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Abstract. The objectives of this study were to describe the approach used for classifying surface 1 

tissue, and for estimating fat depth in lamb short loins and validating the approach. Fat versus non-2 

fat pixels were classified and then used to estimate the fat depth for each pixel in the 3 

hyperspectral image. Estimated reflectance, instead of image intensity or radiance, was used as the 4 

input feature for classification. The relationship between reflectance and the fat/non-fat 5 

classification label was learnt using Support Vector Machines. Gaussian Processes were used to 6 

learn regression for fat depth as a function of reflectance. Data to train and test the machine learning 7 

algorithms was collected by scanning 14 short loins. The hyperspectral camera captured lines of 8 

data of the side of the short loin (i.e. with the subcutaneous fat facing the camera). Advanced 9 

Single Lens Reflex camera took photos of the same cuts from above, such that a ground truth of fat 10 

depth could be semi-automatically extracted and associated with the hyperspectral data. A  subset of 11 

the data was used to train the machine learning model, and to test it. The results of classifying pixels 12 

as either fat or non-fat achieved a 96% accuracy. Fat depths of up to 12mm were estimated with 13 



0.85 R2, a mean absolute bias of 0.42mm and 0.8mm root mean square error. The techniques 14 

developed and validated in this study will be used to estimate fat coverage to predict total fat, and 15 

subsequently lean meat yield in the carcass. 16 

 17 
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  19 



Introduction 20 

Assessing the composition and quality of beef and sheep carcasses is important feedback for 21 

both the producer and the abattoir. Not only do abattoirs adhere to strict food health and quality 22 

standards, but carcasses must also meet specifications for export to particular markets. Knowing 23 

the carcass composition, the amount of fat (i.e., the fat score or fat depth), and therefore having an 24 

estimate of the lean meat yield (LMY) of a carcass can aid in improving abattoir efficiency and 25 

generating the highest return (Anon 2005). Producers also benefit from accurate estimates of 26 

carcass composition, as this objective carcass data can be used to help monitor and improve genetic 27 

performance and potentially optimise future animal nutrition plans prior to slaughter. 28 

This paper assesses the possibility of using a near-infrared (NIR) hyperspectral camera to develop 29 

a non-destructive technique which classifies carcass surface regions of interest as either fat or 30 

muscle, and further, predicts fat depth in mm, without requiring trained assessors. The most 31 

precise non-destructive method for estimating carcass composition is computer tomography (CT) 32 

(Kongsro et al. 2009), but CT scanning is time consuming and expensive. Instead, current carcass 33 

fat depth is determined either via a subjective assessment where a fat score of 1-5 is allocated (with 1 34 

the leanest and 5 the fattest) or by an objective measure of GR (total tissue depth at the twelfth rib 35 

110mm from the midline) (Anon 2005). The latter measure of fat normally applies to carcasses 36 

sold over the hooks and is measured using a GR knife. A similar approach is taken in different EU 37 

countries including the UK where a carcass weight is recorded and a subjective score is 38 

allocated for fatness and conformation (Lambe et al. 2009). However, the accuracy of LMY 39 

prediction using hot carcass weight and GR tissue depth is variable, due to measurement error by 40 

assessors and genetic differences in animals (Siddell et al. 2012; Williams et al. 2017). Devices to 41 

predict the overall LMY that exploit RGB camera data such as VIASCAN (Cannell et al. 1999) 42 

have been developed with mixed prediction capability and commercial success. More recently, 43 

devices to predict proportions of bone, muscle and fat of the overall carcass or section thereof, 44 



based on dual X-ray absorptiometer (DEXA) systems are being developed with increasing 45 

prediction precision (Graham et al. 2015).  While GR is a point measurement and DEXA is an 46 

overall carcass measurement, leverage can be made of the relationship between subcutaneous fat 47 

and total fat distributed through the carcass (Kempster 1995) if subcutaneous fat depth can be 48 

estimated reliably. 49 

Hyperspectral capture high-dimensional data and are used in many food quality assessment 50 

scenarios (Huang et al. 2014). Hyperspectral cameras can be used, for example, to estimate meat 51 

tenderness (Naganathan et al. 2008; Saadatian et al. 2015) or the fat composition in atlantic salmon (Zhu 52 

et al. 2014). To the best of our knowledge, hyperspectral cameras have not been used to estimate fat 53 

depth. In our method to estimate fat depth, reflectance of fat and muscle is estimated from 54 

hyperspectral images by following the approach taken by (Huynh and Robles-Kelly 2010). These 55 

reflectance values are used by a Support Vector Machine (SVM) (Burges 1998) to classify surface 56 

tissue, Since SVMs have previously generated good classification results of materials from 57 

hyperspectral data (Garc´ıa Allende 2008). Principal component analysis and Gaussian processes 58 

