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Abstract—The aim of recommender systems is to automatically
identify user preferences within collected data, then use those
preferences to make recommendations that help with decisions.
However, recommender systems, particularly those based on col-
laborative filtering, suffer from data sparsity problem. This issue
is particularly prevalent in newly-launched systems that have not
yet had enough time to amass sufficient data. As a solution, cross-
domain recommender systems transfer knowledge from a source
domain with relatively rich data to assist recommendations in
the target domain. These systems usually assume that the entities
either fully overlap or do not overlap at all. However, in practice,
it is more common for the entities in the two domains to partially
overlap. Moreover, overlapping entities may have different ex-
pressions in each domain. In cross-domain recommender systems,
neglecting these two issues reduces prediction accuracy in the
target domain. To fully exploit partially-overlapping entities and
improve the accuracy of predictions, this paper presents a cross-
domain recommender system based on kernel-induced knowledge
transfer, called KerKT. Domain adaptation is used to adjust the
feature spaces of overlapping entities, while diffusion kernel com-
pletion is used to correlate the non-overlapping entities between
the two domains. With this approach, knowledge is effectively
transferred through the overlapping entities, thus alleviating data
sparsity issues. Experiments conducted on four datasets, each
with three sparsity ratios, show that KerKT outperforms six
benchmarks and increases the accuracy of recommendations in
the target domain. KerKT is compared with six methods and
has 1.13%-20% better prediction accuracy in terms of MAE
and RMSE respectively. Additionally, the results indicate that
transferring knowledge from the source domain to the target
domain is both possible and beneficial with even small overlaps.

Index Terms—recommender systems, cross-domain recom-
mender systems, knowledge transfer, collaborative filtering

I. INTRODUCTION

ECOMMENDER systems have developed quickly with

the explosion of Web 2.0 technologies [1], and are now in
wide use. The aim of recommender systems is to provide users
with items, such as products or services, that match their pref-
erences. Generally, recommendation techniques are roughly
divided into three categories based on the underlying data used
to make the recommendation: collaborative filtering-based [2],
content-based [3] and knowledge-based recommendation [4].
Collaborative filtering generates recommendations to one user
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from the historical records of other users with similar behavior
[5]. This approach has advantages when historical data for
users and items are actually available, such as ratings or brows-
ing data. Originally designed as basic memory-based methods,
collaborative filtering has evolved into model-based methods
that commonly involve machine learning techniques, such as
matrix factorization [6], probabilistic models [7] and deep
neural networks [8], [9], [10]. Matrix factorization is, perhaps,
the most widely used and has been incorporated into many
commercial recommender systems [11]. However, observing
the interactions between users and items has limitations in
practice and, among them, data sparsity is a common problem
[12]- a problem that is particularly severe and challenging in
newly-launched recommender systems. Data sparsity greatly
impairs a recommender system’s ability to produce accurate
recommendation results, which leads to a poor experience for
users [13].

To overcome data sparsity issues, some recommender Sys-
tems based on collaborative filtering are beginning to in-
corporate transfer learning. Transfer learning extracts shared
knowledge from a domain with comparatively denser data [14]
and uses that knowledge to improve recommendations in the
target domain. In newly-launched recommender systems, this
technique can significantly improve performance [15]. Sys-
tems that use transfer learning techniques are known as cross-
domain recommender systems. These systems are specifically
designed to provide recommendations in a target domain using
information extracted from a source domain. However, the
most crucial concern in cross-domain recommender systems is
how to extract common knowledge that can be shared between
the two domains.

The methods for knowledge extraction and transfer are
different depending on whether and how the entities in each
domain overlap. Existing cross-domain recommender systems
usually assume that either none of the entities are common to
both domains, or they all are with full one-to-one mapping.
Non-overlapping methods tend to extract shared knowledge
based on collective group-level user behavior. Although many
of these methods have been designed to suit specific situations,
they cannot integrate knowledge from an overlapping entity
once new information becomes available. In fully-overlapping
methods, the original source and target rating matrixes are
collectively factorized, then the entities’ features are extracted.
Constraints on each entity ensure these features are exactly the
same in the source and target domains so they can act as a
bridge for knowledge transfer. However, practical situations
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Fig. 1. Different scenarios of overlapping entities.

rarely satisfy the “all” or “none” overlap assumption; rather,
they fall somewhere in between as shown in Figure 1. In
fully-overlapping methods, information about the overlapping
entities is used to establish constraints between two domains.
These constraints usually relate to the entities’ features. How-
ever, even with the same user, there may be small differences
in item rating patterns between two different domains, and this
is called domain divergence. If the entity feature constraints
are not handled delicately, knowledge transfer will suffer and
reduce the accuracy of the predictions.

Hence, cross-domain recommendation systems present the
following challenges: 1) Feature inconsistency caused by data
sparsity. Typically, there are no explicit features, only extracted
latent features. And the observed sparse ratings do not fully
represent a user’s preferences, so features extracted from the
same user in two different domains will be inconsistent. Thus,
constructing an appropriate feature space is very challenging.
2) Feature inconsistency caused by domain heterogeneity.
Extracted latent features from an overlapping entity can be
aligned through domain adaptation techniques. But extracted
latent features from non-overlapping entities lack a direct
correlation and their features are heterogeneous. 3) Partially
overlapping entities. The number of overlapping entities can
account for a very small part of the total number of entities
in the target domain. Whether transferring knowledge through
a small number of overlapping entities is effective, and what
the shared constraints should be, remain unsolved problems.

In this paper, we propose a cross-domain recommender
system with kernel-induced knowledge transfer (KerKT) as a
knowledge transfer method to improve recommendation per-
formance with partially overlapping entities. We first factorize
the rating matrixes separately to construct the user and item
feature matrixes. To avoid divergence in the feature space
caused by data sparsity, we propose a domain adaptation
method to adjust the feature spaces through the overlapping
entities. Then, we use a diffusion kernel to construct a full and
complete entity similarity matrix, so the similarity measures
can be used in heterogeneous settings. Finally, we use a more
flexible constraint to jointly factorize the source and target
rating matrixes. The main contributions of this study are as

follows:

1) A domain adaptation method that aligns the feature
spaces of overlapping entities. The method matches the
features of each overlapping entity acquired from two
different domains. The overlapping entities are projected
onto the same subspace to ensure consistency between
the representations. Feature divergence caused by data
sparsity is eliminated.

2) A kernel-induced completion method for computing
entity similarities in heterogeneous situations. Feature
divergence caused by domain heterogeneity is eliminated
and domain connection is reinforced. This means the
similarities between entities can be determined through
a modest amount of overlapping entity data.

3) A new matrix factorization method with constraints
that integrates the intra-domain and inter-domain entity
correlations acquired from overlapping entities. The two
rating matrixes are collectively factorized sharing inter-
domain knowledge while retaining their own domain-
specific characteristics. The constraints are more flexible
than previous methods and ensure that more useful
knowledge is transferred to the target domain.

4) An adaptive knowledge transfer method, called KerKT,
that addresses partially overlapping entities - the most
common scenario in practice. Extensive experiments
were conducted on four real-world datasets, each with
three different sparsity ratios. The results show that
KerKT alleviates the impact on recommendation caused
by data sparsity and transfers knowledge even when
there are only a few overlapping entities.

