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Abstract—The proliferation of smart devices has led to an
exponential growth in digital media consumption, especially
mobile video for content marketing. The vast majority of the
associated Internet traffic is now end-to-end encrypted, and while
encryption provides better user privacy and security, it has
made network surveillance an impossible task. The result is an
unchecked environment for exploiters and attackers to distribute
content such as fake, radical and propaganda videos.

Recent advances in machine learning techniques have shown
great promise in characterising encrypted traffic captured at
the end points. However, video fingerprinting from passively
listening to encrypted traffic, especially wireless traffic, has
been reported as a challenging task due to the difficulty in
distinguishing retransmissions and multiple flows on the same
link. We show the potential of fingerprinting videos by passively
sniffing WiFi frames in air, even without connecting to the WiFi
network. We have developed Multi-Layer Perceptron (MLP) and
Recurrent Neural Networks (RNNs) that are able to identify
streamed YouTube videos from a closed set, by sniffing WiFi
traffic encrypted at both Media Access Control (MAC) and
Network layers. We compare these models to the state-of-
the-art wired traffic classifier based on Convolutional Neural
Networks (CNNs), and show that our models obtain similar
results while requiring significantly less computational power and
time (threefold reduction).

I. INTRODUCTION

More than 50% of global Internet traffic is currently end-
to-end encrypted and HTTPS has become the norm of many
forms of communication over the Internet [1]. While Transport
Layer Security (TLS), the underlying security protocol behind
HTTPS, provides confidentiality for the message that is being
exchanged between two parties, wide adoption of end-to-
end encryption opens up several issues in terms of network
management. For example, end-to-end encryption eliminates
the possibility of traffic analysis in the core network for
intrusion detection and parental filtering. It hinders network
optimisations carried out by telecommunication operators. Fur-
thermore, end-to-end encryption makes network surveillance
impossible impeding national security activities. As such, there
is increasing interest in making inferences and predictions
from encrypted traffic flows.

Previous research explored the possibility of making infer-
ences based on encrypted traffic flows by capturing network
data packets at the IP layer [2], [3], [4]. This is viable

because despite the message content being encrypted, the
statistical properties of traffic flows such as packet lengths,
inter-packet times, burst sizes, and burst intervals can still
reveal information about the underlying encrypted traffic that
are in transit. Also, at the IP level there are other useful meta-
data such as IP addresses, ports, and TLS header information.

In this paper, we investigate the possibility of making
useful inferences from passively observed WiFi traffic that
is encrypted at both transport layer (TLS) and MAC layer
(WPA2). This is more challenging in comparison to making
predictions from the IP layer traffic due to lack of any meta
information. Specifically, we focus on identifying traffic flows
from a set of known online videos. Videos are highly popular
on the Internet, but are frequently misused in many ways that
include distribution of fake news, hate speech, and radical and
propaganda content.

Thus, especially in network protection, counter-intelligence
and situational awareness applications, there is a strong need
to identify whether certain known videos are being watched by
certain individuals or in a certain area. On the other hand, the
possibility of identifying videos by passive WiFi observation
further reinforces the need to build protocols that do not
leak any information by creating fingerprints. We make the
following contributions in this paper.

• We demonstrate the possibility of making predictions
from encrypted WiFi traffic by building deep learning-
based classifiers that are able to identify specific
videos from a closed set of videos when they are
streamed from a popular video hosting service, i.e. You-
Tube via Dynamic Adaptive HTTP streaming (DASH)
Dynamic Adaptive Streaming over HTTP (DASH).

• We show that a simple Multi-Layer Perception architec-
ture is able to achieve 97% accuracy in identifying videos
from a closed set of 10 videos based purely on passive
measurements collected at the WiFi layer.

• We compare our model with a state-of-art CNN model
proposed for the same task in the IP layer [2]. We show
that while such a model is suitable for predictions using
WiFi traffic, it requires significantly more resources both
in terms of CPU and time (three times more resources
are required for training the CNN model).



• Finally, we evaluate the longevity of our classifier by
making predictions two weeks apart and show that our
classifier is still able to maintain the same level of
accuracy.

The remainder of the paper is organised as follows. In
Section II, we review related work that use deep learning
models to perform traffic classification. Section III presents an
overview of DASH streaming and our data collection process.
Section IV introduces the three deep learning models tested in
this paper and the features used for traffic classification. We
present and discuss results of these models in Section V, and
conclude and outline future work in Section VI.

