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ABSTRACT 15 

The rainfed cropland belt in Australia is of great importance to the world grain market but has the 16 

highest climate variability of all such regions globally. However, the spatial-temporal impacts of 17 

climate variability on crops during different crop growth stages across broadacre farming systems 18 

are largely unknown. This study aims to quantify the contributions of climate and Land Surface 19 

Temperature (LST) variations to the variability of the Enhanced Vegetation Index (EVI) by using 20 

remote sensing methods. The datasets were analyzed at an 8-day time-scale across the rainfed 21 

cropland of eastern Australia. First, we found that EVI values were more variable during the crop 22 

reproductive growth stages than at any other crop life stage within a calendar year, but 23 

nevertheless had the highest correlation with crop grain yield (t ha-1). Second, climate factors and 24 

LST during the crop reproductive growth stages showed the largest variability and followed a 25 

typical east-west gradient of rainfall and a north-south temperature gradient across the study area 26 

during the crop growing season. Last, we identified two critical 8-day periods, beginning on day 27 

of the year (DoY) 257 and 289, as the key ‘windows’ of crop growth variation that arose from the 28 

variability in climate and LST. Our results show that the sum of the variability of the climate 29 

components within these two 8-day ‘windows’ explained >88% of the variability in the EVI, with 30 

LST being the dominant factor. This study offers a fresh understanding of the spatial-temporal 31 

climate-crop relationships in rainfed cropland and can serve as an early warning system for 32 

agricultural adaptation in broadacre rainfed cropping practices in Australia and worldwide. 33 
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1 INTRODUCTION 39 

As the world’s fourth largest agriculture exporter, Australia, whose crop production accounts for 40 

over 13% of its export revenue (ABARES, 2017), has greatly influenced the world grain market 41 

in recent decades (Hamblin 2009; Lawrence et al. 2013). Due to the interactions of three oceans, 42 

the Australian climate has the greatest variability among inhabited continents (Cleverly et al. 43 

2016; Ma et al. 2016; Stokes & Howden 2010; Xie et al. 2016). Rainfall, air temperature and 44 

solar radiation are direct growth-defining and limiting factors of broadacre crops (Yu et al. 2001), 45 

and their variability poses risks to Australian crop production in terms of reductions in harvest 46 

area (Cohn et al. 2016) and grain yield (Barlow et al. 2015; Zheng et al. 2012) as well as changes 47 

to the dates that define the crop growing season (Zheng et al. 2012). Recent studies have shown 48 

that Australian croplands, which are mostly characterized by a broadacre rainfed planting system, 49 

are vulnerable in grain production to current climate variability (Field et al. 2014; Tripathi et al. 50 

2016). While the projected growth of the global human population necessitates an increased crop 51 

yield (Godfray et al. 2010; Hochman et al. 2017), growth in annual grain yield in Australia has 52 

stalled since 1990, which is majorly caused by the changing climate (Hochman et al. 2017). Thus, 53 

it is necessary to quantify the impacts of climate variability on crop growth and to take measures 54 

to enhance the development of agricultural early warning systems. 55 

Climate-crop relationships have been intensively researched in recent decades. Based on a recent 56 

study, climate variation is responsible for approximately one-third (~32–39%) of global variation 57 



in crop yield (Ray et al. 2015). In Australia, climate variation in the state of New South Wales 58 

(NSW) accounted for 31–47% of inter-annual wheat yield from 1922 to 2000 (Wang, Chen, et al. 59 

2015). The results of crop simulations (Asseng et al. 2011) have indicated that variations of 2°C 60 

of the average temperature during the crop growing season can cause up to a 50% reduction in 61 

grain production in Australian croplands. Under projected future climate scenarios, wheat yield 62 

will decrease by approximately 25% because of the predicted increase of temperature in 63 

southeastern Australia in future decades (Anwar et al. 2007). In most previous studies, the 64 

approaches of climate-crop relationship can be divided into two major types: observational and 65 

statistical models, and crop simulation techniques. The observational and statistical models have 66 

been based on data collected from administrative boundaries, which do not reflect the 67 

crop-growing process and do not explicitly reflect the spatial relationships identified. Although 68 

crop simulation techniques can precisely reconstruct the growth cycles of crops using parameter 69 

pre-setting, it is labor intensive to spatially up-scale the simulations from the field plot to 70 

ecosystem or regional scales (Rosenzweig et al. 2013). This is due to the fact that crop simulation 71 

needs considerable efforts in data collection and parameter calibration to overcome its limitations 72 

in spatial heterogeneity. 73 

These limitations in spatial up-scaling can be overcome by introducing remote sensing detection 74 

methods (Reed et al. 1994; Sakamoto et al. 2005) or by combining crop models with satellite 75 

observations (Ma et al. 2008; Moulin et al. 1998). Satellite radiometric observations offer the 76 

advantage of multiple spatial, temporal and spectral resolutions and the data are from real-time 77 

observations (Eamus et al. 2016), which can characterize the full profile of the vegetation growth 78 

cycle. Remote sensing methods that have been utilized for crop-climate relationships often focus 79 

on estimating the cropland area (Biradar et al. 2009; Potgieter et al. 2011; Wardlow & Egbert 80 



2008) and detecting vegetation green-up and green-fade dates (Guo et al. 2016; Sakamoto et al. 81 