The remainder of the paper is organized as follows. A
review of work related to cross-domain recommender systems
is provided in Section 2. Section 3 introduces the preliminaries
and formally defines the problem to be solved. In Section
4, we present the KerKT method. Section 5 contains the
empirical experiments. We evaluated four tasks on four real-
world datasets with three data sparsity ratios and three different
levels of overlapping entities. The results show that our method
performs better in prediction accuracy than six existing non-
transfer and cross-domain methods. Lastly, the conclusion and
directions for future study are provided in Section 6.

II. RELATED WORK

In this section, we review related work on both kernel-based
and cross-domain recommender systems.

A. Kernel-based Recommender Systems

In recommender systems, non-linear interactions between
users and items are modeled using kernels. Integrating kernels
into a matrix factorization framework, which is a linear
combination of the inner product of a user factor matrix
and an item factor matrix, provides a more general and
more flexible method for updating online models [16]. In
[17], Lawrence and Urtasun adopted a Mercer kernel to a
non-linear Gaussian Process (GP) model. Ghazanfar et al.
[18]incorporated meta data, such as genres and descriptions
into the matrix factorization framework, along with kernels
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to solve cold-start problems. Coifman and Lafon [19] used
diffusion maps to find representations of data with geometric
meanings. Diffusion kernels are a special class of exponential
kernels based on the heat equation, which aim to measure the
similarities between vertexes or nodes when applied to graphs
[20]. However, graph-based diffusion kernel completion is
seldom used when dealing with recommendation issues.

B. Cross-domain Recommender Systems

Cross-domain recommender systems can be divided into
three categories: 1) cross-domain recommender systems with
side information; 2) cross-domain recommender system with
non-overlapping entities; and 3) cross-domain recommender
systems with fully-overlapping entities.

1) Cross-domain recommender systems with side informa-
tion: In this category, it is assumed that some side information
about the entities is available. This information might be
user-generated information, social information, or the items’
attributes. Collective matrix factorization (CMF) [21] is de-
signed for scenarios where a user-item rating matrix and an
item-attribute matrix for the same group of items are available.
The two matrixes are collectively factorized by sharing the
item parameters since the items are the same. The Tagicofi
method [22] uses the user-item rating matrix and the user-tag
matrix for the same group of users. User similarities extracted
from shared tags are used to assist matrix factorization of the
original rating matrix. On that basis, TagCDCF [23] extends
Tagicofi method to two-domain scenarios, each containing the
data of those two matrixes. By integrating the intra-domain and
inter-domain correlations and matrix factorization simultane-
ously, TagCDCF improves recommender system performance
in the target domain. In addition to using user-generated
tags, hybrid random walk (HRW) [24] bridges cross-domain
knowledge through social information.

2) Cross-domain  recommender  systems with non-
overlapping entities: This category covers methods that
handle two domains with non-overlapping entities and
transfer knowledge at the group-level. Users and items are
clustered into groups and knowledge is shared through group-
level rating patterns[25]. For example, Codebook Transfer
(CBT) [26] clusters users and items into groups and extracts
group-level knowledge as a ‘codebook’. A probabilistic
model, called the rating matrix generated model (RMGM)
[27], was subsequently extended from CBT, relaxing the hard
membership in groups to soft membership. Neither of these
methods ensure that the shared information between two
groups in different domains is consistent, so the effectiveness
of the knowledge transfer is not guaranteed. Consistent
information transfer (CIT) [28] relies on a domain adaptation
technique to extract consistent knowledge from the source
domain. This method is superior, especially when the data
statistics between the source and target domains are divergent.

3) Cross-domain recommender systems with fully overlap-
ping entities: These systems assume that the source and target
domains share some common entities. These overlapping
entities are used as a bridge, with constraints, to transfer
knowledge. Transfer by collective factorization (TCF) [29] was

developed to use implicit data in the source domain to help
predict explicit feedback in the target domain, such as ratings.
However, the assumptions in TCF are very strict - users and
items must have a one-to-one mapping across the domains.
So, while this method is able to deal with heterogeneous
data, its strict assumptions limit the scope for these types
of applications in practice. Cross-domain triadic factorization
(CDTF) [30] is a user-item-domain tensor that integrates both
explicit and implicit feedback. It assumes that users are fully
overlapping and that the user factor matrix is the same,
thus bridging the domains. Cluster-based matrix factorization
(CBMF) [31] tries to extend CDTF to partially overlapping
entities, but the core of the CBMF method is the same as for
non-overlapping entities, which transfers knowledge based on
groups rather than using the overlapping entities as a bridge.
Beyond the cross-domain recommender systems mentioned
above, there are some other works related to this study. Since
entity correspondence is not always fully available, some
strategies have been developed to match users or items across
two domains. Li and Lin [32] used latent space matching,
to identify unknown user/item mappings. Sometimes, the
identifying mappings is time-consuming; hence, Zhao et al.
[33] developed an active-learning framework to identify the
most valuable correspondences between entities. The process
of identifying entity correspondence is not included in this
paper, as our problem assumes that only a small number of
overlapping entities exists. In summary, methods developed
specifically for partially-overlapping entities are rare. In this
paper, we introduce KerKT to fill the gap in the literature
between fully-overlapping and non-overlapping scenarios.

III. PRELIMINARIES AND PROBLEM FORMULATION

Matrix factorization is one of the most popular techniques
used in recommender systems [34]. In this section, a matrix
factorization view of the recommender system in one domain
is given to clearly describe the problem setting. The problem
under study in this paper is then formulated.

A. A Recommendation Task based on Matrix Factorization in
One Domain

Suppose there are M users and N items in one domain, the
relationship between users and items is given as X € RM*N
(bold letter represents a matrix). If a user’s preferences are
represented as ratings, then X is a rating matrix where X
is subject to X;; € {1,2,3,4,5,7} (“?” denotes a missing
value). By minimizing its Euclidean distance to the original
rating matrix X [34], X is approximated by

X=UvT (1)

Thus, U € RM*K ig the user feature matrix and V' € RV*K
is the item feature matrix, which are two low-rank matrixes
for users and items, respectively. The ith user and jth item
are represented by the ith and jth row of the two matrixes
as U and Vj,. After matrix factorization, the users and
items are mapped to a latent factor feature space of a lower
dimensionality K.
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The recommendation task is to predict the missing values
in the rating matrix based on historical records of the users’
preferences. Since the rating matrix X is usually extremely
sparse, it is easy to overfit the low-rank approximation ma-
trix factorization. Regularization is usually used on low-
rank feature matrixes to avoid this problem. In general, the
optimization problem is:

min L(f(U,V),

s

X)+ AR(U,V) (2)

where L is the loss function of the predicted ratings f(U, V')
and the original ratings X, R(U,V) is the regularization
term, and A > 0 is the regularization trade-off parameter. Sim-
ilar to probabilistic matrix factorization (PMF), the objective
function to measure the loss with regularization terms and a
Frobenius norm is [35]:

J(U,V)—*HIO(X UVT)I\F+*||UIIF+ SIVIE 3

where I is the rating indicator matrix, I;; € {0, 1}. Iy =1
indicates that the rating is observed, or I;; = 0 otherwise. o
denotes the Hadamard product of the matrixes.