II. RELATED WORK

We review related work that has tackled network traffic
classification over encrypted traffic flows. Traffic classification
can be performed either in real-time (e.g. intrusion detection
systems) or conducted posterior using network traces (e.g. in
the case of network forensics).

Previous studies have investigated the feasibility and eval-
uated the performance of classical deep learning algorithms
such as Recurrent Neural Networks, Convolutional Neural
Networks, or Deep Neural Network; using either the KDD [5]
or the NSL-KDD datasets [6]. Niyaz et al. [7] proposed to use
a sparse autoencoder combined with soft-max regression [8]
to re-identify flows from the NSL-KDD dataset. Ma et al. [9]
proposed to parallelise the deep learning technique based on a
spectral k clustering of the original data. This corresponds to
building k independent deep neural networks (one per cluster).
In [10], the authors only considered a 2-class problem with
6 features out of the 41 features proposed. Kim et al. [11]
proposed to use Long Short-Term Memory as a replacement
of the hidden layer in a recurrent neural network in order
to classify the traffic from the NSL-KDD dataset. They also
modified the dataset to only contain 300 entries for every class.
Overall, this technique achieves high true positive rates, but
also introduces a very high level of false positives (up to 80%).

Dong et al. [12] compared Support Vector Machine (SVM),
Decision Tree, Naïves Bayes and SVM with Boltzman Ma-
chine to perform traffic classification on the NSL-KDD data-
set. Overall, SVM with Boltzman Machine obtained the best
performance, but only marginally. In [13], Fiore et al. were
first to propose Boltzmann Machines with a Recurrent Neural
Network to classify network traffic. This technique belongs
to the class of stochastic Energy-Based Models where an
energy is associated to each configuration (state) of the system
under analysis. Finally, Michael et al. [14] compared the
performance of various Neural Networks models to more
classical Bayesian models and found that these models obtain
similar performances.

The techniques described detect possible intrusions based on
full knowledge of the end-to-end communication flow such as
length of the flow or total number of packets. In most of the
solutions presented, the authors relied on either a full trace
of the communications or a summary of every flow (as in the
case of NSL-KDD dataset). In contrast, we do not assume any

statistical knowledge of the flow to identify known videos, and
we do not need to collect the entire flow to make predictions.

In [15], Kang et al. proposed a two-class classifier, based
on MLP, in the particular context of a vehicular network as
opposed to the work presented previously focusing only on
enterprise network connected to the Internet. This classifier
makes use of the “DATA” field in every packet using the
Controller Area Network (CAN) protocol [16]. This field
consists of a vector of 64 bits and the authors normalise these
bits between 0 and 1 based on their probability. Overall, their
method was promising but it appears to be limited to the
specific field on vehicular communication due to its reliance
on the CAN protocol.

More recently Schuster et al. presented the first ever use of
CNNs to detect not only the type of traffic but also the content
of encrypted traffic [2]. In their proposal, the authors were able
to identify which videos were downloaded over HTTPS from
several video providers using innovative features that consist
of temporal representations of the traffic. The authors obtain
very high accuracy within each video provider. Similar to [2],
the authors of [17] proposed a CNN model to identify the
class of traffic based on the characteristics of the sequence of
packets in a given flow.

Recent research has successfully identified video streaming
content in encrypted traffic without using deep learning tech-
niques [18], [19]. In particular [18] focused on identifying
video streaming using a Variable Bit Rate algorithm within
encrypted WiFi traffic using similarity metrics and statistical
machine learning. In a similar manner, but with the addition
of DASH streaming, [19] identified video streaming within
WiFi traffic. In their latest work [19], the authors adopted an
approach similar to [18] by modelling various video streaming
traffic. They also applied various statistical machine learning
techniques but did not proposed a generic method applicable
to deep learning techniques. Overall, both methods obtained
similar accuracy of 90%.

In contrast, we propose a video identification method that
does not rely on a complete mathematical model of the
video traffic, TCP/IP flow information, or complete flow stat-
istics. Furthermore, our technique operates within wireless
environments with less resource requirements than [2], can
be deployed in a real life traffic environment, and achieves
unprecedented accuracy above 97%.