(Rasmussen and Williams 2006) are used to perform regression on fat depth, since good results have 59 

been achieved even on high dimensional data, such as from a hyperspectral camera (Chen et al. 60 

2007). 61 

The objectives of this study were to: (1) describe the approach used for classifying surface tissue, 62 

and for estimating fat depth and (2) validate the approach. 63 

Materials and methods 64 

This section presents the approach for estimating the depth of subcutaneous fat at each point 65 

of the surface of a meat sample: the acquisition of hyperspectral data, the determination of 66 

ground truth for fat depth, classification between fat and non-fat surfaces, and the training of the fat 67 

depth model. 68 

Data 69 



The meat specimens used for training and testing the models in this study were derived from lamb 70 

short loin (Anon , 2005) cut to approximately 15-20mm thick.  In total 11 samples were used exhibiting a 71 

range of subcutaneous fat thicknesses. Specimens were stored in a fridge at 3◦ C except while being 72 

imaged in a room at ambient temperature.  73 

Acquiring Hyperspectral and Ground Truth Data 74 

The hyperspectral camera used was a Resonon Pika NR line scanner, the hyperspectral images 75 

have a spatial dimension of 320pixels in the line, each pixel has 146 bands in the range of [954 − 76 

1677] nm in 4:9 nm gaps. The specimen was placed on a platform which moved up or down at 77 

constant speed along a rail at a fixed distance from the camera to which the camera had been 78 

focused, so that a composite hyperspectral image of the entire side on view of the short loin could be 79 

created. The resulting hyperspectral image from the scanning process of each specimen has a 80 

spatial dimension of 320 × 100 pixels and 146 bands. Two 500W halogen lights were placed above 81 

and to the side of the hyperspectral camera to illuminate the sample. Each specimen was 82 

captured twice with only one of the two light sources turned on. The full experimental setup can 83 

be seen in Fig. 1. 84 

 85 

[Fig. 1 about here.] 86 

 87 

A Digital Single Lens Reflex (DSLR) camera was affixed to a tripod such that images of the 88 

short loins could be taken from above, as shown in Fig. 2 orthogonally to the viewing direction 89 

of the hyperspectral camera. From these images, the thickness of fat along the viewing axis of the 90 

hyperspectral camera could be determined in a semi-autonomous fashion, using the colour 91 

difference between fat and muscle. 92 

 93 

[Fig. 2 about here.] 94 



 95 

A lamina ted  wooden  calibration object placed on the platform, shown in Fig. 3, viewed 96 

by both the hyperspectral camera and the DSLR camera, allowed for establishing a relationship 97 

between fat depth measurements and pixels in the hyperspectral images via the relationship between 98 

pixels in the DSLR camera image and fat depth. The ground truth of fat depth in mm, including fat 99 

depths of 0 when no fat was present, was obtained for each pixel of the short loin, assuming that 100 

the fat depth was consistent through the thickness of the short loin sample. 101 

 102 

[Fig. 3 about here.] 103 

 104 

Estimating Reflectance 105 

Reflectance, being a unique photometric property of an object, provides discriminative information 106 

about the object and is invariant to changes in illumination directions, illumination power spectra, 107 

and object shapes. For these reasons, we build our model based on this feature to classify fat vs. 108 

non-fat pixels, and to estimate fat depth. 109 

Unlike radiance, reflectance, cannot be directly obtained from an image. Since object shape, 110 

reflectance, and illumination coexist and collectively compose an image of a scene, recovery of 111 

reflectance requires the separation and recovery of these geometric and photometric factors. From a 112 

computational perspective, estimating the photometric and geometric properties from a single input 113 

image is an under-constrained problem. To render the problem well posed, several approaches 114 

(Huynh and Robles-Kelly 2010; Rahman and Robles-Kelly 2013) utilise the information-rich 115 

representation of hyperspectral image and cast the recovery problem in a structural optimisation 116 

setting. 117 

We start by mathematically describing the scene using the dichromatic reflectance model 118 

introduced by Shafer (1985), where the total surface radiance is considered the sum of two 119 



independent reflection components, namely specular and diffuse. Let an object with surface 120 

radiance I(u, λ) at pixel-location u and wavelength λ be illuminated by an illuminant whose 121 

spectrum is L(λ), the spectral radiance is given by: 122 

,ݑሺܫ ሻߣ 	ൌ 	݃ሺݑሻܮሺߣሻܵሺݑ, ሻߣ 	൅ 	݇ሺݑሻܮሺߣሻ       (1) 123 

The first term in the right-hand side of the above equation describes the diffuse reflection 124 

component, where g(u) denotes the shading factor (i.e. the angle between the incoming light 125 

direction and surface normals), L(λ) stands for the light spectrum and S(u, λ) is the spectral 126 

reflectance. The second term in the right-hand side corresponds to the specular component, where 127 

k(u) models specular coefficients of the scene. 128 

Using this model, we aim to recover reflectance along with other model parameters from the 129 

spectral radiance of the image. To this end, we apply the approach described in (Huynh and 130 