B. Problem Definition

The problem in this paper is based on the assumption that
ratings in the target domain are very sparse. This raises the
question of how to use relatively dense data in the source
domain to assist a recommendation task in the target domain
with overlapping entities. In practice, corresponding entities
are not usually easy to identify. Typically, there are many
unique entities between different datasets or platforms and
only a few common entities. Thus, in this problem setting,
the entities partially overlap. Only a small proportion of
the entities in the target domain matrix X, have observed
correspondences in the source rating matrix X. Even though
the entities represent the same user and/or item, the rating
a user has given or the rating an item has received can be
different in each domain. The overlag)pmg entity indicator
matrix is represented by W (4, W(g Y e {0,1}. ij’t) =1
indicates that the ¢th entity in the source domain is the same as
the jth entity in the target domain, and Wi(;’t) = 0 otherwise.
Without loss of generality, we require the rating rows of
overlapping users to be at the top, and the corresponding users
are in the same rows in both matrixes. This is achieved by
permuting the rows of the original rating matrixes. Thus, the
form of the entity indicator matrix W () is:

I, 0O
(s,t) — o
weo =[]

where I, is an identity matrix of the same dimension as
the number of overlapping entities. This problem of partially-
overlapping entities in cross-domain recommender systems is
formally defined in the following: Given a source rating matrix
X, € RMsXNs and a target rating matrix X, € RMexNe g
cross-domain recommender system based on partially over-
lapping entities is to assist with recommendation task X, =
U;V," through an auxiliary source rating matrix X and an
overlapping entity indicator matrix W (*:*)

IV. A CROSS-DOMAIN RECOMMENDER SYSTEM BY
KERNEL-INDUCED KNOWLEDGE TRANSFER

This section introduces our KerKT method. The overlapping
entities in each domain may be either users or items. For
the purposes of this presentation, we have assumed the users
overlap. Overlapping items are handled in the same way and
have, therefore, been omitted from this paper. The section
begins with an overview of the entire method, then each of
the five steps is explained in detail, followed by a small scale
example for greater clarity.

A. KerKT Method Overview

To enable knowledge sharing between the source and target
domains with overlapping users, constraints on the user feature
matrixes are added to the collective matrix factorization of the
source and target rating matrixes. Previous research assumes
‘identical’ factor matrixes for overlapping entities, but this
assumption is too limiting to satisfy in practice. Instead, we
have chosen to constrain the similarities between the entities
in each domain as a bridge for knowledge transfer. However,
while it is easy to measure the similarities between entities
in the same domain, inter-domain entity similarities cannot be
computed directly.

The overlapping entities are mapped to the same feature

space through domain adaptation techniques, while the non-
overlapping entities are connected by diffusion kernel comple-
tion. Thus, the similarities between all users in both domains
can be measured. Further, constraining the user features using
these similarities may lead to a better optimization result. The
optimization problem is formalized as:
51)1‘1} LU, V), X)+ARU,V)+ AR (U) (&)
where R, (U) is the regularization term for the entity similar-
ity constraints derived from overlapping users, and A, > 0 is
the regularization trade-off parameter.

The KerKT method consists of five steps, as shown in
Figure 2. 1). The user features and item features are extracted
separately from the source and target domains, and the two sets
of user features are aligned to the same feature space through
overlapping users. 2). The item features are regulated accord-
ing to the original rating matrixes and the aligned user feature
matrixes. 3). The user and item feature matrixes resulting from
the previous two steps are used to measure the user and item
similarities in one domain. 4). Kernel-induced completion is
conducted to measure the inter-domain user similarities. 5) The
user/item features are re-trained based on the constraints of the
entity similarities, then recommendations are made. We have
selected a specific algorithm to perform each step, but other
suitable feature extraction or domain adaptation algorithms
could be used as substitutes. The proposed domain adaptation
method is contained in Step 1 and 2, while the kernel-induced
completion method is contained in Step 3 and 4. The matrix
factorization method, with constraints on both intra-domain
and inter-domain entity correlations, is contained in Step 5.

B. KerKT Method

Our proposed KerKT method comprises five steps.
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Fig. 2. The procedure of KerKT method.

1) Step 1: Extracting and aligning user features in both
domains: In this step, the source rating matrix X and target
rating matrix X, are separately factorized, which results in
the user feature matrix U, for the source domain and U,
for the target domain. Recall that the users in the source
and target domains partially overlap. Accordingly, each user
feature matrix can be divided into two parts: one containing the
overlapping users; the other containing non-overlapping users.
The overlapping user feature matrix for the source domain is
denoted as U ,,, and U ,, denotes the non-overlapping matrix.
The same goes for the target domain i.e. Uy, and Uy ,,.

Assuming the overlapping users have similar tastes or pref-
erences in both domains, we can use them as a bridge to trans-
fer knowledge. However, as mentioned in the Introduction,
even the same user’s rating patterns may not be completely the
same in the two different domains. Data sparsity exacerbates
this condition and may lead to two different factorized user
feature vectors with different physical meanings. Hence, set-
ting the similarity of the overlapping user entities to 1 may lead
to inaccurate similarity measurements, which would eventually
negatively impact the effectiveness of the knowledge transfer
in the following steps. Therefore, before using the entity
correspondences as a strong condition, we need to ensure that
the overlapping users in both domains are represented in the
same feature space. This is referred to as “subspace alignment”
in transfer learning.

The aim is to map the user feature spaces of two overlapping
users into a common subspace where domain shift has been
eliminated, so the overlapping users ultimately share the same
feature space across both domains. In the source domain,
the jth column of the overlapping user feature matrix is the
representation of the jth user feature. We use a marginal
probabilistic distribution of the jth column to represent the
characteristics of the user features in each matrix. Thus, the

goal is to minimize the differences between the marginal prob-
abilistic distributions of the user features for the source domain
and the target domain. If the marginal probability distributions
of one user feature are the same in both domains, then the
two user features are considered to have the same physical
meaning. In this way, we can align the two user feature
spaces. In our previous research, we provided a definition for
information consistent tri-factorization. However, here, since
the scenario and the matrix factorization model are different,
this definition has been refined into a definition for consistent
matrix factorization with partially overlapping users in the
following.

Definition 1 (Consistent Matrix Factorization with Partially
overlapping Users). Given a source rating matrix Xy €

RMsxNs and a target rating matrix X, € RM«*N: X, and
X; can be factorized as follows:
US o
gy e
Uto
el

where U , and U, , are the overlapping user feature matrixes
in the source domain and the target domain, and U ,, and U, ,,
are the non-overlapping user feature matrixes, respectively.

If both factorizations satisfy the following equation, then
they are consistent matrix factorizations:

P(Us,O) = P(Ut,O) )

where P(Us ) and P(U, ,) represent the marginal probability
distribution of U , and Uy ,. Thus, the user feature spaces in
both the source and target domains are aligned.