2013). However, every stage of the crop growth cycle can impact the final crop yield. Currently, 82 

there is little knowledge about the different responses of crop performance to regional climate 83 

variability at each growth stage.  84 

Understanding the impacts of climate on crop growth over its life span can help farmers and 85 

agricultural departments make timely decisions in response to climate variability and reduce 86 

potential losses in yield (Rabbinge 2007) in broadacre rainfed cropping systems in Australia and 87 

worldwide. Thus, there is a need to illustrate the relationships between variations in several 88 

climate factors and crop growth throughout all crop growth stages and to identify the most 89 

sensitive ‘windows’, that is, the time segments of crop-growth that are most sensitive to climate 90 

variability. 91 

Vegetation Indexes (VIs) are widely used remote indicators that characterize the status of land 92 

surface vegetation as well as the biophysical properties on global and regional scales (Karnieli et 93 

al. 2010; Wan et al. 2004). The VIs measure the 'greenness' of the canopy and monitor vegetation 94 

growth and health at various spatial scales (Huete et al. 2002; Ma et al. 2015). The Enhanced 95 

Vegetation Index (EVI) used in this study is an optimized VI that can effectively reduce soil 96 

background and atmospheric effects (Huete et al. 2002; Huete 2012; Suepa 2013). 97 

Rainfall, air temperature and radiation influence crop canopy greenness by directly and indirectly 98 

controlling crop transpiration and photosynthesis (Calzadilla et al. 2013; Eamus et al. 2016) 99 

within the soil-plant-atmosphere continuum. Both the vegetative growth and reproductive growth 100 

stages of crops are dependent on and affected by these factors. The direct effects of variations in 101 

these factors on crop growth can be dominant during different growth stages. However, the 102 

proportion of the indirect effects of the complex interactions among these factors (Yu et al. 2014) 103 



on crops cannot be explained without a comprehensive indicator of the crop water and heat status. 104 

The radiative canopy temperature, (the Land Surface Temperature (LST)), is designed to measure 105 

the physical processes of the ground surface energy and water balance (Li et al. 2013) and 106 

reflects the water and heat status of vegetation and soil. In most cases, a high LST indicates 107 

deficient soil moisture and a high canopy heat stress (Karnieli et al. 2010). Thus, we introduced 108 

LST as a potentially crop-limiting climate component to describe the indirect impacts of rainfall, 109 

air temperature and solar radiation on crop growth.  110 

This study investigated regional inter-annual variations in climate-crop growth relationships by 111 

incorporating MODIS land cover maps, time-series Enhanced Vegetation Index (EVI) and Land 112 

Surface Temperature (LST) products, ground meteorological station data and in-situ trial data 113 

across the rainfed cropland belt in NSW during the period from 2001 to 2013.  An 8-day 114 

time-scale is applied as this is the attainable time step for the satellite that provides the data to 115 

produce MODIS EVI and LST. The objectives of this study are to: (1) identify the seasonality, 116 

trends and variability for EVI and each climate component during the crop growing season; (2) 117 

evaluate the individual and collective impacts of climate and LST variability on crops at the pixel 118 

and regional levels; and (3) investigate the relative contribution of the variability of each climate 119 

component to variation in crop growth during each 8-day time segment. 120 

 121 

2 MATERIALS AND METHODS 122 

2.1 Study area 123 

The land cover map used in this study was obtained from the Dynamic Land Cover Dataset 124 

(DLCD) for Australia (http://www.ga.gov.au/) developed by Geoscience Australia. This dataset 125 

http://www.ga.gov.au/


is based on an analysis of a 16-day MODIS EVI composite at a 250-meter resolution during 126 

2000-2008 (Lymburner et al. 2010). The dataset distinguishes rainfed cropland from irrigated 127 

cropland in Australia and shows a high degree of consistency (93%) with extensive independent 128 

field-based investigations.  129 

## Figure 1 insert here## 130 

Australian rainfed croplands (Figure 1a) extend over 24.6 million hectares in a crescent around 131 

eastern, southern and western Australia and produce approximately 22.9 million tons of grain per 132 

year (www.abares.gov.au, 2013). Wheat is the major agriculture commodity across the rainfed 133 

cropland belt in Australia (Hochman et al. 2017). The NSW cropland belt (Figure 1b) stretches 134 

across the drier western face of the Australian Great Dividing Range. It accounts for 27.5% of the 135 

wheat planted area in Australia and 27% of the total wheat production of the nation 136 

(www.abares.gov.au, 2013-14), which makes NSW the second-highest wheat producing state in 137 

Australia. The NSW wheat belt (Figure 1c) has an average elevation of 287.8 m and a gradient of 138 

50 to 750 m from west to east. The annual wheat production during the period from 2003 to 2014 139 

varied between 2.48 and 10.49 million tons, and the yield varied by approximately 5-fold 140 

(0.62–2.75 t ha-1) (www.abares.gov.au, 2013-14). Historically, wheat production in NSW has 141 

shown vulnerability to climate variability due to high exposure to water and heat stresses (Wang, 142 

Liu, et al. 2015). The mean annual air temperature and rainfall across the entire cropland belt of 143 

NSW vary between 12–20°C and 250–800 mm, respectively, highlighting the significant spatial 144 

variation in climate conditions and revealing the complexity of modelling crop yields across 145 

broad spatial extents.  146 

 147 



2.2 Data processing 148 

2.2.1 Meteorological data and study sites 149 

The meteorological station-based observational data from the Scientific Information for Land 150 

Owners (SILO) patched point dataset (http://www.bom.gov.au/silo/) for NSW were collected, 151 

and we extracted 161 study sites that were identified as being located in rainfed cropland pixels; 152 

both their ground meteorological data and spatially observed data were available. These sites are 153 

evenly distributed across our study area (Figure 1b). As climate-driving parameters, daily rainfall 154 

(Rain), maximum air temperature (Tmax), minimum air temperature (Tmin), and solar radiation 155 

(Radn) from 2000 to 2014 were extracted for each site. We then up-scaled them to an 8-day time 156 

series to remove outliers and noise as well as to match the temporal resolution with remote 157 

sensing datasets. We averaged the 8-day Rain, Tmax, Tmin and Radn from the 161 sites to represent 158 

the generalized climate patterns of the time series across the NSW wheat belt. 159 