III. EXPERIMENTAL SETUP

A. DASH streaming

Video streaming over the Internet has shifted to what
is commonly referred as HTTP-based Adaptive Streaming
(HAS). HAS works by encoding multiple versions of an
original content with different bit rate and resolution. The en-
coding bit rates recommended by YouTube for video streaming
are 8, 5 and 1Mbps for video resolutions of 1080p, 720p and
360p respectively for frame rates up to 30fps. Each version of
the video is split into smaller chunks (or segments), typically
of 2-4 seconds in length. These chunks are then stored on a
web server which can be accessed by clients on demand using
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Figure 1. Different Traffic Flows of the Same Video

simple HTTP GET requests from a video streaming client
running one of the HAS algorithms. Since HTTP operates on-
top-of TLS, all data including HTTP headers are encrypted and
can only be decrypted at the endpoints. The client video player
(known as the DASH player) uses information from a server
manifest file and current network conditions to dynamically
adapt the stream. (also known as MPEG-DASH).

As a result, streaming video with the DASH player creates
a traffic profile which typically contains periodic spikes of
downloads of potentially different magnitude based on the
network condition (illustrated in Figure 1). These spikes are
related to downloading the next chunk next series of chunks of
the video followed by a waiting time until the user has played
a certain percentage of the downloaded chunk. In particular,
we can see in Figure 1 how the DASH player adapts to various
network conditions by requesting different quality chunks,
e.g. “Run 4" contains less packets compared to other runs.
This traffic behaviour is exploited by our model described in
Section IV.

B. Data Collection
To explore the feasibility of eavesdropping attacks over

encrypted wireless network, we configured a laptop to connect
to an 802.11n WiFi access point using channel 6 of the
2.4GHz spectrum with WAP2 encryption. From this laptop, we
repeatedly downloaded the same 10 videos from YouTube.1

On a separate laptop, we used AirPcap Nx from Riverbed2

to passively capture all the frames available on this channel
regardless of the Ethernet address within the frame. This setup
is illustrated in Figure 2.

Overall, we captured wireless traffic in a campus environ-
ment of 10 videos for more than 300 times for each video.
For each video, we only captured the first three minutes of
the stream. In addition, a registered YouTube Red account
was used to avoid advertisements. These files were later post-
processed using the Scapy Python library to extract frames
associated with the targeted laptop Ethernet address. Using
this data, we built the various features for our content classifier
described in Section IV.

IV. Deep Content METHODOLOGY

In this section, we first describe data preprocessing and fea-
ture engineering procedures including data filtering, frame type

1See appendix for the list of videos.
2https://www.riverbed.com
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Table I
FEATURE SELECTION FROM WIRELESS TRAFFIC DATA

Traffic Direction Feature Name

Uplink F1. Number of Packets (data)
Downlink F2. Number of Bytes (data)
Combination (up and down) F3. Number of Packets (non-data)

F4. Number of Bytes (non-data)
F5. Minimum packet size
F6. Maximum packet size
F7. Average packet size
F8. Variance packet size

identification and the key statistical characteristics gathered.
We then present three different deep learning models and their
corresponding network architectures.

A. Preprocessing & Feature Engineering

1) Data Filter: The WiFi captures include any data packet
transmitted on our selected channel within proximity of the air
environment. These packets were encrypted by IEEE 802.11
protocol using WPA-2, therefore it was impossible to extract
any layer 3 and above protocol information such as port
numbers or to apply deep packet inspection. Instead, we obtain
several basic parameters in the encapsulated from the MAC
layer, for instance the frame size, frame type, frame duration
time, radio information including signal strength and noise
level, and MAC addresses of the source and destination. As
explained in Section III, we also produced the same parameters
for each direction of traffic flowing in and out of the target
host.

2) Frame Type Identification: According to the IEEE
802.11 protocol, the MAC frames of the filtered target data
are divided into three types: management frames, control
frames, and data frames, of which data frames are most closely
related to video classification. Hence, data packets are selected
from the target laptop using the packet size parameter to
ensure the size of frame with payload is greater than 64 bytes to adhere to the frame structure rule
only capture frames with a size superior or equal to the
minimum packet size in a wired network.

3) Feature Engineering: The captured data consists of the
first three minutes of each video stream. This traffic is later
grouped into up-link, down-link and combination (up and



down) frames. For each group, we binned each feature in
500 bins of 0.36 seconds in sequence for ease of statistical
computations. Features are generated from a sliding window
over these bins.

In each sliding window temporal bin, we compute the
features that characterise the dynamic aspect of the traffic:
number of packets in data frames, number of bytes in data
frames, number of packets in management and control frames,
and number of bytes in management and control frames. In
addition, the traffic waveform of MPEG-DASH video stream-
ing from YouTube fluctuates depending on the video content.
Accordingly, four additional features, namely the minimum
size of packets, maximum size of packets, average size of
packets, and variance of packet size, all within the given
studied time period, are constructed to further characterise
video streaming traffic. These features are summarised in
Table I.