To solve a matrix factorization optimization problem that
satisfies the above constraints is almost impossible. However,
according to Definition I, a mapping function for those two
matrixes can be found to achieve the following equation:

P(T,(UQ.U)) = P(B, U0, U")  ®

5,0 8,0

A geodesic flow kernel (GFK) is a domain adaptation strategy
to find a space that two different feature spaces can be
projected into, thus eliminating the divergence of two distribu-
tions. We can use this strategy to find a mapping function to
align the two user feature spaces formed by overlapping users.
Once the GFK operators W4 (U; () Ut )) are determined, they
can be used through the followmg mapping functions:

v, U0 U") =0 x U UL) O

v, (U0, U") =0 x e, u) 0
where W g ( s((i,), Ut(o)) are the GFK operators. More details
can be found in [28], [36] .

With the divergence eliminated through these mappings, the
new representations of the overlapping users will satisfy the
conditions in Definition I. Non-overlapping users also need
to be projected onto the same feature space. The mapping
functions W4 and W, are used for this purpose.

(1)
12)

v, (U©, U
v, (U",U)

vt =
U =
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where U§1) and Ut(l) are the aligned user feature matrixes
after mapping, and ¥, and ¥, are the mapping functions
using GFK.

How the new user feature spaces are derived and how Us(l)
and Ut(l) are learned is summarized in Algorithm 1.

Algorithm 1 Consistent User Feature Extraction
Input:
X, the source rating matrix;
X, the target rating matrix;
ijs’t), the overlapping user indicator matrix;
Output:
Us(l), the aligned user feature matrix in source domain;
Ut(l), the aligned user feature matrix in target ((i(gmain;

. .U
1: Factorize X and get user feature matrix (Uzgj)
s,n

) as in
equation (3)
(0)

t,o

2: Factorize X; and get user feature matrix (U(’O)) as in
t,n

equation (3)
3: Obtain GFK operator ¥ ¢(U{% 7U,f(f(),)) as in equation
(A.2) in [28]
4: Obtain mapping functions ¥4 and ¥, as in equation (9)
5. return UV and Ut(l)

2) Step 2: Item feature regulation in both domains: In
matrix factorization, the user feature matrix and the item
feature matrix are both low-rank matrixes that map users
and items to the same k-dimensional feature space. So, once
the user feature spaces are aligned, the item feature matrixes
should be regularized to the new k-dimensional feature space.
The new item feature matrixes are obtained by minimizing the
distance between the approximations of the low-rank matrixes
and the original data in the rating matrix. A Frobenius norm
is used to measure the distance. The cost function of source
domain matrix follows, the target domain matrix has the same
form:

Av,

T
)HF+7

1
Ty (V) = S o (Xs U (V)

S

Vg

13)
where Ay, is the regularization parameter. The item feature
matrixes are learned by optimizing:

min J,(VD)

(14)

Gradient descent is used for this optimization. The update rule
is:

VO e VO =, [(ODVD) = X)UD + a0, V)]
‘ (15)
where the learning rate is 7, . Vt(l) can be obtained through
the same process.

This step is summarized in Algorithm 2.

3) Step 3: Entity similarity measures in one domain:
This step calculates the user and item similarities in one
domain. Since the rating matrix is very sparse, making this
calculation directly from the rating matrix can lead to inac-
curate results. Hence, using the PMF formulation introduced
in Section III-A, one rating X,; is generated from a user
latent feature vector U;, and an item latent feature vector

Algorithm 2 Item Feature Regularization
Input:
X s, the source rating matrix U, 8(1), the user feature matrix
Output:
V;(l), the regularized item feature matrix
1: Initialize V;(l) € RN-XE TInitialize J,(V;) and
T, (V) (Pre)
2. while J,(V,)®r¢) — J,(V,) > ¢ do
30 J(VO)@) = J,(Vy)
4.  Update V; as in equation (15)
5
6
7

Update J,(V;) as in equation (13)
: end while
. return V;(l)

V.;. Thus, the source rating matrix and target rating matrix
can be factorized as X, = USVST and X; = UtVtT. This
is a dimensionality reduction and data compression process as
users/items are mapped to a lower k-dimensional feature space
(usually £ < M,k < N). Once complete, users and items
are represented as full k-dimensional feature matrixes, and
the user/item similarities can be calculated from the user/item
feature matrixes.

Similarity measurements are easy with user and item feature
spaces in one domain since the feature spaces are homoge-
neous. And there are many suitable choices for performing
these calculations, such as cosine similarity, Pearson’s simi-
larity, Euclidean measurement, or the RBF measurement. The
choice depends on the situation and the characteristics of the
domain. For example, cosine similarity is very popular and
effective for word count and text similarity measurements
due to the advantages of using angles rather than distance.
Pearson’s measurement tends to be more effective in memory-
based collaborative filtering methods owing to its emphasis on
averages. In this problem, we are measuring user similarity
from a user feature matrix where the feature values are real

numbers, so the following RBF measurement is the most
. MU= 012 )
appropriate: W;; = e a2 , where o is set to be the

median of all the non-zero values calculated by ||U;, — Uj.||%.

4) Step 4: Kernel induced completion of inter-domain user
similarity: In inter-domain user similarity measurement, the
user feature spaces are not the same and the user features
are heterogeneous, which means their similarities cannot be
calculated directly. However, given the first three steps, some
user similarities between the source and target domains are
now known. The overlapping entity indicator matrix W (*:*)
contains the observed overlapping user information. Hence, a
full user similarity matrix can be constructed as:

Wl(LSyS) W’LES7t)

W, = Wét,s) qut,t)

(16)

where W% and W"" represent the user similarities in
the source and target domains, respectively, and qus’t) =
(Wét’s))T represents the inter-domain user similarities.

As in Step 2, the two feature spaces of the overlapping users
are aligned to eliminate feature space divergence. Therefore,
it is reasonable to set the similarity of observed overlapping
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users to (Wés’t))ij =1 in W&, For now, the similarities
between the overlapping users are the only known entries
in the inter-domain similarity matrix. We need to complete
W,Ss’t) using the information from W,,. Note that, here, the
non-overlapping users and their features are heterogeneous.
Thus, their similarities cannot be computed directly.

This matrix completion problem has a strong connection to
a bipartite edge completion problem [37]. In Step 3, the user
similarities are all measured within one domain. As a result,
we have fully connected nodes in the graph representations of
both the source and target domains, as indicated by the red and
blue nodes in Figure 3. The overlapping users are shown as
purple nodes in the graph, and they act as “bridge” to couple
the two graphs. To complete the user similarity matrix W,
requires filling in all the edges from the entire graph. The
subscript v has been omitted to simplify the notation.