 160 

2.2.2 Remote sensing and in-situ datasets 161 

Approximately 14 years (February 2000–December 2014) of 16-day Terra-MODIS EVI data 162 

(MOD13A1) at a spatial resolution of 500 meters and of 8-day Terra-MODIS LST 163 

(MOD11A2_day) with a 1000-meter resolution were obtained online from the NASA Land 164 

Processes Distributed Active Archive Center (LP DAAC). The original data were then filtered 165 

based on the Quality Control layers along with the MOD13A1 and MOD11A2_day data. To 166 

unify the spatial and temporal resolutions of these 2 remote sensing datasets, the EVI values were 167 

interpolated and filled to achieve an 8-day series using the spline method, and the LST were 168 



resampled to a 500-meter spatial resolution (Broich et al. 2015). Time-series profiles of the 500 169 

m EVI and LST for the selected 161 cropland pixels were then extracted.  170 

The integrated EVI (iEVI) has been widely used to represent vegetation productivity (Ma et al. 171 

2015; Ponce Campos et al. 2013), whichrefers to the area under the EVI curve in a growing 172 

season. Here, we used iEVI to illustrate the spatial variation of accumulated aboveground 173 

biomass during the growing season. The iEVI and average climate conditions during the crop 174 

growing season at each selected pixel were calculated and interpolated using the inverse distance 175 

weighting (IDW) interpolation method over the study area. 176 

The in-situ wheat trial (2005–2013) datasets were obtained from the Grains Research and 177 

Development Corporation (GRDC) National Variety Trials (NVT), Australia 178 

(http://www.nvtonline.com.au/). The sowing date, harvest date, and actual yield of separate 179 

groups of wheat trials for each year from 2005 to 2013 were recorded. There were 117 trial sites 180 

collected in total, and they were evenly distributed across the NSW croplands. 181 

 182 

2.2.3 Phenology metrics detection 183 

We discriminated the green-up (start of season, SOS), green-fade (end of season, EOS) and peak 184 

dates (peak of season, POS) of the growing season from the 8-day MODIS EVI time series 185 

profile using the following rules: (i) daily EVIs were reconstructed by using the 186 

Polyfit-Maximum method (Cong et al. 2013; Piao et al. 2006) with a degree of 9; (ii) the 187 

inflection point of the maximum of the second derivative during winter (from May to August) 188 

was identified as the SOS (Gong et al. 2015), while another inflection point during summer (from 189 



November to the end of year) was identified as the EOS; and (iii) the POS was identified as the 190 

date with the maximum EVI value during the growing season (Ma et al. 2013). 191 

As for cropland, we assumed that the start of season (SOS), end of season (EOS) and peak of 192 

season (POS) dates were the leaf emergence, crop harvest and crop heading dates observed from 193 

remote sensing, respectively (Sakamoto et al. 2005). The length of the growing season (LOS) in 194 

this paper was defined as the difference between the SOS and EOS. The growing season (GS) 195 

was divided into the two stages of vegetation growth (VG) and reproductive growth (RG) by the 196 

POS date.   197 

 198 

2.3 Methodology 199 

2.3.1 Variability indicator 200 

Mathematically, in the time series profile of EVI, technological improvements in farming 201 

practices (inter-annual trend), phenology (seasonality, the time of turning points in crop growth 202 

and development), the vegetation variation caused by climate variability (inter-annual variation), 203 

and the system observational errors are subject to trend, seasonal, anomaly and noise components 204 

(Shumway & Stoffer 2010), respectively. Here, the noise component can be reduced by unifying 205 

the temporal and spatial scale of EVI and LST. We assumed the technology in farming practices 206 

was at an average level from 2001 to 2013 and adopted a standardized anomaly (Sa-s) to 207 

represent the inter-annual variability of EVI, and similarly to each of the other variable. 208 
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ydx , is a single element of a time-series variable X ; 'x is the anomaly value of each variable at 210 

the dth 8-day time point in the yth  year; and x  is the mean value at the dth 8-day time 211 

point throughout the period from 2001 to 2013. The time series sequence of Sa-s excluded the 212 

seasonality of the original data sequence without collinearity with the other variables. The 8-day 213 

Sa-s values of Rain, Tmax, Tmin, Radn, LST and EVI for the 161 selected points during 2001- 2013 214 

were calculated. 215 

 216 

2.3.2 Thermal time reference 217 

Converting the time reference from normal calendar time to thermal time allows to make an 218 

average consideration of crops in similar phenological stages among different years, and to 219 

remove the effects of spatial heterogeneity (Duveiller, Baret, et al. 2013; Duveiller, 220 

López-Lozano, et al. 2013). The thermal time theory is based on the time taken of plant growth 221 

and development, depending on temperature (Atwell 1999). Therefore, thermal time (tt) over a 222 

particular time period from t1 to t2 can be expressed as cumulated heat units (in growing degree 223 

days) (Duveiller, Baret, et al. 2013; Duveiller, López-Lozano, et al. 2013; Franch et al. 2015; 224 

Skakun et al. 2017): 225 
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In this case, the minimum (Tmin) and maximum (Tmax) air temperature are based on a daily time 227 

step. The base (Tbase) temperature for winter wheat was set to 0 °C, and thestarting date t1 was 228 

arbitrarily fixed to 1st January of each year from year 2001 to 2013. If the average daily air 229 

temperature of Tmax and Tmin is below Tbase, it would be replaced by Tbase, and no growing degree 230 



days are accumulated. Thermal time of EVI profiles were then calculated for each year but 231 

having irregularly sampled time series. To make them comparable, a regular sampling steps of 232 

100 growing degree days were thereafter linearly interpolated (Duveiller, Baret, et al. 2013).  233 