B. Classifier Architectures

We implemented three neural network architectures: a Con-
volutional Neural Network (CNN), Recurrent Neural Network
(RNN) and Multi-Layer Perceptron (MLP). These classifiers
are constructed using TensorFlow.3 We randomly shuffle the
samples captured traffic and then split them into training and
testing sets in ratios of 80% and 20% respectively.

1) Convolutional Neural Network Model: As explained in
Section II, Schuster et al. [2] apply a CNN model to classify
the content of the traffic. This is similar to the goal of
our paper. The CNN model used in [2] reported excellent
performance, and we implement this model as a reference
architecture to evaluate the performance of our models. Note
that the CNN model in our case is applied to data captured
through sniffing WiFi wireless signal as opposed to wired
traffic. The architecture of the CNN model in Figure 3(a) is
cascaded by an input layer, three convolution layers, a max
pooling layer and two fully connected layers. We apply the
Adam optimiser to train this model on mini-batches with 64
samples.

2) Long Short-Term Memory Model: The behavior of the
different video traffic exhibits different patterns as illustrated in
Figure 4. These graphs are exported from WireShark’s statistic
tools, where the X-axis is the time sequence with 1s interval
and the Y-axis is the count of data packets on the down-
link flow. The distribution of the spikes in different video
traffic follows a specific time sequence. This indicates that
time correlation of the feature values is crucial. Hence, we
propose using RNNs because of its superiority in training time
sequence data. Specifically, we utilise LSTM models which
address the vanishing gradient problem in classical RNNs.

As shown in Figure 3(b), the input to the LSTM network
is a fixed-size 500× 1 array in which 500 denotes time steps
and 1 denotes a single feature. This network has two hidden
layers and each hidden layer has 32 neural nodes.

3Various parameters are listed in the appendix.

3) Multi-Layer Perceptron Model: During training, if just
one feature was chosen the input to our network is a fixed-
size 500 array. The array is passed through a stack of Fully-
Connected (FC) layers. Through experiments, we acquired a
high classification accuracy using two hidden layers and one
dropout layer. The first hidden layer has 300 neural nodes and
the second hidden layer has 100 neural nodes as shown in
Figure 3(c). We train using the Adam optimiser on batches of
64 samples, with categorical cross-entropy as the loss function.

V. RESULTS

In this section we first evaluate and demonstrate the effects
of using our selected features in combination with the three
neural network models outlined above. We then discuss their
results in detail and shed light on the differences between these
neural network models.

A. Classification Performance on CNN Model

As previously mentioned, during the data collection period
about 3,198 video streaming samples of 10 videos were
captured from YouTube Red. The input of the CNN model
presented in Section IV is a 500× 1 array where 500 denotes
the number of sliding windows temporal bins of 0.36 seconds
and 1 denotes one feature. Each feature is utilised one by one
to train the model and the corresponding test accuracy results
are shown in Figure 5.

The performance of the CNN model, as shown in Figure 5
and Figure 6(a), is on par with results from Schuster et
al. [2]. As mentioned in Section III, our data in this paper was
captured by WireShark through AirPcap, not directly through
the WLAN interface. Thus, there is much more noise in our
captured data compared to the wired data from [2]. However,
the accuracy of the trained model appears to be robust against
such noise.

B. Classification Performance on LSTM Model

The LSTM model was built as described in Section III.
We configured the LSTM model to select a single feature at
a time. However, the input to the LSTM model is different
from that of the CNN model because it is a sequence of 500
steps corresponding to the number of sliding windows of 0.36
seconds from the traffic traces.

Similarly, as with the CNN model, we applied each feature
to train the LSTM model. As we can see in Figure 5, the
LSTM model performs relatively well to detect and classify
the video with an accuracy ranging from 72% for packet size
variance to 96% for the number of packets in the sliding
window in the uplink. In particular, we see that the LSTM
model performs slightly worse than the state of the art CNN
model [2]. To better understand these results we present in
Figure 6(b) the confusion matrix of the LSTM model.

