐄𝐄𝜙𝜙−1 − 𝐄𝐄𝐛𝐛𝐚𝐚T𝐄𝐄𝜙𝜙−2

𝐚𝐚T𝐄𝐄𝜙𝜙−1𝐛𝐛−𝜕𝜕Φ
𝑑𝑑

𝜕𝜕𝑞𝑞𝑑𝑑
 𝜕𝜕𝑞𝑞𝑑𝑑𝜕𝜕𝜅𝜅𝑑𝑑

   
𝜕𝜕𝜅𝜅𝑑𝑑
𝜕𝜕𝜆𝜆𝑑𝑑

  
�d𝛆𝛆𝑑𝑑  = 𝐊𝐊𝑒𝑒𝑒𝑒d𝛆𝛆𝑑𝑑      (12) 

It should be noted that since we have assumed the same failure surface expressions for both damage and 

plasticity models, i.e., Φ𝑝𝑝�𝛔𝛔, 𝑞𝑞𝑝𝑝� = Φ𝑑𝑑(𝛔𝛔, 𝑞𝑞𝑑𝑑), 𝐚𝐚 in Eq. (11) is identical to that in Eq. (6). Similarly, due 

to the use of the same potential function in plasticity and damage models 𝐛𝐛 in Eq. (8) is identical to that 

in Eq. (4). 

2.6. Plastic-damage coupling 

According to the plastic-damage model of Armero and Oller (2000), when both plasticity and damage 

models are active, the stress increments in plastic and damage models are equal. This is because as 
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indicated in Fig. 1, the plastic and damage components are connected in series. Thus, by equating Eq. 

(7) to Eq. (12) and eliminating d𝛆𝛆𝑑𝑑 one obtains 

 d𝛔𝛔 =  𝐊𝐊𝑒𝑒𝑒𝑒[𝐊𝐊𝑒𝑒𝑒𝑒 + 𝐂𝐂𝑒𝑒𝑒𝑒]−1𝐂𝐂𝑒𝑒𝑒𝑒d𝛆𝛆          (13) 

Here, our motivation is to be able to use a single failure surface for both plasticity and damage models. 

In order to be able to use a single failure surface at any step of the analysis, the evolution of the internal 

parameters of plastic and damage models need to be linked in a certain way. For this purpose, we propose 

a relationship between the increments of the total strain tensor and the damage strain tensor as 

 d𝛆𝛆𝑑𝑑 = 𝜙𝜙
(1+𝜙𝜙)

d𝛆𝛆          (14) 

Considering that damage strain occurs due to reduced resistance after damage which results with the 

reduction in stress as d𝛔𝛔 = (1 − 𝜑𝜑)𝐄𝐄d𝛆𝛆, the damage strain increment is then considered herein as the 

strain required to compensate the stress reduction due to damage, i.e., d𝛆𝛆𝑑𝑑 = 𝜑𝜑d𝛆𝛆. The proposed 

relationship between the increments of the total strain and the damage strain in Eq. (14), is consistent 

with this definition since 𝜑𝜑 = 𝜙𝜙 (1 + 𝜙𝜙)⁄ . It should be noted that in literature alternative a-priori 

imposed relations between the total strain and the damage strain have been considered by Meschke et 

al. (1998). Using Eq. (14) in Eqs. (7) and (12) produces 

𝐊𝐊𝑒𝑒𝑒𝑒 = 𝜙𝜙−1𝐂𝐂𝑒𝑒𝑒𝑒          (15) 

It should be noted that in order to be able to refer to the same failure surface for both plastic and damage 

considerations, in addition to Eq. (14), the hardening parameters are needed to be linked as  

𝜕𝜕𝑞𝑞𝑑𝑑
𝜕𝜕𝜅𝜅𝑑𝑑

  = 𝜙𝜙−1 𝜕𝜕𝑞𝑞𝑝𝑝
𝜕𝜕𝜅𝜅𝑝𝑝

  ,          (16) 

so that Eqs. (7) and (12) can be directly equated. By using Eqs. (6), (11), (14) and (16), one obtains 

d𝜆𝜆𝑑𝑑 = 𝜙𝜙d𝜆𝜆𝑝𝑝            (17) 