 234 

2.3.3 Relative importance approach 235 

To elucidate the unique correlation between a single climate component Sa-s and EVI Sa-s 236 

without interference from other variables, we applied the partial correlation method (Chevan & 237 

Sutherland 1991) by controlling the variance of the other 4 climate components. The package 238 

‘relaimpo’ in R (Grömping 2006) was applied to calculate the ranks of the climate components 239 

for each 8-day time segment in terms of their unique contribution to EVI variation. Their unique 240 

contributions were then rescaled to sum to R2, the total proportion of EVI variance explained by 241 

climate variability, as the relative contribution of the climate components. The individual and 242 

accumulated relative contributions of the selected climate variable Sa-s to the EVI Sa-s in the 243 

growing season both across study area and at each testing pixel were then calculated. 244 

In this paper, data processing and statistical analysis were performed in the R computation 245 

environment, and related packages were obtained from The Comprehensive R Archive Network 246 

(http://cran.r-prject.org). 247 

 248 

3 RESULTS                                                                                                                                                                                                                                   249 

3.1 Crop growth seasonality and variability across the NSW wheat belt from 2001 to 2013 250 

3.1.1 Crop growth seasonality and variability 251 



The average annual EVI curve shown in Figure 2a represents the seasonality of vegetation 252 

growth across the cropland belt from 2001 to 2013 in NSW. The profile and magnitude of the 253 

curve and EVI variations are important indicators of vegetation growth. From the average EVI 254 

seasonality shown in Figure 2a, it is apparent that there is only one major growing season across 255 

the study area from leaf emergence (start of season; SOS date) at Day of the Year (DoY) 156, 256 

which has an EVI value of 0.206, to harvest (end of season; EOS date) at DoY326, which has an 257 

EVI value of 0.177. The length of the growing season (LOS) was 170 days, with a maximum EVI 258 

value (peak of season; POS) of 0.373 at DoY 246. This indicates that the lengths of vegetative 259 

growth (VG) and reproductive growth (RG) were 90 and 80 days, respectively. The actual 260 

growing season of winter wheat planted in eastern Australia (Bowden et al. 2008) matches this 261 

EVI curve well. At the same time, Figure 2d shows that the 13 years average EVI profile in 262 

thermal time reference, winter crop across the study area appearat 3000 °C degree days and end 263 

of senescence at 5500 °C. All the single-year EVI growing season start and end within 500 264 

degree days with our average fixed growing season. The only differences are the shape and 265 

amplitude of the curves. 266 

## Figure 2 insert here## 267 

As Figure 2b shows, the variation of EVI in the growing season was significantly larger than in 268 

the non-growing season, especially during the reproductive growth period, with a Sd of 16.7% at 269 

DoY 153 near EOS, 18.2% at DoY 249 near POS, and 19.3% at DoY 257, and the Sd was greater 270 

than 20% for the consecutive 8-day time segments from DoY 265 to DoY 313.  271 

 272 

3.1.2 The key 8-day time segment of the crop growth cycle 273 



To decide which 8-day segment of EVI in the crop growing season had the strongest correlation 274 

with annual yield, we used the Pearson correlation method to analyze the 8-day EVIs and 275 

observed wheat grain yield (t ha-1) in NSW at the 117 ground trial sites from 2005 to 2013 for 276 

which observational data were available. The 8-day EVIs were positively correlated with the 277 

wheat yield throughout the growing season, particularly during the reproductive growth stage 278 

(Figure 2c). The correlation coefficient at the 8-day time segment, start from DoY 153, 279 

immediately before leaf emergence was 0.16, and it increased to 0.47 after the heading date (POS) 280 

at DoY 249. It increased significantly during the rest of RG and reached its peak at DoY 289, 281 

with a value of 0.76. This indicates that the larger the EVI value at DoY 289, the higher the 282 

annual yield, and vice versa. 283 

The slope of EVI at each 8-day time segment from 2001 to 2013 fluctuated notably during the 284 

growing season (Figure 2c). The slopes were positive during the vegetative growth (VG) phase, 285 

but negative during the reproductive phase (RG). Thus, vegetation greenness increased during 286 

VG, but decreased during RG. During RG, the trend value dropped by 0.001 each year following 287 

POS and then dropped greatest by 0.003 each year at the 8-day time segment, from DoY 257. 288 

As EVI at DoY257 also has a high correlation of 0.56 with annual yield, we identified the two 289 

critical 8-day time segments, beginning from DoY257 and DoY 289, as the key 8-day ‘windows’ 290 

during the remotely sensed crop growth cycle. 291 

 292 

3.2 Climate and LST seasonality and variability across the NSW wheat-belt in growing season 293 

3.2.1 Climate and LST seasonality and variability 294 



The overall annual climate and LST seasonality patterns (Table 1, Figure 3) across the NSW 295 

wheat belt showed the typical characteristics of a temperate sub-humid climatic zone: warm in 296 

the crop pre-growing season (pre-GS) and reproductive phase (RG) and cool in the crop 297 

vegetative phase (VG), with moderate rainfall throughout the year. The average rainfall (Rain) 298 

during the VG and RG was 114.1 and 99.5 mm, respectively, across the study area, and in pre-GS, 299 

the average was 182.4, with a moderately even distribution throughout the crop growing season. 300 

The ranges of the average daily Tmax, Tmin, Radn, and LST (canopy temperature) throughout the 301 

GS were 30.1–15.3°C, 14.8–3.1°C, 25.9–9.2 MJ m-2, and 39.4–13.7°C, respectively. The Sd 302 

values of Tmax, LST and Radn in RG were mostly higher than those during the VG phase (Figure 303 

3), while the variability of Tmin was larger at the beginning and end of the GS relative to the 304 

middle stages of the GS. The variability of rain was irregular throughout the GS and peaked at 305 

the 8-day time segment from DoY 289, with a Sd of 159%. The Sd provided in Table 1 shows the 306 

overall climate and LST variability at a broader time-scale. All of the Sds in the RG phase were 307 

much larger than those of the pre-GS and VG phases (Table 1). The variability of the climate and 308 