In network propagation, a random walk is a good way to
reach to all the nodes. As shown in Figure 3, one user entity,
denoted as a node x in the source domain, is fully connected
with all the other node in the source domain W,g;’s), p E Us,
so does node y in the target domain ngfl’t),q € U;. If node
p in the source domain and node ¢ in the target domain are
overlapping users, i.e. they are the same user, then ngg’t) =1.
The two nodes z and y are connected and their similarity
can be calculated as: ngfjt) — Wéf,"q)W]S;’t)Wéé’t). By
aggregating all the nodes connected to x in the source domain
and y in the target domain, the edge can be completed with:
Wé;’t) — > ngf)’s)W,S;’t)WéZ’t). In a matrix form,

L. . peUs qeUsy
this is written as:

W(Svt)v(l) — W(Svs)W(Svt)W(tvt) (17)

The above equation can be treated as a one-step random walk
from both the source domain and the target domain. Generally,
M steps of random walk are taken in total from the source
and target sides, and all the possible steps are added together
to complete the final graph:

M
WD) - 3

( )(‘17(575))1(“7(5,0(“r(t,t))M—K
K=0

(18)

However, the goal in this problem is to find all the sim-
ilarities between all the users in both domains. Therefore, a
finite number of random walk steps may not identify all the
possible relationships, but it would be more likely to associate
all the indirectly connected users if /K was infinite. Hence, the
diffusion kernel completion method [38] is used to complete
the user similarity matrix:

wst — e(ﬂsW(S’”))W(S»t)e(ﬂtW(t’”) (19)

where (s and [; are two positive scalars to regulate the
weights of the source and the target domains.

5) Step 5: Collective matrix factorization with user simi-
larity constraints: With all similarities measured and all the
pairs of nodes connected, a fully connected graph can be
constructed. A very common strategy for increasing compu-
tational speed is to remove edges, leave a sparse graph. This

overlapped user node

user node in source domain

user node in target domain
— user similarity in source domain
user similarity in target domain
overlapped user in two domains
- user similarity

Fig. 3. Graphical view of user relationships in source and target domains

approach tends to achieve better performance empirically as
it emphasizes local information with high similarity while
ignoring information that is likely to be false. Hence, the &
nearest neighbors of each node are retained in a similar way
to the original memory-based collaborative filtering strategy.

In the scenario of this paper, only overlapping users are
observed but items are non-overlapping. The users have both
intra-domain and inter-domain similarities, but the items only
have intra-domain similarities. Based on the assumption that
“similar users have similar tastes and will thus choose similar
items to consume”, both the intra-domain and inter-domain
similarities are used to constrain the proposed matrix factoriza-
tion as prior knowledge. In terms of intra-domain similarities,
although the data in the target domain are very sparse, they
are still very valuable for measuring the similarities between
users/items so as to constrain the matrix factorization. As for
inter-domain similarities, users in target domain are not only
correlated to users in their own domain but also in the source
domain via the overlapping users. As a consequence, users
in the source domain with similar preferences to users in the
target domain are transferred as knowledge to improve the
performance of the recommender system.

The constraints result in users who are similar tend to have
similar latent factors. We have used the regularization form in
[22]:

Ro(U) = tr(UTLU) (20)
where L denotes a Laplacian matrix, and L = D —-W. W is
the user similarity matrix, and D is a diagonal matrix defined
as D“‘ = Zj W”

Note that, although the form of regularization is quite
similar, our method is different to [33]. In [33], the similarities
between entities in the source domain are directly used in
the target domain as prior knowledge without considering the
inconsistencies between the features in each domain. By con-
trast, in our method, the similarities between entities in target
domain are learned through the domain adaption technique,
which ensures the features are consistent, and through the dif-
fusion kernel technique, which makes the similarity constraints
more accurate and complete. Our proposed constraints are
both more flexible and more reasonable to satisfy in practice.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

This goal is achieved by minimizing the following objective
function:

«
f(Usa‘/s,Uta‘/t) = aHIS o (XS - US‘/ST)HF

1
+ §||It o (X: —UV)|lF

Au

+ St (U LEIUL) + (U LGV 0)

+tr (UL (LU, + tr(UF LU,
Av -

+ 2 (VILEV) + tr(VTLED V)]

+ 5UUsllr + IVelle + 1T e + [ Vil F)

21

N> o

where tr is the trace of a matrix, & € (0,1) is trade-off
parameter to balance the source and target domain data, and
Au» Ay and A, are the regularization parameters to control
the influence of the constraints on the user similarities, item
similarities and algorithm complexity. Details on how these
parameters affect the proposed method are presented in Section
V. Using gradient descent, the objective function is minimized
with the following update rules:

U; Us_nus [a(Us‘/sT - X,)Vit+

. Mu y (s
MLEPU, + ?Lgf’t)Ut + \U,] (22)
Vi < Vi, [a(V.UI — XDU, + N\ LIV, + AU
(23)
U, < U=, [(UV," — X,)Vi+
Ay
M LEOU, + ?(ng»”)TUS + \UY (24)

Vi = Vi, (ViU = XU, + ALYV, + AU
(25

By updating U, Vi, U, and V; iteratively, we arrive at a
final optimized approximation of X, =U, V,T'. Recommenda-
tions are given according to the rating prediction in the target
domain.

C. A Small-scale Example

To better illustrate our method, this subsection outlines
a small-scale example. Suppose the source domain of a
recommender system contains five users, denoted as U; =
{u1,u9,us,uq,us}, and nine items, denoted as Z, =
{i1,12,13,14, 15, %6, i7, s, Ig }. The target domain contains six
users, denoted as U; = {ug,ur,us, ug, u19,u11}, and nine
items, denoted as Z; = {j1,j2,73, 74,5, J65 J7, J8, jo +- Four
of the nine items in the source domain ¢, 77, is, t9 correspond
to four of the nine items in the target domain - ji, jo, j3, ja
respectively as shown in Fig. 4.

Step 1: Extracting and aligning features: With the lower-
dimension K set to 4, the source rating matrix X and target
rating matrix X, are factorized into user feature matrix and
item feature matrix according to (5) respectively. Then, the
features of the overlapping items are projected onto the same
feature space using GFK. V; , and V;, are used to find the

proper projection matrix, and the item feature matrixes VS(O)

0/4
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g. 4. A small scale example.
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User
(a) Distribution lomain adaptation

Fig. 5. An example of domain adaptation on user feature matrix with Netflix
dataset.

and ‘Q(O) are transformed into Vs(l) and V;(l). The example
in Fig. 5 illustrates the domain adaptation process using GFK.
In this small-scale example, there is not sufficient data to
generate meaningful distribution. Therefore, we have used the
result and item feature matrixes from our Task 2 experiment
in Section V. Fig. 5 (a) shows the distribution of one item
feature for the items that overlap in the source and target
domains. It is apparent that a divergence exists between these
two distributions. Fig. 5 (b) shows the adjustment to the feature
after domain adaptation. Here, the feature distributions for the
source domain and the target domain are far better aligned.

Step 2: Item feature regulation: Us(l) and Ut(l) are updated
according to (13).