It should be noted in obtaining Eq. (17), it was assumed that  d𝑞𝑞𝑑𝑑 = d𝑞𝑞𝑝𝑝 and 

d𝜅𝜅𝑑𝑑 = 𝜙𝜙d𝜅𝜅𝑝𝑝.           (18) 
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The consistency of the total damage strain expression in Eq. (2) with the damage strain rate in Eq. (14) 

can be shown by noting that the kinematic condition in Eq. (14), is indeed equivalent to 𝛆𝛆d = φ𝛆𝛆 − φ𝛆𝛆p, 

because the last three terms in the derivative, i.e., d𝛆𝛆d = φd𝛆𝛆 + dφ𝛆𝛆 − φd𝛆𝛆p − dφ𝛆𝛆p vanish. This can 

be shown by employing Eq. (2), the constitutive relation 𝛔𝛔 = 𝐄𝐄�𝛆𝛆 − 𝛆𝛆p − 𝛆𝛆d�, and Eqs. (8) and (17), 

i.e., 𝛔𝛔dϕ = ϕ𝐄𝐄d𝛆𝛆p. It is interesting to note that the kinematic condition, i.e., 𝛆𝛆d = φ�𝛆𝛆 − 𝛆𝛆p� is in-line 

with the hypothesis of strain equivalence (e.g., Lemaitre 1985) as the stress-strain relationship of 

damaged material, i.e., 𝛔𝛔 = 𝐄𝐄�𝛆𝛆 − 𝛆𝛆p − 𝛆𝛆d� can be exchanged with the stress-strain relationship of the 

fictitious undamaged state, i.e., 𝛔𝛔 = (1 −φ)𝐄𝐄�𝛆𝛆 − 𝛆𝛆p� in which plastic strain component needs to be 

considered as in Lee and Fenves (1998). Based on the kinematic condition employed in Eq. (14) or 

equivalently 𝛆𝛆𝑑𝑑 = 𝜑𝜑�𝛆𝛆 − 𝛆𝛆𝑝𝑝�, once the functions Φ𝑝𝑝�𝛔𝛔, 𝑞𝑞𝑝𝑝� and Φ𝑑𝑑(𝛔𝛔,𝑞𝑞𝑑𝑑) are selected as the same 

expression they change with the same amount for a stress increment of d𝛔𝛔. This allows us to use single 

failure criterion for both damage and plasticity models during inelastic deformations at any stage. 

3. Computational algorithm 

For numerical computations, procedures based on finite increments are needed, where the problem is to 

compute the internal variables which will provide an admissible stress field for a given strain increment 

Δ𝛆𝛆𝑛𝑛 of step n. In the following, the closest-point projection algorithm is adopted for the numerical 

calculations. 

3.1. Plastic computations 

As the first step, the residual stress vector at local iteration i can be calculated as  

𝐫𝐫𝑝𝑝 𝑖𝑖 = 𝛔𝛔𝑝𝑝 𝑖𝑖 − � 𝛔𝛔𝑛𝑛 + 𝐄𝐄Δ𝛆𝛆𝑛𝑛 − Δ𝜆𝜆𝑝𝑝
𝑖𝑖 𝐄𝐄𝐛𝐛𝑖𝑖�            (19) 

where 𝛔𝛔𝑛𝑛 is the last converged stress at the end of previous global step, and 𝛔𝛔𝑝𝑝 𝑖𝑖 is initially 𝛔𝛔𝑛𝑛 + 𝐄𝐄Δ𝛆𝛆𝑛𝑛, 

which is updated at each local iteration i. It should be noted that Δ𝜆𝜆𝑝𝑝
𝑖𝑖 is initially zero, as the trial step is 

based on no plastic deformation assumption. The residual stress in Eq. (19) is then used to calculate the 

increment in the proportionality factor as 



 12 

δ𝜆𝜆𝑝𝑝
𝑖𝑖  = Φ𝑝𝑝 𝑖𝑖−𝐚𝐚T𝑖𝑖 𝐑𝐑𝑝𝑝 𝑖𝑖 𝐄𝐄−1𝐫𝐫𝑝𝑝 𝑖𝑖

𝐚𝐚T𝑖𝑖 𝐑𝐑𝑝𝑝 𝑖𝑖 𝐛𝐛𝑖𝑖+𝐾𝐾𝑝𝑝𝑖𝑖
          (20) 

 
where 𝐾𝐾𝑝𝑝 = 𝜕𝜕Φ𝑝𝑝

𝜕𝜕𝑞𝑞𝑝𝑝
 𝜕𝜕𝑞𝑞𝑝𝑝
𝜕𝜕𝜅𝜅𝑝𝑝

   
𝜕𝜕𝜅𝜅𝑝𝑝

  

𝜕𝜕𝜆𝜆𝑝𝑝
   has been used. In Eq. (20), 𝐑𝐑𝑝𝑝 𝑖𝑖 is defined as 

 
𝐑𝐑𝑝𝑝 𝑖𝑖 =  �𝐄𝐄−1𝐐𝐐𝑝𝑝 𝑖𝑖�−1 .            (21) 

in which 

𝐐𝐐𝑝𝑝𝑝𝑝 = 𝐈𝐈 + Δ𝜆𝜆𝑝𝑝
𝑖𝑖𝐄𝐄𝐇𝐇𝐛𝐛

𝑖𝑖,           (22) 

and 

𝐇𝐇𝐛𝐛
𝑖𝑖 =  𝜕𝜕𝐛𝐛

𝑖𝑖

𝜕𝜕𝛔𝛔
            (23) 