LST in the VG was the lowest. LST showed the largest variability among all climate components, 309 

especially during the RG (Table 1). 310 

## Figure 3 insert here## 311 

## Table 1 insert here## 312 

During the 32nd 8-day period, near the heading date (DoY249), all of the heat factors, Tmax, Tmin, 313 

LST and Radn, showed an increasing trend from 2001 to 2013 (Figure 3), with slopes of 0.26°C 314 

y-1, 0.02°C y-1, 0.11°C y-1 and 0.12 MJ m-2 y-1, respectively. The EVI started to decrease at this 315 

time point (Figure 2), with a decreasing rate of 0.001 y-1. At the critical 8-day time segment from 316 

DoY 257, Tmin and LST showed decreasing trends, with annual rates of 0.02°C y-1 and 0.18°C y-1. 317 



Meanwhile, Radn and Tmax showed increasing trends, with annual rates of 0.14 MJ/m2/yr and 318 

0.18°C y-1, respectively. At the other critical 8-day time segment from DoY 289, Tmax and Tmin 319 

had the same trends as at the 8-day segment from DoY 257. However, LST had an increasing 320 

trend, with a rate of 0.11°C y-1, and Radn had a decreasing trend, with a rate of 0.01 MJ m-2 y-1. 321 

 322 

3.2.2 Spatial variation of the 13-year average iEVI and climate conditions 323 

The average annual iEVI across the NSW cropland belt ranged from 3.84 to 9.96 (Figure 4). The 324 

iEVI in the southeastern part of the study area was almost twice as large compared with the upper 325 

northern part, with an average value of 8.9 in the southeast and 4.8 in the upper north part of the 326 

NSW wheat belt.  327 

## Figure 4 insert here## 328 

Correspondence was observed for the spatial distribution of rainfall in the southern part, but not 329 

in the northern part, of study area. The average annual rainfall during the GS ranged from 123.2 330 

mm in the west to 320.6 mm in the east and displayed a typical E-W spatial gradient that was 331 

distributed based on the pixels’ distance to the coast. The growing season Radn, Tmax, LST and 332 

Tmin followed a similar N-S temperature spatial gradient distribution pattern, which was higher in 333 

the north and lower in the southeast. Their range differences were 3.5 MJ m-2, 7.6°C, 11.5°C, 334 

5.9°C, respectively. 335 

 336 

3.3 Contributions of climate and LST variability to crop growth variation over the GS 337 

3.3.1 Individual impacts of climate and LST on EVI variation at a regional scale 338 



Figure 5 shows the partial correlations at an 8-day time-scale during the growing season across 339 

the entire study area. The correlation was statistically significant when its r value was greater 340 

than +0.553 or lower than -0.553 (Plant 2012).  341 

## Figure 5 insert here## 342 

Generally, inter-annual variability of EVI was positively correlated with Rain, Tmin, and Radn 343 

and negatively correlated with Tmax and LST. The correlation of the inter-annual variability and 344 

Sa-s between rain and EVI steadily increased throughout the crop growing season. The 345 

correlation of Tmax-EVI and Tmin-EVI in the crop growing season showed inverse patterns. The 346 

amplitude of the absolute values of the Tmax-EVI correlation coefficients were larger than those 347 

of Tmin-EVI. The correlation coefficients of the 8-day LST-EVI in the vegetative growth phase 348 

(VG) were more moderate and smaller in terms of absolute values than those during the 349 

reproductive growth phase (RG) and reached -0.97 at the 8-day time segment from DoY 289. The 350 

highest point of the Radn-EVI correlation coefficient was also at that segment, with a value of 351 

0.78. 352 

As shown in Figure 5, more significant and marginally significant correlations between the 8-day 353 

EVI Sa-s and climate and LST Sa-s were observed during the RG than during the VG. At the 354 

critical 8-day time segment from DoY 257, in section 3.1.2 we identified that rain was 355 

significantly and positively correlated with EVI, while it was significantly and negatively 356 

correlated with LST. At another critical 8-day segment from DoY 289, LST-EVI and Radn-EVI 357 

showed significant divergent correlations. The Tmax-EVI correlations were significant and 358 

negative twice during the VG and 3 times during the RG. 359 

 360 



3.3.2 Accumulated relative contributions of the climate variability to the EVI variability 361 

Figure 6 shows the contributions of the inter-annual climate variation to variations in EVI at the 362 

8-day time scale during the growing season (GS). The total effects of climate variation showed an 363 

increasing trend throughout the GS and accounted for 83.3% at the 8-day time segment from 364 

DoY 169 during the VG and 97.1% at the segment from DoY 289 during the RG on EVI Sa-s 365 

across the NSW croplands belt. At the critical time segment from DoY 257, the total climatic 366 

contribution increased from 47.6% from the previous 8-day time segment to 88.3%, while the 367 

EVI value dropped sharply by 0.003 each year (Figure 2c). 368 

## Figure 6 insert here## 369 

In the rainfed NSW cropland belt, the proportion of rain Sa-s to the total climate contributions 370 

peaked at the 8-day time segment from DoY 169, which was the tillering stage of the vegetative 371 

growth phase (VG), with a value of 50.6%, and then declined steadily throughout the VG and 372 

increased moderately during the reproductive growth phase (RG). At the critical 8-day window 373 

from DoY 257, it accounted for 21.8% of the variation in the EVI. The proportion of the LST 374 

variation among the total climate contribution increased from the VG to the RG and accounted 375 

for 65.8% at the critical 8-day window from DoY 289. It was more than half of the total climate 376 

contribution at that time segment. During the RG, the LST was the single most important climate 377 

factor that affected EVI variability in 9 out of 10 8-day time segments across the NSW cropland 378 

belt.  379 

Tmin explained a large proportion of the impact of climate variation on the change in EVI 380 

immediately before peak of the season date (POS), the corresponding crop heading date. It 381 

reached its peak at the 8-day time segment from DoY 233, with a value of 46.5%. The 382 



contribution of Tmax variation to the EVI Sa-s was larger during the RG than the VG, but more 383 

moderate than the LST Sa-s. It peaked at the 8-day time segment from DoY 265, with a value of 384 