C. Classification Performance on MLP Model

Here, a video streaming flow is represented as a 500 × 1
array input to the MLP model with only one feature chosen. To
seek the optimal MLP configuration scheme, hyper-parameters
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Figure 4. I/O Graphs of a single run for 10 Different Videos

such as feature selection, number of hidden layers, number of
nodes in each hidden layer and choice of activation function
were evaluated by both empirical analyses and experimental
results. In this paper, the features were evaluated by exper-
iments and other hyper-parameters were selected from our
experience.4

The results demonstrate that the MLP structure with 500×1
input (i.e. only one feature was selected) and 2 hidden layers
could provide excellent performance (shown in Figure 5).

We observe from Figure 5 that, surprisingly, feature F3
“Number of Packets (non-data)” achieved the best perform-
ance not only on down-link traffic but also on bi-direction
traffic. Examining up-link traffic, feature F2 “Number of Bytes
(data)” performed best. Combining the traffic direction and
feature type, the “Number of Packets (non-data)” on down-
link traffic of video streaming trained the most accurate model
(accuracy of 97.5%). Note that increasing the number of
hidden layers and changing the position of the dropout layer
did not achieve any further gain in performance.

In order to further understand the performance of the MLP
classifier, we present in Figure 6(c) the confusion matrix for

4The complete list of hyper-parameters is given in the Appendix.

all ten videos based on the optimum model.
Other feature combinations were also validated using an

MLP model with an input vector of 500 × k entries where
k denotes the number of feature. The input vector was con-
structed by splicing the 500 × 1 vectors of different features
together. The performance was lower than those obtained using
a single feature.

D. Result Analysis

In this paper, three neural network architectures were im-
plemented and used to train a video classification model.
The results aforementioned showed that all models achieve
similar performance. Next, we analyze the three deep learning
architectures in detail and clarify limitations of our models.

Firstly, we focus on the optimal model structure to explore
the underlying factors for acquiring high MLP performance.
In the MLP architecture, each of F1, F2, F3 and F4 which are
directly obtained from the captured traffic files could achieve
excellent performance on down-link, up-link and combination
of bi-directional link.

Intuitively, it is expected that the number of packets in the
data frame provides the best performance because the video
contents are encapsulated in data frames. This result can be
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Figure 6. Classification Performance Confusion Matrix for Models with F1 (number of packets (data) on down-link)

explained by the number of packets per second of different
videos as shown in Figure 4. This figure validates that the
fluctuation of "number of packets" along with time is a crucial
characteristic to distinguish between videos. This was also
demonstrated in [2] for the case of a wired network capture.
On the other hand, it is worth noting that non-data frames
can also be exploited to classify video streaming accurately.
This demonstrates that not only the bursts generated by video
content, but also the interaction information between server
and client carry information.

In addition, the performance of other features (F5, F6, F7
and F8) generated from the original captured data are not
stable. From Figure 1, it is clear that the traffic waveforms
of the same video captured at different times share many
common characteristics, especially the time sequence of wave
peak and wave trough. However, the amplitude variation of
these waves is dependant on the WiFi signal environment
due to the DASH rate adaptation. Therefore, the probable
reason that the generated features could not provide steady or
reliable performance is that the noise would be magnified by
the generated features. This would result in overfitting during
the model training.

Considering that our traffic information used is not video
content but traffic attributes similar to those extracted from the
convolutional layer, the MLP model requires only 2 hidden
layers similar to the fully connected layers in CNNs. This
is because the potential relationship between features and

attributes do not need to be represented in a complex manner.
Next, we analyze the performance of both CNN and LSTM

models. CNNs are advantageous in the image processing
field [20]. However, seeking suitable and related features to
generate meaningful convolution in other application domains
is a challenge, in spite of prior work [2]. It is worth noting that
the paper [2] stated significant noise in traffic as a limitation
of their model. As we sniff the traffic signal using AirPcap,
the same drawback applies.

Moving to the LSTM model, as stated in Sec IV, LSTM
schemes can classify dynamic time sequence behavior and
can process arbitrary input series of time sequence using
its internal memory. Video streaming is by definition a time
sequence, hence our consideration of LSTM. Even though we
do not use video content but focus on fingerprints extracted
from the original video, the performance of the LSTM model
is considered satisfactory.

To demonstrate time independence of the MLP model, we
captured the traffic flows for the same 10 videos after 2 weeks
and tested it again on the MLP model. The results are shown
in Table II. It is clear that the performance of the model on
new test sets and old test sets is maintained.