Robles-Kelly 2010) and cast the estimation problem as minimising a cost function through 131 

iterative recovery of the reflectance model parameters. 132 

The cost function C(Ա ), as given in Equation 2, is formed as the weighted sum of the dichromatic 133 

error, i.e. the squared difference between the observed data and the estimated yielded by the 134 

dichromatic model and a regularisation term R(u). 135 

 136 

ሺԱሻܥ ≜ ∑ ቂ∑ ,ݑሺܫൣ ሻߣ െ ൫݃ሺݑሻܵሺݑ, ሻߣ ൅ ݇ሺݑሻ൯ܮሺߣሻ൧
ଶ
൅ ሻఒ∈ௐݑሺܴߙ ቃ௨∈Ա     (2) 137 

 138 

where Ա  is the image spatial domain and W is the wavelength range. α is a constant that acts as a 139 

balancing factor between the dichromatic error and  the regularisation  term. 140 

Next, we employ a coordinate descent approach (Boyd and Vandenberghe 2004) to recover the 141 

reflectance model parameters which yield the minimum of the cost function in Equation 3. The 142 

algorithm comprises two interleaved minimisation steps. At each iteration it solves for L and 143 

the triplet g(u), S(u, λ), k(u) in separate steps. Once it estimates one parameter, the optimal 144 



value of that is used to obtain the latter ones. Thus the optimisation iterates between these two 145 

steps until convergence is reached. Note that, the algorithm assumes convergence when none of 146 

the parameters change by an amount beyond a threshold between two successive iterations. From 147 

here on, the reflectance recovered based on the physics-based model is referred to as ‘estimated 148 

reflectance’. 149 

Some of the existing hyperspectral image based approaches also utilise reflectance to build their 150 

prediction models, e.g. to determine beef tenderness (Naganathan et al. 2008; Saadatian et 151 

al. 2015) or fat composition in atlantic salmon (Zhu et al. 2014). However, these approaches 152 

compute reflectance by applying spectral calibration, i.e. normalising raw radiance by 153 

illumination spectra. The illumination spectra is usually determined by taking hyperspectral image 154 

of a white reflection standard (e.g. Spectralon or sheets of white Teflon) which is assumed to be 155 

100% reflective at all wavelengths . 156 

As reported by Huynh and Robles-Kelly (2010) and Rahman and Robles-Kelly (2013) 157 

reflectance acquired by calibration, hereafter referred to as ‘calibrated reflectance’, is not robust to 158 

photometric changes and cannot provide results as accurate as those yielded by reflectance 159 

estimated by the physics based reflectance model. To further confirm results based on estimated 160 

reflectance are compared against that yielded by the calibrated reflectance. 161 

Classifying Fat 162 

Classifying between fat and non-fat (i.e, muscle) pixels in a composite hyperspectral image was 163 

done using a Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel (Vert et 164 

al. 2004). Support Vector Machines are supervised learning models based on kernel methods 165 

commonly applied to classification problems (Burges 1998). A basic SVM predicts, for each given 166 

input, which of two possible classes forms the output, making it a non-probabilistic binary classifier 167 

in its simplest form. Given a training set, the SVM training algorithm builds a model that assigns 168 

new examples into one category or the other. A SVM model is therefore a representation of the 169 



examples as points in space, mapped so that the examples of the separate categories are divided by 170 

a clear gap that is as wide as possible. New examples (testing set) are then mapped into that same 171 

space and predicted to belong to a category based on which side of the gap they fall on. An example 172 

of the SVM classification results for one short loin sample can be seen in Fig. 4 173 

 174 

[Fig. 4 about here.] 175 

 176 

Estimating Fat Depth 177 

A Gaussian Process (GP) model (Rasmussen and Williams 2006) was trained with reflectance 178 

feature and measured fat depth (from the DSLR image) per pixel of the hyperspectral composite 179 

images. A Matérn kernel was used for this application. Gaussian Process models are other type of 180 

supervised learning models based on kernel methods, but in this case, commonly applied to 181 

regression problems. GPs can be seen as a distribution over functions. The method assumes that a 182 

set of random variables are jointly distributed. The main idea is that if the random variables are 183 

deemed by the kernel to be similar, then the output of the function at those points is expected to be 184 

similar too. Given a training set, GP learning algorithm builds a continuous stochastic model. The 185 

model can later be query at any input point and produce an estimated value with uncertainty based 186 

on how close the queried point is to the training data.  187 

Having learnt the GP regression model, fat depth could be estimated per pixel of the 188 

hyperspectral composite image. An example of fat depth estimation on a short loin is shown in Fig. 189 