37.3%. Radn Sa-s affected the EVI Sa-s steadily from approximately 10% to 20% throughout the 385 

GS across the study area. 386 

 387 

3.3.3 Spatial distribution of the climate and LST variability contributions to EVI variation 388 

The individual and accumulated contributions of climate and LST Sa-s to EVI Sa-s at every 389 

selected pixel during the GS were demonstrated in Figure 7. The inter-annual total climate 390 

variability at the 8-day time scale caused EVI variations from 5.94% to 42.09% across the study 391 

area from 2001–2013. The total effects were higher in the north and southwestern parts of the 392 

NSW wheat belt relative to the middle parts. 393 

## Figure 7 insert here## 394 

 Variation in LST was the most important climate factor influencing variation in EVI. The 395 

contribution ranged from 3.24% to 34.47% across the cropland belt in NSW. The spatial 396 

distribution was largest in the northern and southwestern parts of the study area. The relative 397 

importance of the total variability of total rain was smaller, with a maximum contribution of 398 

3.57% to EVI variation, and its importance was larger in the western and middle parts of the 399 

NSW wheat belt. The importance of variation in Radn that caused variability in EVI was largest 400 

on the eastern parts of the cropland belt, with a range from 0.2% to 3.27%. The contribution 401 

range of Tmax was 0.28% to 10.27%, with a gradual trend from east to west. The effects of Tmin 402 

Sa-s ranged from 0.08% to 4.08% for EVI Sa-s across the study area, and they were greater in the 403 

relatively cooler areas of the southeastern and middle parts of the study area.  404 



 405 

4 DISCUSSION 406 

4.1 Ability of the MODIS EVI profile to represent rainfed cropland productivity in Australia 407 

The start and end dates of the growth season (SOS and EOS) of winter crops are relatively fixed 408 

compared to the considerable variability observed in native grasses and shrubs (Bowden et al. 409 

2008). SOS and EOS are not merely determined by climate because human management and 410 

farmers’ experience can largely control them. Although there is sowing date guidance offered 411 

based on rainfall (Keating et al. 2002), farmers still sow even if rainfall does not reach the 412 

required levels during June to avoid heat stress in the following summer. Variations in the timing 413 

of the different growth stages are thereafter largely affected by climate variability, especially in 414 

broadacre rainfed cropping systems. The EVI profile in thermal time reference has shown the 415 

relatively fixed growing season across the NSW wheat belt, we could measure the relative 416 

contributions of climate variation to crop growth variability at every 8-day time segment. 417 

The MODIS EVI-fitted GS in this study starts at DoY 156 in early June ends at DoY 326 in late 418 

November, with a length of 170 days. The average peak of season (POS) date occurs at DoY 246 419 

in September, with an EVI value of 0.373. This phenology matches well with the observed wheat 420 

life cycle in eastern Australia (Bowden et al. 2008). Based on observations of 117 trials, the 421 

average sowing and harvest dates across the NSW wheat belt are DoY 145 (±1.5 days) and DoY 422 

326 (±1.2 days), respectively. There could be an allowance of 11 days for seeds to establish from 423 

the sowing date to the leaf emergence date (SOS, DoY156). The average harvest date had the 424 

same date with the MODIS EVI derived end of season (EOS) date, DoY 326. Meanwhile, the 425 

iEVI was significantly and linearly correlated with the in-situ grain yield among the trials each 426 



year as well as among all sites (Figure 8). The overall R2 was 0.755, while the relationship best 427 

fit the 11 trials in year 2009, with an R2 of 0.940. These results not only indicate that wheat is the 428 

largest major winter crop planted across the NSW cropland but also indicate that the MODIS EVI 429 

is capable of monitoring the winter wheat growth cycle in broadacre rainfed cropping systems.  430 

## Figure 8 insert here## 431 

The ability of the MODIS EVI to capture information related to crop growth and development 432 

has also been tested (Bolton & Friedl 2013) in the central United States. The authors concluded 433 

that MODIS products have good potential applications for agricultural monitoring in areas with 434 

large field sizes, as is the case in Australian wheat cropping in NSW. The MODIS-derived 435 

average annual time-series profile of the EVI (Figure 2a) reflects the actual crop growth 436 

conditions across the NSW wheat belt. Over the entire crop life span, the correlation coefficient 437 

between EVIs and the actual yield peaks at the 8-day time segment from DoY 289, with a value 438 

of 0.76 (Figure 2c). Thus, the stability and range of EVI values at this critical time segment had 439 

the highest direct correlation and ensured an annual attainable yield.  440 

 441 

4.2 Impacts of climate and LST variability on the variation of the EVI in key crop growth stages 442 

The trend of EVI values at every 8-day segment can be explained not only by the 443 

delayed/advance of the growing season but also by the technological improvement that modifies 444 

wheat crop traits as well as the interference of weather extremes on crop radiometric reflection. 445 

From 2001 to 2013, farmers improved the biomass of wheat crops during vegetative growth 446 

phase (VG) across the NSW cropland belt, but neglected the importance of plant biomass 447 

accumulation during the reproductive growth phase (RG) (Figure 2c). The sharpest drop of EVI 448 



at the 8-day time segment from DoY 257 made it the most sensitive to climate variability during 449 

this period. 450 

The relative importance of the proportion of rain, Tmax, Tmin, Radn and LST Sa-s to EVI Sa-s 451 

reached its peak at the 8-day time segments from DoY 169 (VG), DoY 265 (RG), DoY 233 (VG), 452 