In Eq. (20), Φ𝑝𝑝 𝑖𝑖 is evaluated by using the last updated stress 𝛔𝛔𝑝𝑝 𝑖𝑖. The proportionality factor of plastic 

deformations can be then updated using 

Δ𝜆𝜆𝑝𝑝
𝑖𝑖+1 = Δ𝜆𝜆𝑝𝑝

𝑖𝑖 + δ𝜆𝜆𝑝𝑝
𝑖𝑖           (24) 

 
The increment in the stress vector can be calculated as 

δ𝛔𝛔𝑝𝑝 𝑖𝑖 = −𝐑𝐑𝑝𝑝 𝑖𝑖�𝐄𝐄−1𝐫𝐫𝑝𝑝 𝑖𝑖 + δ𝜆𝜆𝑝𝑝
𝑖𝑖𝐛𝐛𝑖𝑖�         (25) 

From Eq. (25), the stress vector can be updated as  

𝛔𝛔𝑝𝑝 𝑖𝑖+1 = 𝛔𝛔𝑝𝑝 𝑖𝑖 + δ𝛔𝛔𝑝𝑝 𝑖𝑖           (26) 

and the plastic hardening parameter is updated as 

 δ𝜅𝜅𝑝𝑝 = δ𝜆𝜆𝑝𝑝
𝑖𝑖𝛅𝛅T𝐛𝐛𝑖𝑖 .   (27) 

It should be noted that the volumetric strain increment δ𝜅𝜅𝑝𝑝 is adopted herein as the parameter of the 

hardening law following Grassl et al. (2002). In Eq. (27), 𝛅𝛅T is the Kronecker delta operator, i.e.,     

 𝛅𝛅T𝐛𝐛 = 𝑏𝑏11 +  𝑏𝑏22 +  𝑏𝑏33 . 

3.2. Damage computations 

Now, we will show that the same stress, i.e., 𝛔𝛔𝑑𝑑 𝑖𝑖+1 = 𝛔𝛔𝑝𝑝 𝑖𝑖+1, can be generated following a damage-only 

procedure. Firstly, the residual stress vector at local iteration i can be calculated as  

𝐫𝐫𝑑𝑑 𝑖𝑖 = 𝛔𝛔𝑑𝑑 𝑖𝑖 − (𝛔𝛔𝑛𝑛 + 𝐄𝐄Δ𝛆𝛆𝑛𝑛 − Δ𝜆𝜆𝑑𝑑
𝑖𝑖𝜙𝜙−1 𝐄𝐄𝐛𝐛𝑖𝑖)        (28) 
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where 𝛔𝛔𝑑𝑑 𝑖𝑖 is initially 𝛔𝛔𝑛𝑛 + 𝐄𝐄Δ𝛆𝛆𝑛𝑛 . It can be verified that if  Δ𝜆𝜆𝑑𝑑
𝑖𝑖 =  𝜙𝜙Δ𝜆𝜆𝑝𝑝

𝑖𝑖, then residual stress vectors 

in Eqs. (19) and (28) are equal. In order to show that  Δ𝜆𝜆𝑝𝑝
𝑖𝑖+1 =  𝜙𝜙Δ𝜆𝜆𝑝𝑝

𝑖𝑖+1, it is sufficient to update the 

proportionality factor for damage by using the equation    Δ𝜆𝜆𝑑𝑑
𝑖𝑖+1 = Δ𝜆𝜆𝑑𝑑

𝑖𝑖 + δ𝜆𝜆𝑑𝑑
𝑖𝑖  in which δ𝜆𝜆𝑑𝑑

𝑖𝑖 can be 

written as 

  δ𝜆𝜆𝑑𝑑
𝑖𝑖  = Φ𝑑𝑑 𝑖𝑖−𝐚𝐚T𝑖𝑖𝐑𝐑𝑑𝑑 𝑖𝑖 𝐄𝐄−1𝐫𝐫𝑑𝑑 𝑖𝑖

𝜙𝜙−1𝐚𝐚T𝑖𝑖 𝐑𝐑𝑑𝑑 𝑖𝑖 𝐛𝐛𝑖𝑖+𝐾𝐾𝑑𝑑𝑖𝑖
          (29) 

where  𝐾𝐾𝑑𝑑 = 𝜕𝜕Φ𝑑𝑑

𝜕𝜕𝑞𝑞𝑑𝑑
 𝜕𝜕𝑞𝑞𝑑𝑑
𝜕𝜕𝜅𝜅𝑑𝑑

   
𝜕𝜕𝜅𝜅𝑑𝑑
𝜕𝜕𝜆𝜆𝑑𝑑

   has been used. Under the assumptions given in Eqs. (16)-(18), it can be 

verified that 𝐾𝐾𝑑𝑑 = 𝜙𝜙−1𝐾𝐾𝑝𝑝. In Eq. (29), matrix  𝐑𝐑𝑑𝑑 𝑖𝑖 =  �𝐄𝐄−1𝐐𝐐𝑑𝑑 𝑖𝑖�−1 is the same as in Eq. (21), because 