5; the same short loin as shown in Fig. 2 and 4. 190 

 191 

[Fig. 5 about here.] 192 

 193 

Results 194 



To evaluate our method, we compare our results against ground truth and those yielded by using the 195 

alternative feature, the calibrated reflectance.  196 

Classification of fat vs. non-fat 197 

The data set for classification was made up of 22 hyperspectral images. To obtain the training 198 

data-set, 34,914 fat pixels and 18,346 non-fat pixels were selected from several regions of the 199 

input images. Subsequently, two features, i.e. estimated reflectance and calibrated reflectance, 200 

were extracted from the training set and used as input to a SVM classifier. To classify fat versus 201 

non-fat pixels, the resulting SVM model was applied to the rest of the pixels in the data set. 202 

Fig. 4  presents a qualitative illustration of classification on a sample lamb chop, obtained 203 

using two variants of the reflectance feature. From left to right in Fig. 4, we show the 204 

hyperspectral input image, a sample training image with labelled fat regions (blue), and non-fat 205 

regions (red), classification of fat vs. non-fat pixels using the estimated reflectance, and the 206 

calibrated reflectance . Further, from Fig. 4, we can see that the estimated reflectance yields more 207 

visually accurate fat and non-fat separation than the alternative feature. This is evident in regions 208 

where pixels in the muscle and background are falsely classified as fat pixels 209 

We also compare the two classification schemes in Table 1  of classification} in terms of 210 

classification rate (CR), correct detection rate (CDR) and false detection rate (FDR). Here, CR 211 

presents the total percentage of fat and non-fat pixels classified accurately, CDR stands for the 212 

percentage of fat pixels correctly classified and, FDR corresponds to the percentage of non-fat 213 

pixels falsely classified as fat. Note that, CDR, FDR, and CR have been computed by comparing 214 

our results against the ground truth data, which has been obtained by manually labelling fat and 215 

non-fat pixels for all images in the data set. As expected, the estimated reflectance delivered more 216 

accurate results than the calibrated reflectance, which is consistent with the qualitative results 217 

presented above.} 218 

The poor classification results obtained by calibrated reflectance can be explained by the 219 



variation induced by the illuminant spectrum and the surface shading. Since normalising radiance 220 

by illuminant power does not achieve surface shading-independence and disregards the specular 221 

components inherent to the dichromatic model, calibrated reflectance cannot yield as accurate result 222 

as the estimated reflectance when the shape, illumination direction or power spectra change 223 

between the training and testing images.  224 

 225 

 [Table 1 about here.] 226 

 227 

Estimation of fat depth 228 

The data set for fat depth estimation included 5,317 pixels (2779 and 3223 respectively with 229 

the light sources) visible in both the composite hyperspectral camera view and the DSLR camera 230 

view, and therefore for which ground truth depth was known. The GP was trained on data acquired 231 

by one light source and tested with data acquired with the other light source. 232 

We compare our result of fat depth against the ground truth values and, that obtained using the 233 

calibrated reflectance. To this end, Fig. 5 presents qualitative results of the capacity of our method 234 

to recover fat depth of an example short loin.  From left to right in the figure, we show a top down 235 

view of the sample captured by a DSLR camera with labelled fat regions under study, ground truth 236 

fat depth as measured from the DSLR image and predicted fat depth by using the estimated 237 

reflectance and calibrated reflectance. 238 

Fig. 6 presents a comparison of actual vs. predicted depth values as yielded by GP when trained 239 

to learn regression as a function of either of the features, calibrated reflectance or estimated 240 

reflectance, in Fig. 6a. and Fig. 6b respectively. We also provide quantitative results in Table 2. 241 

 242 

[Fig. 6 about here.] 243 

 244 



[Table 2 about here.] 245 

 246 

Analysing both the qualitative and quantitative results, we can conclude that though there is a 247 

strong correlation between the models predictions and actual results while trained using either of 248 

the feature, the estimation was more accurate for the estimated reflectance. 249 

 250 

Discussion and Conclusions 251 

Saleable meat yield is a function of the weight of muscle relative to the weight of the carcass, 252 

and represents a key determinant of carcass value along the supply chain. Therefore, most 253 