DoY 217 (VG), and DoY 289 (RG), respectively (Figure 6), across the NSW wheat belt during 453 

2001-2013. In the semi-arid rain-fed environment, the lack of rainfall and resultant water stress is 454 

inevitably one of the most serious climatic limiting factors to crop establishment and 455 

development (Asseng et al. 2011), especially around the tilling stage (the 8-day time segment 456 

from DoY 169, where Rain is the most important climate factor) during VG. However, during 457 

RG, heat stress is more evident because temperature has a relatively higher base during this phase, 458 

which is sometimes higher than the optimum wheat growth air temperature of 23°C 459 

(www.agric.wa.gov.au). The cropland maximum air temperature and canopy temperature 460 

reached >30°C during the RG (Figure 3) across the study area. In particular, fluctuations of 461 

Tmax and LST during a sensitive stage of crop development, such as the grain growth stage (the 462 

8-day time segment from DoY289), can significantly reduce grain yield due to their direct effects 463 

on leaf photosynthesis, grain number and grain mass (Talukder et al. 2014), while a continuous 464 

period of extremely high temperatures can result in physiological damage and almost total yield 465 

loss (Asseng et al. 2011; Lobell et al. 2012). At the critical 8-day segments from DoY 257 and 466 

289, identified in this study (part 3.1.2), which corresponded to the wheat flowering and grain 467 

growth stages, respectively, the impacts of heat variation outweighed the impact of variation in 468 

rainfall on EVI by more than twofold. 469 

During RG, variation of LST was the most important factor that contributed to variation of EVI. 470 

LST, the canopy temperature, quantifies the combined indirect effects of air temperature, 471 



radiation and effective rainfall within the soil-plant-atmosphere continuum. A higher LST reflects 472 

lower latent heat flux from the canopy, which indicates lower canopy evapotranspiration and 473 

higher heat stress conditions (Li et al. 2010). The remotely sensed estimation of surface 474 

temperature has proven to be a well suited ground canopy temperature indicator in large-scale 475 

crop monitoring (Karnieli et al. 2010; Sandholt et al. 2002). It simultaneously measures the 476 

comprehensive water and heat stress conditions caused by interactions among climatic driving 477 

factors. Thus, the impacts of the LST variation on the variation of the EVI increased in the hotter 478 

northern and drier southwestern parts of the NSW wheat belt. 479 

 480 

5 CONCLUSIONS 481 

In this study, we quantified the spatio-temporal impacts of variation in climate and land surface 482 

temperature (LST) on the variation of crop EVI at key crop growth stages. The standard anomaly 483 

method was adopted to indicate the variability of all variables at an 8-day time scale. We found 484 

that a single major crop growing season (GS), occurred in the second half of the year across the 485 

NSW wheat belt during 2001–2013. Two critical 8-day time segments, beginning from DoY 257 486 

and 289, were identified as the key ‘windows’ during the winter crop GS, that is, the variation in 487 

climate during these 8-day time segments exerted a greater impact on the grain yield than during 488 

any other periods during the GS.  489 

Our results show that the total climate variation during the two 8-day ‘windows’ contributed 490 

more than 88% of the variability in EVI, of which the LST accounted for more than half. 491 

Therefore, more attention should be paid to the LST during implementation of large-scale rainfed 492 

cropland monitoring. As such, once an association model (i.e. linear regression model) among 493 



LST, EVI and annual grain yield is built-up (Kumar 1998), we could estimate and predict grain 494 

yield during these two key 8-day “windows” (approximately one month) before the crop is 495 

harvested. Spatially, the total contribution of climate variation during the GS accounted for up to 496 

42% of the variability in the EVI, especially in the northern and southwestern regions of the 497 

NSW wheat belt. As an index that integrates the indirect effects of the complex interactions 498 

among all the climate-driving factors on crop growth, the LST is the first dominant climate 499 

component that affects the variability of the EVI across those regions.  500 

The limitation of this study was the limited years (13 years) of data, which could cause 501 

over-fitted models in the analysis. Because the time period from 2001-2013 was the period that 502 

saw a shift from extreme drought to flood at a surprising speed (Dijk et al. 2013), the shift was 503 

typically significant. We thereafter targeted this specific period of time and evaluated the 504 

relationship between climate and crop growth in variability. This study also narrowed the analyze 505 

time slot from annual to 8-days, which is the attainable temporal scale by MODIS EVI and LST, 506 

to make it possible investigating the diverse crop-climate relationship over the crop life span. 507 

However, in consideration of the comparison of the model performance among this time period 508 

(2001-2013) and other years before and after, we will adopt additional datasets to expand the 509 

number of sample years and build the best fit model in the future. 510 
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FIGURES 692 

 693 

 694 

 695 

Figure 1 Spatial distribution of the NSW rainfed cropland belt and locations of selected testing 696 

pixels. The green areas are the gridded rainfed cropland belts across Australia (a) and NSW (b); (c) 697 

elevation map of the NSW rainfed cropland belt 698 

 699 



 700 

Figure 2 Variation and trend of the average seasonal EVI profile in the NSW rainfed cropland belt 701 

from 2001 to 2013 and correlations of the 8-day EVIs with observed annual grain yield. (a) Black 702 

dots: average EVI values for all of the testing points from 2001 to 2013; green solid line: fitted EVI 703 



curve; blue solid line: second derivative; POS: peak of season (heading date); SOS: start of season 704 