𝐐𝐐𝑑𝑑𝑑𝑑 is defined as 

𝐐𝐐𝑑𝑑𝑑𝑑 = 𝐈𝐈 + Δ𝜆𝜆𝑑𝑑
𝑖𝑖𝜙𝜙−1𝐄𝐄𝐇𝐇𝐛𝐛

𝑖𝑖,          (30) 

It should be noted that initially, Φ𝑑𝑑 𝑖𝑖 = Φ𝑝𝑝 𝑖𝑖 since 𝛔𝛔𝑑𝑑 𝑖𝑖 = 𝛔𝛔𝑝𝑝 𝑖𝑖, for the trial step as well as for later 

iterations. Therefore, from Eqs. (20) and (29), it can be verified that δ𝜆𝜆𝑑𝑑
𝑖𝑖 =  𝜙𝜙δ𝜆𝜆𝑝𝑝

𝑖𝑖. On the other hand, 

the increment in the stress vector can be calculated as 

δ𝛔𝛔𝑑𝑑 𝑖𝑖 = −𝐑𝐑𝑑𝑑 𝑖𝑖�𝐄𝐄−1𝐫𝐫𝑑𝑑 𝑖𝑖 − δ𝜆𝜆𝑑𝑑
𝑖𝑖𝜙𝜙−1𝐛𝐛𝑖𝑖�        (31) 

which is the same as in Eq. (25). Thus, same stress, i.e., 𝛔𝛔𝑑𝑑 𝑖𝑖+1 = 𝛔𝛔𝑝𝑝 𝑖𝑖+1, is generated at the end of both 

stress update procedures. Therefore, in our procedure, there is no need for iterations to equate the stresses 

between the damage and plasticity models. In contrast, in Armero and Oller (2000) and Ibrahimbegovic 

et al. (2008), the partitioning of the total strain is determined as a result of the equilibrium between 

plastic and damage models. Since the plastic and damage devices are connected in series, as illustrated 

in Fig. 1, the updated stresses based on plastic and damage models should match, which generally 

requires iterations.  
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4. Specifics adopted for the concrete model 

The plastic model that determines the envelope curve for the stress-strain relationship consists of a 

potential surface, hardening law, which describes the deformation capacity in multiaxial compression, 

and a yield surface. Both the plastic potential and the yield surface are constituted by using the unified 

co-ordinates in the Haigh–Westergaard stress space, which are based on the stress invariants. The three 

co-ordinates 𝜉𝜉, 𝜌𝜌 and 𝜃𝜃 are given in terms of the stress components in Appendix A for convenience. 

4.1. Yield surface 

We employ the yield surface proposed by Menetrey and Willam (1995), i.e., 

Φ𝑝𝑝�𝜉𝜉, 𝜌𝜌,𝜃𝜃, 𝜅𝜅𝑝𝑝� = �√1.5𝜌𝜌�
2

+ 𝑞𝑞ℎ(𝜅𝜅𝑝𝑝)𝑚𝑚� 𝜌𝜌
√6
𝑟𝑟(𝜃𝜃) + 𝜉𝜉

√3
� − 𝑞𝑞ℎ(𝜅𝜅𝑝𝑝)𝑞𝑞𝑠𝑠�𝜅𝜅𝑝𝑝� ≤ 0   (32) 

where 𝑞𝑞ℎ and 𝑞𝑞𝑠𝑠 controls the shape and location of the loading surface and m can be written as 

𝑚𝑚 = 3 𝑓𝑓𝑐𝑐2−𝑓𝑓𝑡𝑡2

𝑓𝑓𝑐𝑐𝑓𝑓𝑡𝑡

𝑒𝑒
𝑒𝑒+1

           (33) 

in which 𝑓𝑓𝑐𝑐  is the uniaxial compressive strength, 𝑓𝑓𝑡𝑡 is the uniaxial tensile strength taken herein as 0.09𝑓𝑓𝑐𝑐. 