Step 3: Similarity measures: This step shows how the item
similarity matrix W,, is calculated, given that item overlaps
exist in our example. With item feature matrixes from the
source domain and the target domain, the item similarity in
the same domain can be calculated directly through RBF
measurement. Together with the overlap information, the item
similarity matrix W, is

WISS,S)y Wv(s7t)

W, =
qut,s)7 Wu(t,t)

where

1 0.859  0.930
0.859 1 0.808
0.930 0.808 1
0.842  0.934
0.301 0.345
0.731 0.831
0.870 0.924
0.446 0.510
0.630 0.542

0.842
0.934
0.787 0.281
0.787 1 0.356  0.868
0.281 0.356 1 0.410 0.345 0.193
0.684 0.868 0.410 1 0.833 0.466
0.810 0.949 0.345 0.833 1 0.512  0.555
0.416 0.529 0.673 0.608 0.512 1 0.286
0.668 0.535 0.193 0.466 0.555 0.286 1

0.301
0.345

0.731
0.831
0.684

0.870
0.924
0.810
0.949

0.630
0.542
0.668
0.535
W =
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1 0.997 0.991 0.997 0.995 0.996 0.986 0.988 0.987
0.997 1 0.991 0.994 0.995 0.998 0.989 0.991 0.989
0.991 0.991 1 0.994 0.996 0.992 0.982 0.982 0.994
0.997 0.994 0.994 1 0.997 0.995 0.984 0.985 0.989

VVISM): 0.995 0.995 0.996 0.997 1 0.996 0.986 0.986 0.992
0.996 0.998 0.992 0.995 0.996 1 0.989 0.990 0.990
0.986 0.989 0.982 0.984 0.986 0.989 1 0.995 0.984
0.988 0.991 0.982 0.985 0.986 0.990 0.995 1 0.982
0.987 0.989 0.994 0.989 0.992 0.990 0.984 0.982 1

[0 00 00000 O
000000000
000000000

, 000000000
wi — (w9 = 1o 0 0 0 00000
10000000 O
010000000
001000000
00010000 O

Step 4: Kernel induced completion: The similarity matrix
Wﬁs’t) is completed according to (19). In more detail, the
low-rank eigen-decomposition for both Wv(s’s) and ngt’t) is:

(s,s)
€<5SW” ) ~ Qse(ﬁsDS)QZ
LBWED) L, QelPiD) QT

where D, and D, are the kg, k; leading eigen-values for
w ) and W and Q. and Q; are the corresponding
eigenvalues. Diffusion completion is then conducted as

W) = (Que P PIQI W (Que " PIQT)

The final result of W{*" in this example is:

0 0 0 0.003 0 0 0 0 0
0.004 0.004 0 0 0 0 0 0 0
0 0 0 0003 0 0 0 0 0
0.004 0.005 0002 0 67x107° 6.7x105 6.7x10° 6.7x10° 6.7 x 10°
wi = | o 0 0003 0 0 0 0 0 0
1 0009 0008 0.007  0.005 0.005 0.005 0.005 0.005
0009 1 0007 0.007  0.005 0.005 0.005 0.005 0.005
0.008 0.007 1 0006  0.005 0.005 0.005 0.005 0.005
0.007 0.007 0006 1 0.005 0.005 0.005 0.005 0.005

Step 5: Collective matrix factorization: With the user and
item similarity matrix available, the target rating matrix is
approximated as indicated in (21) and recommendations can
be given accordingly.

V. EXPERIMENTS AND ANALYSIS

This section presents the experimental results and related
analysis. The datasets and evaluation metrics are introduced
first, followed by the experimental settings and baseline meth-
ods. Then, we present the results of the empirical experiments,
with a parameter analysis to conclude the section.

A. Datasets and Evaluation Metrics

Our method was tested under the conditions that the source
and target domains share some overlapping users and/or items.
For a fair comparison, we chose movies and books as the
recommendation subject - two commonly-used categories in
previous research on cross-domain recommender systems.
Four real-world datasets were used in our experiments: Movie-
lens', Netflix2, AmazonBook® [39] and Douban®* [40]. Each
of these datasets is publicly available and has been tested on

Uhttps://grouplens.org/datasets/movielens/20m/
Zhttps://netflixprize.com/index.html
3http://jmcauley.ucsd.edu/data/amazon
“https://sites.google.com/site/erhengzhong/datasets

TABLE I
STATISTICS OF ORIGINAL DATASETS

Movielens20M  Netflix Amazon_book  Douban_movie = Douban_book
#user 138493 480189 8026324 28718 26877
#item 26744 17770 2330066 57424 187520
#rating 20000263 100480507 22507155 2828585 1097148
sparsity 0.54% 1.18% 0.0001% 0.17% 0.02%
rating_range  0.5-5 1-5 1-5 1-5 1-5

single domain recommendation in a variety of situations, but
rarely in cross-domain recommendation. Our experiments are a
supplement to the lack of tests in this specific problem setting.
The statistical information for these datasets is presented in
Table 1.

From AmazonBooks, we removed all users who had given
exactly the same rating for every book, as these data are
not effective for constructing a recommender system [28].
Movielens20M was normalized to the range of {1,2,3,4,5}.
Four cross-domain recommendation tasks were designed for
experiments: Task 1: movie — movie, user-overlap, Movie-
lens20M; Task 2: movie — movie, item-overlap, Netflix; Task
3: book — book, item-overlap, AmazonBook; Task 4: movie
— book, user-overlap, Douban.

In the first three tasks, we used the data from one dataset and
split the entities into the source domain and the target domain
to simulate entity overlaps. The fourth task was designed for
Douban, a real-world rating website where users can rate
movies, books, and music. We now turn to Task 1 as an
example to describe how the data was selected. The process
for Task 2 and Task 3 was similar but with overlapping items.
With the source domain data, we filtered out the users who
had given less than a total of 20 ratings and items who had
received less than 10 ratings. We randomly selected 2000 items
and 2000 users, constraining the sparsity to 2% to ensure the
source domain data were relatively dense. In the 2000 users,
we randomly chose 200 users as overlapping users. We then
randomly selected 1800 users with no correspondence to the
2000 users in the source domain. In total, these users com-
posed the 2000 users in the target domain data. Additionally,
we also randomly chose 2000 items for the target domain data
that had no intersections with items in the source domain.
We tested the target domain data with three sparsity ratios to
compare the different algorithms in different circumstances.
The details of the final datasets are summarized in Table II.

Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) were used as evaluation metrics:

Xuw — X
MAE — Z | uv uvl
UV, Xyup €Y |Y|
Xu’u - Xuv 2
RMSE = > ( % )
U0, Xyp €Y | ‘

where X, and Xw are the true and predicted ratings, Y is
the test set and |Y'| is the number of the test set. The smaller
the errors, the better the performance.
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TABLE II
DESCRIPTION OF DATA SUBSETS FOR FOUR TASKS.