(leaf emergence date); EOS: end of season (harvest date). (b) One standard deviation (Sd in %) of 705 

the 13-year period. (c) Blue dashed line with circle solid dots: EVI trends at each 8-day time point 706 

from 2001 to 2013. Black solid line with triangular solid dots: correlations between the 8-day EVIs 707 

and annual grain yield at 117 trial sites. X-axis of (a) to (c): Date (Day of the Year). (d) green solid 708 

line: 13 years mean EVI in the time reference of thermal time (growing degree days, °C). grey 709 

dashed lines: single-year means of EVI from 2001 to 2013. 710 

 711 

 712 



Figure 3 Growing season climate and LST seasonality as well as their variability and trend at 713 

each 8-day time segment from 2001 to 2013 across the NSW cropland belt. (a) Rainfall; (b) 714 

maximum air temperature; (c) minimum air temperature; (d) land surface temperature; (e) solar 715 

radiation. Black solid curves: seasonality (primary y-axis). Error bars: one standard deviation 716 

(Sd). Blue solid curves: trends at each 8-day time segment over 13 years (second y-axis). Black 717 

horizontal dash line: 0 line (second y-axis). X-axis: Date (Day of Year) 718 

 719 

 720 

Figure 4 Spatial variations of the 13-year average iEVI as well as growing season climate and LST 721 

conditions. (a) iEVI; (b) rainfall; (c) radiation; (d) maximum air temperature; (e) land surface 722 

temperature; (f) minimum air temperature 723 

 724 



 725 

Figure 5 Partial correlations between standardized anomalies (Sa-s) of 8-day EVI and individual 726 

climate components in the growing seasons from 2001 to 2013. (a) rainfall; (b) maximum air 727 

temperature and minimum air temperature; (c) land surface temperature; (d) radiation. Horizontal 728 

dash lines: significance threshold where p=0.05. *: p<0.1, marginal significant. **: p<0.05, 729 

significant. X-axis: Date (Day of the Year) 730 

 731 



 732 

Figure 6 Individual and accumulated contributions of the climate and LST variability to the 733 

variation of EVI at the 8-day time scale in the growing season over 13 years. Stacked bars: 734 

individual contributions; black curve: accumulated contribution; brown dashed line: trend of 735 

accumulated contribution 736 

 737 



 738 

Figure 7 Spatial distributions of the contributions of climate and LST standard anomalies (Sa-s) 739 

to EVI Sa-s in the growing season across the NSW cropland belts. Number in brackets: counts of 740 

tested pixels for which their attributes were in the corresponding range, and 161 pixels in total 741 

were tested 742 

 743 



 744 

Figure 8 Scatterplots between the actual yield and iEVI for 117 trial sites and their linear 745 

regression lines. **: p value < 0.001 746 
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TABLES 748 

 749 

Table 1 Seasonal climate and LST conditions each year across the rainfed cropland in NSW 750 

 

Pre-GS VG RG 

Rain Tmax Tmin Radn LST Rain Tmax Tmin Radn LST Rain Tmax Tmin Radn LST 

mm d-1 ℃ ℃ MJ m-2 ℃ mm d-1 ℃ ℃ MJ m-2 ℃ mm d-1 ℃ ℃ MJ m-2 ℃ 

2001 1.18 28.91 14.06 20.31 32.51 1.16 16.80 3.91 11.81 15.63 1.29 23.64 9.24 20.85 30.32 

2002 1.07 28.63 13.72 20.58 32.52 0.53 17.99 3.55 12.82 18.76 0.51 26.80 10.26 23.37 36.86 

2003 1.07 28.61 14.83 20.37 33.61 1.46 16.48 4.57 11.81 15.75 1.07 23.49 8.59 21.93 30.12 

2004 0.94 29.58 13.94 21.01 34.00 1.26 16.10 4.06 11.61 15.45 1.60 23.92 9.19 21.65 31.14 

2005 0.62 29.22 13.65 21.15 34.06 1.87 16.84 4.98 11.80 15.87 2.16 24.25 10.43 20.72 27.99 

2006 0.67 29.67 14.13 21.00 32.99 0.93 17.16 3.11 12.66 17.06 0.59 26.77 9.88 23.51 36.32 

2007 1.15 29.67 15.53 20.36 34.47 0.95 16.50 4.00 12.19 16.47 0.83 26.18 10.35 22.11 34.58 

2008 1.06 27.83 13.37 20.73 31.92 1.07 16.74 4.47 11.54 16.21 1.61 25.08 10.24 21.45 31.16 

2009 1.03 28.98 14.50 20.62 33.38 1.05 17.27 5.22 11.45 16.29 0.80 26.71 10.92 21.48 33.91 

2010 1.95 28.44 14.70 19.48 30.92 1.97 15.69 4.82 10.72 14.14 2.42 22.69 9.84 19.84 25.27 

2011 1.69 27.80 13.81 19.33 28.80 0.83 17.52 4.00 11.83 16.60 1.73 24.80 9.96 20.59 29.65 

2012 2.10 27.02 12.86 19.52 28.74 1.10 16.67 3.12 12.10 15.77 0.62 25.29 8.39 22.45 31.98 

2013 1.08 29.17 14.11 20.71 33.14 1.28 17.81 5.17 11.60 16.91 0.76 26.28 9.19 23.10 33.15 

Mean 1.20 28.73 14.09 20.40 32.39 1.19 16.89 4.23 11.84 16.22 1.23 25.07 9.73 21.77 31.73 

Sd 0.43 0.77 0.66 0.58 1.79 0.38 0.63 0.69 0.51 1.03 0.60 1.35 0.73 1.08 3.13 

* Pre-GS was calculated as the period from the first day of the year to Start of Season (SOS) at day 156. Sd is one standard deviation 751 

in each crop growth stage from 2001 to 2013. Red, yellow and green correspond to the order of the variable values from high to low 752 

among the pre-growing season (Pre-GS), vegetative growth phase (VG) and reproductive growth phase (RG) 753 

 754 