The eccentricity defined by Menetrey and Willam (1995) can be written as 

𝑒𝑒 =  1+𝜖𝜖
2−𝜖𝜖

               (34) 

which is a formulation adopted by Jirasek and Bazant (2002), in which 

 𝜖𝜖 = 𝑓𝑓𝑡𝑡
𝑓𝑓𝑏𝑏

𝑓𝑓𝑏𝑏
2−𝑓𝑓𝑐𝑐2

𝑓𝑓𝑐𝑐2−𝑓𝑓𝑡𝑡
2            (35) 

where 𝑓𝑓𝑏𝑏 is the equibiaxial compressive strength taken herein as 1.5𝑓𝑓𝑐𝑐
−0.925 . In Eq. (32), 𝑟𝑟(𝜃𝜃) is the 

polar radius, i.e., 

𝑟𝑟(𝜃𝜃) = 𝑣𝑣(𝜃𝜃)
𝑠𝑠(𝜃𝜃)+𝑡𝑡(𝜃𝜃)

           (36) 

in which 

 𝑣𝑣(𝜃𝜃) = 4(1 − 𝑒𝑒2)cos2𝜃𝜃 + (2𝑒𝑒 − 1)2        (37) 

𝑠𝑠(𝜃𝜃) = 2(1 − 𝑒𝑒2)cos𝜃𝜃          (38)  

 𝑡𝑡(𝜃𝜃) = (2𝑒𝑒 − 1)[4(1 − 𝑒𝑒2)cos2𝜃𝜃 + 5𝑒𝑒2 − 4𝑒𝑒]1 2⁄       (39) 
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4.2. Hardening and softening law 

Hardening and softening of concrete can be simulated by varying the shape and location of the loading 

surface during plastic flow. The variation is controlled by the hardening/softening parameter 𝜅𝜅𝑝𝑝. During 

the hardening range, 𝑞𝑞ℎ in Eq. (32) for concrete can be selected as (Papanikolaou and Kappos 2007) 

𝑞𝑞ℎ�𝜅𝜅𝑝𝑝� = 𝑘𝑘𝑜𝑜 + (1 − 𝑘𝑘𝑜𝑜)�1 − �𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝 −𝜅𝜅𝑝𝑝
𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝 �

2
        (40) 

where  

𝑘𝑘𝑜𝑜 = 𝜎𝜎𝑐𝑐𝑐𝑐/𝑓𝑓𝑐𝑐            (41) 

in which 𝜎𝜎𝑐𝑐𝑐𝑐 is the uniaxial concrete stress at the onset of plastic flow. In Eq. (40), 𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝  is the threshold 

value for the volumetric plastic strain at uniaxial concrete strength, i.e., 

 𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝 = 𝑓𝑓𝑐𝑐

𝐸𝐸𝑐𝑐
(1 − 2𝜐𝜐)            (42) 

where 𝐸𝐸𝑐𝑐 and 𝜐𝜐 are the Young’s modulus and Poisson ratio for concrete, respectively. During softening 

range, 𝑞𝑞𝑠𝑠 in Eq. (32) for concrete can be selected as (Papanikolaou and Kappos 2007) 

 𝑞𝑞𝑠𝑠�𝜅𝜅𝑝𝑝� = � 1

1+�𝑛𝑛1−1𝑛𝑛2−1
�
2�

2

          (43) 

where 𝑛𝑛1 = 𝜅𝜅𝑝𝑝
𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝 , 𝑛𝑛2 = 𝜀𝜀𝑣𝑣𝑣𝑣

𝑝𝑝 +𝑡𝑡
𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝  and 𝑡𝑡 = 𝑓𝑓𝑐𝑐

15000
. Note that 𝑓𝑓𝑐𝑐 is considered in MPa. 

4.3. Potential function 

The potential function is again written in Haigh-Westergaard stress space and adopted herein from Grassl 

et al. (2002), i.e., 

Θ𝑝𝑝�𝜉𝜉,𝜌𝜌, 𝑞𝑞𝑝𝑝� = −𝐴𝐴� 𝜌𝜌

�𝑞𝑞ℎ�𝜅𝜅𝑝𝑝�𝑞𝑞𝑠𝑠�𝜅𝜅𝑝𝑝�
�

2

− 𝐵𝐵 𝜌𝜌

�𝑞𝑞ℎ(𝜅𝜅𝑝𝑝)𝑞𝑞𝑠𝑠�𝜅𝜅𝑝𝑝�
+ 𝜉𝜉

�𝑞𝑞ℎ(𝜅𝜅𝑝𝑝)𝑞𝑞𝑠𝑠�𝜅𝜅𝑝𝑝�
    (44) 

in which  

𝐴𝐴 = 𝜓𝜓2−𝜓𝜓1
2(𝜌𝜌1−𝜌𝜌2)

               (45) 
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and 

  𝐵𝐵 = 𝜌𝜌1
𝜓𝜓1−𝜓𝜓2

(𝜌𝜌1−𝜌𝜌2)
− 𝜓𝜓1              (46) 