Task Data_name  Data_source Domain  Sparsity  No. of overlapping
task1_sl Movielens20M  source 2.00% 200, 100, 50
task1_tl Movielens20M  target 0.50% 200, 100, 50
Task 1 (a1 2 Movielens20M target 1.00% 200, 100, 50
task1_t3 Movielens20M  target 1.50% 200, 100, 50
task2_sl Netflix source 2.00% 200, 100, 50
task2_tl Netflix target 0.50% 200, 100, 50
Task2 a0 2 Netflix target 1.00% 200, 100, 50
task2_t3 Netflix target 1.50% 200, 100, 50
task3_s1 AmazonBook source 2.00% 200, 100, 50
task3_tl AmazonBook target 0.50% 200, 100, 50
Task 3 t4k3 2 AmazonBook target 0.63% 200, 100, 50
task3_t3 AmazonBook target 0.75% 200, 100, 50
task4_s1 DoubanMovie source 2.00% 200, 100, 50
task4_tl DoubanBook target 0.50% 200, 100, 50
Task 4 (3k4 2 DoubanBook target 1.00% 200, 100, 50
task4_t3 DoubanBook target 1.50% 200, 100, 50

B. Experimental Settings and Baselines

Three non-transfer learning methods were chosen for com-
parison: Pearson’s correlation coefficient (PCC) [41], flexible
mixture model (FMM) [42] and PMF [35], along with three
cross-domain recommendation methods, CBT [26], RMGM
[27], and probabilistic matrix factorization transfer learning
(PMFTL) [33]. PCC is a classical memory-based collaborative
filtering method. FMM is a graphical model designed to allow
one user/item to be clustered into several groups simultane-
ously. Empirically, FMM has been proven to be more effective
in providing recommendations to users with few historical
ratings. RMGM is a cross-domain recommendation method
that evolved out of the single domain FMM. CBT is also a
cross-domain recommendation method. Both of these methods
were designed for scenarios with no overlapping users or
items. PMFTL is a transfer learning method for cross-domain
scenarios with entity overlap as proposed in [33]; However, for
a fair comparison, we removed the active learning module in
the originally proposed method. PMFTL was developed on the
basis of PMF with partially overlapping entities. PMFTL has
more relaxed constraints than TCF [29]. TCF was designed for
problems where users and items have a one-to-one mapping.
The constraints in TCF are strict. One constraint requires that
the user and item feature matrixes in the source and target do-
mains are exactly the same. Whereas, PMFTL uses similarities
estimated in the source domain directly as constraints in the
target domain. Since TCF cannot be used to solve the problem
presented in this paper, we did not select it for comparison.

User-based collaborative-filtering was used for PCC, with
the number of neighboring users set to 50. For FMM,
CBT and RMGM, the number of user and item groups
were both set to 50. For PMF and PMFTL, we set A =
{0.01,0.05,0.1,0.2,0.3,0.5,1}. The parameter settings for
KerKT were o« = 0.5, A\, = {0.001,0.01}, A, =
{0.001,0.01} and A = {0.0001,0.001,0.01}. KerKT and all
the baselines, except for PCC, were randomly initialized. The
results of 20 random initializations were averaged; standard
deviations are reported.

7
0.98 0.985 0.99 0.98 0.985 0.99
Sparsity
(b) Comparison on Amazon dataset

Sparsity
(a) Comparison on Movielens dataset
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Fig. 6. Comparison results of four datasets.

C. Results

The results with these four datasets are shown in Tables III,
IV, V and VI, and a visual comparison is shown in Fig. 6.
KerKT delivered the best performance of all the comparison
methods on all four cross-domain recommendation tasks. This
verifies the conclusion that using overlapping entities as a
bridge for transferring knowledge is useful in cross-domain
recommender systems. Our analysis of the results revealed the
following observations:

1) Comparison with non-transfer learning methods.
The performance of non-transfer learning methods was
relatively poor on sparse data. As the basis of CBT and
RMGM, FMM was designed to predict ratings for users
with little available data. Generally, FMM performed
better than PMF and the memory-based method PCC
without transfer learning techniques. PMF is the basis
of our proposed method KerKT. In all the experiments,
KerKT significantly outperformed all the non-transfer
learning recommendation techniques.

2) Comparison with cross-domain recommendation
methods for non-overlapping entities. = RMGM
showed improved precision in recommendations over its
basis, FMM, but sometimes the improvement was not
significant (see Table VI). CBT did not always improve
the performance of the recommender system and some-
times suffered from negative transfer, indicating that
CBT is not stable when transferring knowledge (see Ta-
ble IV). Neither of these methods uses non-overlapping
entity information explicitly, but rather extract cluster-
based knowledge to share between the source and target
domains. KerKT outperformed both these methods in all
recommendation tasks, again, proving that overlapping
entities can serve as a bridge for transferring knowledge
to the target domain. Methods designed for scenarios
with non-overlapping entities can be applied to solve
the problem proposed in this paper as a substitution.
But we can see from the results that they did not
show advantages since they did not use the overlapping
information.

3) Comparison with cross-domain recommendation
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TABLE III

OVERALL COMPARISON RESULT ON THE MOVIELENS DATA.