Australian processors offer price grids that take account of both carcass weight and fatness.  254 

Currently a single point measure at the GR site acts as a surrogate to estimate whole body fatness. 255 

More recently, devices to predict proportions of bone, muscle and fat of the overall carcass based 256 

on DEXA systems have been deployed.  While GR is a point measurement and DEXA is an overall 257 

carcass measurement, leverage could be made of the relationship between subcutaneous fat and 258 

total fat distributed through the carcass. While traditional approaches of video image analysis use 259 

RGB cameras for overall fat estimation, this paper presents an approach to subcutaneous fat 260 

estimation using a hyperspectral imaging. The inherent advantage of hyperspectral cameras is they 261 

capture the light spectrum range where materials exhibit specific reflectance or absorption features 262 

related to material composition and variability. 263 

Classification of fat vs. non-fat regions, and estimation of fat depth in mm was accomplished 264 

using Near-Infrared hyperspectral imaging. This paper demonstrated accurate classification of fat 265 

and non-fat regions using a SVM (96.27% correct classification), and accurate estimation of fat 266 

depth using a Gaussian Process model (R2 = 0.85). Results demonstrate the estimation to be more 267 

accurate using the robust dichromatic physics based model of reflectance rather than the 268 

traditional normalised reflectance model. 269 



In future work, we intend to increase the size of the training and testing sets, to ensure that this 270 

method generalises to a larger population and variety of animals. Collecting data from a full 271 

carcass, rather than short loin portions, will also allow for a greater variety of fat depths, 272 

angles of incidence, and lighting. 273 
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Table 1: Accuracy of fat vs non-fat classification yielded by two different reflectance-based 336 

features as input for classification. 337 

 338 

 

Error measure 

Estimated 

reflectance 

Calibrated 

reflectance 

Classification rate % 

Correct detection rate% 

False detection rate % 

92.30 ± 1.90

90.39 ± 1.85

0.47 ±0.37 

96.27 ± 0.62 

93.28 ± 1.46 

10.64 ±3.25 

 339 

 340 

 341 

Table 2: S t a t i s t i c s  o f  e s t i m a t i n g  f a t  d e p t h  [ m m ]  f o r  t h e  e s t i m a t e d  a n d  342 

c a l i b r a t e d  r e f l e c t a n c e .  343 

 

Error measure 

Estimated 

reflectance 

Calibrated 

reflectance 

Correlation coefficient R2 

Mean absolute error 

Root mean square error 

0.85 

0.42 

0.80 

0.79 

0.65 

0.99 

 344 

 345 

  346 



 347 

 348 

Fig. 1: The experimental setup showing: A) the hyperspectral camera, B) the short loin on 349 

the rail platform, C) the halogen light, D) the Digital Single Lens Reflex camera.  350 

 351 

  352 



 353 

Fig. 2: An example short loin specimen placed on the platform, photographed from above 354 

by the Digital Single Lens Reflex camera. 355 

 356 

  357 



  

                                   (a) (b) 

 358 

Fig. 3: The calibration object. (a) Black dots on the left side of the object’s topmost 359 

surface are visible as lines to the hyperspectral camera. The grid is viewable to the Digital 360 

Single Lens Reflex camera. (b) Dots become lines in the hyperspectral image when 361 

wavelengths are the vertical dimension of the image. 362 

 363 

  364 



(a) (b) 

(c) (d) 

 365 

Fig. 4: A qualitative illustration of the capacity of our method to classify fat vs non-fat 366 

pixels in a sample lamb chop. (a) Hyperspectral image of the sample captured at 1447 367 

nm. (b) A sample training image with labelled fat regions (with blue borders) and non-fat 368 

regions (with red borders). Separation of fat (white pixels) vs. non-fat (blue pixels) 369 

regions by using (c) estimated reflectance and (d) calibrated reflectance as feature for 370 

classification. 371 

 372 

  373 



 374 

Fig. 5: A qualitative illustration of the capacity of our method to recover fat depth of an 375 

example short loin. From left to right: (a) Top down view of the sample captured by a 376 

DSLR camera with labelled fat regions under study. (b) Ground truth fat depth as 377 

measured from the DSLR image. Predicted fat depth by using the (c) estimated 378 

reflectance and, (d) calibrated reflectance. 379 

 380 

  381 



 

(a)  

 

(b) 

 382 

Fig. 6: Results of fat depth estimation based on the Gaussian Process model vs. ground 383 

truth fat depth in mm. (a) Using calibrated reflectance as the feature (b) Using the 384 

estimated reflectance as the feature 385 

 386 

 387 

 388 

 389 