In Eqs. (45) and (46), 𝜌𝜌1 and  𝜌𝜌2 are the normalized deviatoric stress indicators at uniaxial and triaxial 

compressive strength, respectively, i.e., 

 𝜌𝜌1 = �2
3
              (47) 

and 

  𝜌𝜌2 = �2
3
�𝑓𝑓𝑐𝑐𝑐𝑐−𝜎𝜎𝑝𝑝𝑝𝑝�

𝑓𝑓𝑐𝑐
             (48) 

where 𝑓𝑓𝑐𝑐𝑐𝑐 is the triaxial compressive strength taken herein as 4.333𝑓𝑓𝑐𝑐 and 𝜎𝜎𝑝𝑝𝑝𝑝 is the lateral stress taken 

herein as 𝑓𝑓𝑐𝑐. On the other hand, 𝜓𝜓1 and 𝜓𝜓2 are the inclinations of the plastic strain vector under uniaxial 

and triaxial compressive strength, respectively, i.e., 

𝜓𝜓1 = √2 �𝜀𝜀3𝑝𝑝𝑝𝑝−𝜀𝜀1𝑝𝑝𝑝𝑝�
𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝              (49) 

and 

 𝜓𝜓2 = √2 �𝜀𝜀3𝑝𝑝𝑝𝑝−𝜀𝜀1𝑝𝑝𝑝𝑝�
𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝            (50) 

In Eq. (49), 𝜀𝜀3𝑝𝑝𝑝𝑝 is the axial plastic strain component at uniaxial compressive strength, which can be 

calculated as  

𝜀𝜀3𝑝𝑝𝑝𝑝 = 𝜀𝜀𝑐𝑐 −
𝑓𝑓𝑐𝑐
𝐸𝐸𝑐𝑐

            (51) 

 and 𝜀𝜀1𝑝𝑝𝑝𝑝 is the lateral plastic strain component at uniaxial compressive strength, which can be calculated 

as  

𝜀𝜀1𝑝𝑝𝑝𝑝 = 𝜀𝜀2𝑝𝑝𝑝𝑝 = 𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝 −𝜀𝜀3𝑝𝑝𝑝𝑝

2
          (52) 

In Eq. (51), 𝜀𝜀𝑐𝑐 is the total strain in the axial direction at uniaxial compressive strength. In Eq. (50), 𝜀𝜀3𝑝𝑝𝑝𝑝 

is the axial plastic strain component at triaxial compressive strength, which can be calculated as  

 𝜀𝜀3𝑝𝑝𝑝𝑝 = 𝜀𝜀𝑐𝑐𝑐𝑐 −
1
𝐸𝐸𝑐𝑐

(𝑓𝑓𝑐𝑐𝑐𝑐 − 2𝜐𝜐𝜎𝜎𝑝𝑝𝑝𝑝)         (53) 
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and 𝜀𝜀1𝑝𝑝𝑝𝑝 is the lateral plastic strain component at triaxial compressive strength, which can be calculated 

as  

𝜀𝜀1𝑝𝑝𝑝𝑝 = 𝜀𝜀2𝑝𝑝𝑝𝑝 = 𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝 −𝜀𝜀3𝑝𝑝𝑝𝑝

2
          (54) 

For concrete, it can be assumed that 𝜀𝜀𝑐𝑐𝑐𝑐 = 𝜀𝜀𝑐𝑐 �1 + 17 𝜎𝜎𝑝𝑝𝑝𝑝
𝑓𝑓𝑐𝑐
�, e.g. Papanikolaou and Kappos 2007 and 

generally 𝜎𝜎𝑝𝑝𝑝𝑝 is taken as 𝜎𝜎𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑐𝑐, and thus in Eq. (53) 𝜀𝜀𝑐𝑐𝑐𝑐 becomes 𝜀𝜀𝑐𝑐𝑐𝑐 = 18𝜀𝜀𝑐𝑐.  

4.4. Evolution of the damage parameter 

The damage parameter 𝜙𝜙 is updated after every converged step. For this purpose, we have adopted the 

relationship given in Grassl and Jirasek (2006), i.e., 

               𝜑𝜑 = �1 − 𝑒𝑒
−𝐶𝐶

𝜅𝜅𝑝𝑝
𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝
�           (55) 

In Eq. (55), 𝐶𝐶 is a parameter which is to be calibrated based on cyclic tests as shown in the next section. 

It should be noted that under the assumption that 𝜑𝜑𝛔𝛔T

𝛔𝛔T𝐄𝐄−𝟏𝟏𝛔𝛔
d𝛆𝛆𝑝𝑝 = 𝐶𝐶

𝜀𝜀𝑣𝑣𝑣𝑣
𝑝𝑝 d𝜅𝜅𝑝𝑝 , and considering Eq. (17), i.e., 

d𝜆𝜆𝑑𝑑 = 𝜙𝜙d𝜆𝜆𝑝𝑝, Eq. (55) can be obtained as a solution of Eq. (8). 