In order to better visualise the optimal MLP classification,
we apply t-SNE on the output of the last hidden layer of the
original dataset and present the result in Figure 7. In this figure,
we can see that some videos can overlap, in particular videos 2
and 7. This can be explained by their relatively close streaming



Table II
FEATURE EVALUATION FOR MLP MODEL Accuracy WITH NEW DATASET

TWO WEEKS LATER

Feature Name Down-link Up-link Combined

Number of Packets (data) 0.95667 0.96334 0.97334
Number of Bytes (data) 0.95667 0.96334 0.97000
Number of Packets (non-data) 0.95334 0.96334 0.96000
Number of Bytes (non-data) 0.97000 0.95667 0.96000
Minimum packet size 0.95000 0.85000 0.86334
Maximum packet size 0.95000 0.89667 0.95667
Average packet size 0.97000 0.81667 0.97000
Variance packet size 0.67334 0.67667 0.97334
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pattern as shown in Figure 4.
There were two assumptions during data collection. First,

the starting point of the video is supposed known; and second
the advertisements in the very beginning are deleted as a
member of YouTube Red. Although it is essential to estimate
and identify the video start point in a real scenario, to simplify
the data collection, we ignored this procedure. In addition, data
capture time is fixed to 3 minutes but the length of advertise-
ment is variable. For this reason, we remove advertisements to
minimise their potential interference. In future work, we aim to
develop methods to address these issues, such as using traffic
type classification techniques and increasing data capture time.

Finally, one question remains: which architecture should be
used in a real-world scenario? To shed light to this question,
we present in Figure 8 the training acceleration,5 of MLP
compared to the state-of-the-art, with similar performance,
CNN model. As shown in this figure, the MLP model is at
least three times faster to train compared to the CNN model.

To summarise, according to empirical analyses and exper-
imental validation, we represent extracted traffic information
from video streaming as a waveform-like signal and encode the
waveform utilising a well trained MLP model with 2 hidden

5We defined the training time as the ratio of training time in CNN over the
training time with MLP
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Figure 8. Computational Acceleration with MLP instead of CNN

layers. This model is then applied to test datasets acting as
a decoder to identify video streaming. The selected features
together with the MLP neural network model achieve accur-
acy of 97% while consuming three time less computational
resources to train.

VI. CONCLUSION

In this paper, we investigated the possibility of discovering
video-streaming content from passively observed WiFi traffic
that is encrypted at both transport layer (TLS) and MAC
layer (WPA2). In order to unveil this WiFi video traffic, we
proposed two types of neural network, namely a Recurrent
Neural Network and a Multi-Layer Perceptron, and a reference
implementation of a Convolutional Neural Network [2] to ana-
lyse the captured traffic. Overall, we have demonstrated that
by leveraging the particular DASH pattern of each video, the
MLP model was able to achieve 97% accuracy in identifying
videos from a closed set of 10 videos in encrypted WiFi traffic.
This high accuracy was later re-evaluated when, two weeks
after the original data collection, we collected a new set of
data and using the same original model we were able to obtain
similar performance. Thus demonstrating the robustness of our
approach.

Additionally, we have also shown that while the state-of-art
CNN model proposed for the same task in the IP layer [2]
was suitable for a wireless environment, it needs significantly
more computational resources than our proposed architecture
using MLP.

As future work, we are currently developing a prototype that
leverages our proposed model, capable of identifying video
traffic and thus video content within a live network containing
a large number of concurrent flows.
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APPENDIX

We present in Table III the list of videos used in this article
as well as their category as per YouTube metadata.

Table III
LIST OF YOUTUBE VIDEO

Video ID YouTube ID Video Category Length HD

Video 1 d853h-8rsPQ Entertainment 11:11 Yes
Video 2 sywaPf021oE Sports 13:27 Yes
Video 3 6rzlfG6Xkg0 Sports 5:31 Yes
Video 4 95M8W1JgH_0 Entertainment 5:03 Yes
Video 5 QU1byle-nmA Sports 7:21 Yes
Video 6 gPHVLxm8U-0 Entertainment 5:12 Yes
Video 7 C3ap6S4mAco Music 4:09 Yes
Video 8 kbMqWXnpXcA Music 6:05 Yes
Video 9 XruwUFiK8YA How-to & Style 10:03 Yes
Video 10 4bPezggGBa8 Comedy 4:53 Yes

Finally, we summarise in Table IV the various neural
networks parameters that we used across the three models.

Table IV
LIST OF NEURAL NETWORKS PARAMETERS

Parameter Name Value

learning rate 0.0001
batch size 64
activation RELU
optimiser Adam
Batch Normalisation decay 0.5
Batch Normalisation epsilon 0.001