 

5. Examples 

In order to illustrate the predictive capability of the proposed model, in this section, several numerical 

examples are analysed and compared with available experimental results from the literature. It should 

be noted that, in the selected cases the effects of anisotropic damage are not investigated, and thus the 

experiments are based on either monotonic loading or load cycles that are kept in the same direction. 

The developed numerical model is calibrated by adjusting the uniaxial compressive strength 𝑓𝑓𝑐𝑐, 

corresponding total strain at the uniaxial compressive strength 𝜀𝜀𝑐𝑐 , Young’s modulus Ec, Poisson ratio 

𝜐𝜐, the stress at the onset of plastic flow ko and the damage parameter C  in Eq. (55). In the following 

figures 𝜎𝜎3 is the axial stress, 𝜎𝜎1 and 𝜎𝜎2  are the lateral stresses, 𝜀𝜀3 is the axial strain, 𝜀𝜀1 and 𝜀𝜀2 are the 

lateral strains and 𝜀𝜀𝑣𝑣 is the volumetric total strain. 
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5.1. Comparisons with the experimental results of Karsan and Jirsa (1969) 

In this example, the proposed model is compared with the experimental results of Karsan and Jirsa 

(1969). Given the experimental results, the model parameters are selected as shown in Table 1. As shown 

in Fig. 2, the envelope axial stress-strain curve is in perfect agreement with the experimental results. Fig. 

3 shows the cyclic behaviour based on the test results of Karsan and Jirsa (1969) and that of our model. 

The reduction in the stiffness during the load cycles are very accurately captured with the model 

developed herein. It can be verified that the measured changes in the Young’s modulus are in perfect 

agreement with the developed numerical solution. Comparison of the damage density evolution during 

the same cyclic test is presented in Fig. 4, in which the damage density 𝜚𝜚 is calculated such that 𝜚𝜚 = 1 −

�1 − 𝜑𝜑 .  

Table 1. Adjusted model parameters for the Karsan and Jirsa (1969) monotonic loading experiment. 
Experiment fc (MPa) Ec (MPa) ν εc ko C 

Monotonic Uniaxial 27.4 31000 0.20 -0.001996 0.14 0.355 
Cyclic Uniaxial 28.0 31200 0.20 -0.001880 0.14 0.355 

 

 

 
Fig. 2. Comparison with the stress-strain results of Karsan and Jirsa (1969) under monotonic uniaxial 
compressive loading. 
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Fig. 3. Comparison with the stress-strain results of Karsan and Jirsa (1969) under cyclic uniaxial 
compressive loading. 
 
 

 
Fig. 4. Comparison with the damage density results of Karsan and Jirsa (1969) under cyclic uniaxial 
compressive loading. 
 

5.2. Comparisons with the experimental results of Dahl (1992) 

In this example, the proposed model is compared with the experimental results of Dahl (1992). The 

purpose is to show that the uniaxial stress-strain behaviour agrees well with the experimental results for 

different concrete grades. Fig. 5 shows that the proposed model can predict the uniaxial stress-strain 

relationships successfully both for normal and high strength concrete grades. The calibrated parameters 

for these experiments are given in Table 2. Note that the damage parameter C has no influence on the 

stress-strain curve under monotonic loading, and therefore no specific value is shown in Table 2. 
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Table 2. Adjusted model parameters for Dahl (1992) uniaxial loading experiments. 
Experiment fc (MPa) Ec (MPa) ν εc ko 

Strength:   21.7 MPa 21.7 19800 0.20 -0.00310 0.05 
Strength:   31.7 MPa 31.7 26850 0.20 -0.00251 0.05 
Strength:   50.3 MPa 50.3 29000 0.20 -0.00259 0.05 
Strength:   65.0 MPa 65.0 32600 0.20 -0.00253 0.05 
Strength:   93.9 MPa 93.9 40400 0.20 -0.00267 0.08 
Strength: 105.7 MPa 105.7 42800 0.20 -0.00274 0.08 

 

 
 
Fig. 5. Comparison with the stress-strain results of Dahl (1992) for normal and high-strength concrete 
under uniaxial loading. 
 

5.3. Comparisons with the experimental results of Kupfer et al. (1969) 

In order to illustrate that the proposed model can capture the concrete behaviour under multiaxial 
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Table 3. Adjusted model parameters for Kupfer et al. (1969) uniaxial and equibiaxial loading 
experiments. 

Experiment fc (MPa) Ec (MPa) ν εc ko 
Uniaxial loading 32.1 31500 0.20 -0.00201 0.05 

Equibiaxial loading 32.1 31500 0.20 -0.00201 0.05 
 

 
Fig. 6. Comparison with the experimental stress-strain results of Kupfer et al. (1969) for axial, lateral 
and volumetric strains under uniaxial compression.  
 

 

 
Fig. 7. Comparison with the experimental stress-strain results of Kupfer et al. (1969) in both axial and 
lateral directions under equibiaxial compression. 
 

5.4. Comparisons with the experimental results of Imran (1994) 

In order to illustrate that the proposed model can capture the concrete behaviour under multiaxial cyclic 

loading, the results are compared with the experimental results of Imran (1994). The calibrated 

parameters for these experiments are given in Table 4. Fig. 8 shows the triaxial monotonic loading stress-

0

5

10

15

20

25

30

35

-4-3-2-10123

-σ
3

(M
Pa

)

Strain (mm/m)

Experiment
Model

ε1=ε2 εv ε3

0

5

10

15

20

25

30

35

40

-4-3-2-101234

-σ
3

(M
Pa

)

Strain (mm/m)

Experiment
Model

ε1=ε3ε2

σ3

σ3

σ3

σ3

σ1σ1

σ1=σ3



 22 

strain test results for various confinement pressure levels, and it can be verified that the proposed coupled 

damage plasticity model agrees well with those of the tests. In Fig. 9, axial and lateral stress-strain curves 

of a concrete specimen under cyclic loading are presented. The model damage parameter, in this case, 

is selected as C=0.37, and the degradation in the material modulus is captured. 

Table 4. Adjusted model parameters for Imran (1994) triaxial loading experiments. 
Experiment fc (MPa) Ec (MPa) ν εc ko C 

Monotonic triaxial loading 47.13 29570 0.22 -0.00282 0.05 0.37 
Cyclic triaxial loading 45.00 29570 0.22 -0.00282 0.05 0.37 

 

  
Fig. 8. Comparison with the experimental stress-strain results of Imran (1994) for normal concrete 
(w/c=0.55) under triaxial compression and various confinement pressure levels. 
 

 
Fig. 9. Comparison with the experimental stress-strain results of Imran (1994) for normal concrete 
(w/c=0.55) under cyclic axial loading with constant confinement pressure. 
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6. Conclusions 

For the numerical analyses of plain concrete under compression an efficient procedure that couples 

plasticity with isotropic damage is developed. The model captures permanent deformations due to 

plasticity model as well as degradation in the elastic response due to damage component. The developed 

approach allows a single failure surface and hardening/softening criterion to be adopted in order to 

characterise the inelastic behaviour of concrete. Selected examples include cyclic behaviour under 

uniaxial and confined loading as well as cases with different concrete strength. The results agree very 

well with those provided in the literature, in terms of the stress-strain relationship. The developed model 

is computationally efficient as it circumvents iterations which are required to equate the stresses between 

the coupled damage and plasticity models. 

APPENDIX A 

Haigh-Westergaard co-ordinates 

The three co-ordinates 𝜉𝜉, 𝜌𝜌 and 𝜃𝜃 can be written as  

𝜉𝜉 = 𝐼𝐼1
√3𝑓𝑓𝑐𝑐

                       (A.1) 

𝜌𝜌 = �2𝐽𝐽2
𝑓𝑓𝑐𝑐

                      (A.2) 

cos3𝜃𝜃 = 3√3
2

𝐽𝐽3
𝐽𝐽2
3 2⁄                      (A.3) 

where  
 𝐼𝐼1 = 𝜎𝜎11 + 𝜎𝜎22 + 𝜎𝜎33                     (A.4) 

𝐽𝐽2 = 1
6

[(𝜎𝜎11 − 𝜎𝜎22)2 + (𝜎𝜎22 − 𝜎𝜎33)2 + (𝜎𝜎33 − 𝜎𝜎11)2] + 𝜏𝜏122 + 𝜏𝜏232 + 𝜏𝜏312             (A.5) 

𝐽𝐽3 = −� 
𝐼𝐼1
3�

3

+ � 
𝐼𝐼1
3�

2
(𝜎𝜎11 + 𝜎𝜎22 + 𝜎𝜎33)

+ � 
𝐼𝐼1
3�

(𝜏𝜏12𝜏𝜏12 + 𝜏𝜏13𝜏𝜏13 + 𝜏𝜏23𝜏𝜏23 − 𝜎𝜎11𝜎𝜎22 − 𝜎𝜎11𝜎𝜎33 − 𝜎𝜎22𝜎𝜎33) − 𝜏𝜏13𝜏𝜏13𝜎𝜎22

− 𝜏𝜏23𝜏𝜏23𝜎𝜎11 − 𝜏𝜏12𝜏𝜏12𝜎𝜎33 + 2𝜏𝜏12𝜏𝜏13𝜏𝜏23 + 𝜎𝜎11𝜎𝜎22𝜎𝜎33 

            (A.6) 
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