1.00% 1.50% 2.00%
Method 5 100 50 200 100 50 200 100 50
PCC 0.7877 0.7822 0.7825 0.7227 0.7201 0.7176 0.6923 0.6929 0.6928
FMM  0.6708 0.6727 0.6704 0.6527 0.6532 0.6496 0.6458 0.6471 0.6498
(£0.0013)  (£0.0015)  (£0.0019) (£0.0013)  (£0.0009)  (£0.0009) (£0.0009)  (£0.0007)  (£0.0010)
PME 0.7007 0.7003 0.7026 0.6797 0.6853 0.6777 0.6560 0.6567 0.6601
(£0.0006)  (£0.0008)  (£0.0012) (£0.0013)  (£0.0026)  (£0.0010) (£0.0007)  (£0.0005)  (£0.0009)
RMGM  0.6659 0.6698 0.6668 0.6524 0.6531 0.6500 0.6466 0.6473 0.6506
MAE (£0.0012)  (£0.0010)  (£0.0024) (£0.0010)  (£0.0009)  (£0.0012) (£0.0008)  (£0.0006)  (£0.0006)
CBT 0.7489 0.7527 07513 0.7499 0.7509 0.7456 0.7469 0.7478 0.7491
(£0.0030)  (+£0.0017)  (+£0.0020) (£0.0041)  (£0.0037)  (+£0.0030) (4£0.0029)  (+£0.0033)  (+£0.0029)
PMFTL  0.7222 0.7182 0.7227 0.6931 0.6951 0.6819 0.6822 0.6764 0.6719
(£0.0023)  (£0.0017)  (£0.0008) (£0.0042)  (£0.0050)  (£0.0047) (£0.0036)  (£0.0015)  (£0.0037)
KerKT — 0.6566 0.6553 0.6563 0.6411 0.6423 0.6405 0.6411 0.6371 0.6403
(£0.0029)  (£0.0009)  (£0.0017) (£0.0009)  (£0.0005)  (£0.0037) (£0.0007)  (£0.0018)  (£0.0005)
PCC 1.0087 1.0028 1.0009 0.9259 0.9203 09172 0.8826 0.8839 0.8830
FMM  0.8575 0.8604 0.8566 0.8339 0.8339 0.8314 0.8254 0.8294 0.8280
(£0.0014)  (+£0.0017)  (+£0.0019) (£0.0016)  (£0.0010)  (+£0.0012) (£0.0010)  (£0.0010)  (£0.0011)
PMF 0.8808 0.8812 0.8821 0.8613 0.8588 0.8574 0.8312 0.8341 0.8338
(£0.0007)  (£0.0012)  (£0.0007) (£0.0014)  (£0.0029)  (£0.0013) (£0.0008)  (£0.0007)  (£0.0010)
RMGM  0.8509 0.8563 0.8511 0.8327 0.8330 0.831 0.8259 0.8291 0.8284
RMSE (£0.0014)  (£0.0010)  (£0.0013) (£0.0014)  (£0.0012)  (£0.0011) (£0.0009)  (£0.0007)  (£0.0010)
CBT 0.9663 0.9703 0.9683 0.9668 0.9650 0.9611 0.9613 0.9624 0.9641
(£0.0051)  (£0.0036)  (+£0.0047) (£0.0065)  (+£0.0054)  (+£0.0052) (4£0.0050)  (£0.0050)  (£0.0050)
PMFTL  0.9083 0.9050 0.9041 0.8715 0.8712 0.8574 0.8592 0.8566 0.8482
(£0.0023)  (£0.0025)  (+£0.0031) (£0.0045)  (£0.0053)  (£0.0040) (£0.0041)  (£0.0020)  (£0.0037)
KerKT — 0.8355 0.8352 0.8346 0.8180 0.8169 0.8181 0.8158 0.8156 0.8143
(£0.0025)  (£0.0007)  (£0.0013) (£0.0016)  (£0.0008)  (£0.0064) (£0.0008)  (£0.0038)  (£0.0018)
TABLE IV
OVERALL COMPARISON RESULT ON THE NETFLIX DATA.
1.00% 1.50% 2.00%
Method 5 100 50 200 100 50 200 100 50
PCC 1.0191 1.0108 1.0026 0.9099 0.9079 0.9154 0.8139 0.8188 0.8224
FMM  0.7460 0.7452 0.7431 0.7303 0.7337 0.7349 0.7225 0.7251 0.7297
(£0.0015)  (+£0.0015)  (+0.0016) (4£0.0012)  (+£0.0016)  (+£0.0012) (4£0.0010)  (£0.0010)  (+0.0011)
PME 0.8121 0.8119 08111 0.7681 0.7729 0.7750 0.7474 0.7514 0.7567
(£0.0017)  (£0.0015)  (+£0.0012) (£0.0006)  (£0.0005)  (£0.0004) (£0.0016)  (£0.0013)  (£0.0011)
RMGM  0.7432 0.7427 0.7396 0.7300 0.7338 0.7360 0.7237 0.7265 0.7319
MAE (£0.0012)  (£0.0010)  (£0.0014) (£0.0010)  (£0.0008)  (£0.0015) (£0.0009)  (£0.0010)  (£0.0010)
CBT 0.8596 0.8558 0.8600 0.8546 0.8505 0.8582 0.8497 0.8541 0.8579
(£0.0073)  (£0.0079)  (£0.0050) (£0.0051)  (£0.0063)  (£0.0080) (£0.0068)  (£0.0077)  (£0.0061)
PMFTL  0.8285 0.8231 0.8243 0.7827 0.7814 0.7843 0.7649 0.7669 0.7655
(£0.0024)  (+£0.0054)  (+£0.0055) (£0.0037)  (£0.0019)  (+£0.0045) (£0.0035)  (£0.0042)  (£0.0056)
KerKT — 0.7364 0.7375 0.7293 0.7183 0.7253 0.7250 0.7137 0.7172 0.7213
(£0.0004)  (£0.0037)  (+£0.0014) (£0.0012)  (£0.0013)  (£0.0006) (£0.0016)  (£0.0027)  (£0.0032)
PCC 1.2968 1.2835 12710 1.1571 1.1567 1.1636 1.0325 1.0384 1.0447
FMM  0.9490 0.9473 0.9417 0.9278 0.9307 0.9319 09172 0.9217 0.9253
(£0.0019)  (£0.0015)  (£0.0023) (£0.0010)  (£0.0019)  (£0.0012) (£0.0009)  (£0.0011)  (£0.0009)
PMF 0.9978 0.9973 0.9949 0.9499 0.9541 0.9567 0.9360 0.9431 0.9461
(£0.0016)  (£0.0013)  (+£0.0013) (£0.0007)  (£0.0005)  (£0.0005) (£0.0018)  (£0.0018)  (£0.0014)
RMGM  0.9437 0.9432 0.9365 0.9267 0.9301 0.9322 09175 0.9228 0.9268
RMSE (£0.0013)  (£0.0012)  (£0.0014) (£0.0010)  (£0.0009)  (£0.0015) (£0.0008)  (£0.0010)  (£0.0008)
CBT 1.0448 1.0392 1.0417 1.0363 1.0318 1.0399 1.0330 1.0367 1.0403
(£0.0027)  (£0.0030)  (£0.0021) (£0.0026)  (£0.0030)  (£0.0037) (£0.0029)  (£0.0036)  (£0.0030)
PMFTL  1.0078 1.0031 1.0061 0.9675 0.9665 0.9684 0.9467 0.9509 0.9491
(£0.0021)  (+£0.0054)  (+£0.0052) (£0.0038)  (£0.0016)  (£0.0030) (£0.0027)  (£0.0033)  (£0.0042)
KerKT — 0.9349 0.9351 0.9236 0.9125 0.9199 0.9219 0.9057 0.9116 0.9132
(£0.0004)  (£0.0032)  (+£0.0012) (£0.0007)  (£0.0016)  (£0.0008) (£0.0008)  (£0.0024)  (£0.0028)
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TABLE V
OVERALL COMPARISON RESULT ON THE AMAZONBOOK DATA.

0.75% 0.63% 0.50%
Method 5 100 50 200 100 50 200 100 50
PCC 0.7705 0.7551 1.0026 0.7704 0.7618 07615 0.7882 0.7718 0.9154
FMM  0.6648 0.6630 0.7431 0.6846 0.6806 0.6822 0.7171 0.7132 0.7349
(£0.0029)  (+£0.0026)  (+£0.0019) (£0.0028)  (£0.0031)  (+£0.0032) (£0.0034)  (£0.0041)  (£0.0012)
PME 0.6740 0.6751 0.8111 0.6934 0.6846 0.6843 0.6855 0.6962 0.7750
(£0.0011)  (£0.0004)  (£0.0012) (£0.0003)  (£0.0010)  (£0.0006) (£0.0001)  (£0.0001)  (£0.0004)
RMGM  0.6581 0.6578 0.6521 0.6706 0.6671 0.6657 0.6855 0.6831 0.7316
MAE (£0.0016)  (£0.0021)  (£0.0024) (£0.0024)  (£0.0024)  (£0.0026) (£0.0021)  (£0.0025)  (£0.0015)
CBT 0.6677 0.6678 0.6717 0.6734 0.6712 0.6714 0.6753 0.6719 0.6731
(£0.0019)  (+£0.0026)  (+0.0020) (£0.0022)  (+£0.0014)  (+0.0021) (£0.0015)  (£0.0030)  (+£0.0013)
PMFTL  0.6759 0.6796 0.6815 0.6855 0.6863 0.6844 0.6886 0.6882 0.6902
(£0.0006)  (+£0.0016)  (£0.0008) (£0.0003)  (£0.0006)  (+£0.0011) (£0.0006)  (£0.0004)  (£0.0004)
KerKT — 0.6562 0.6511 0.6420 0.6529 0.6580 0.6502 0.6601 0.6611 0.6611
(£0.0034)  (£0.0038)  (£0.0039) (£0.0030)  (£0.0070)  (£0.0018) (£0.0039)  (£0.0061)  (£0.0066)
PCC 0.9203 0.9129 0.9949 0.9277 0.9337 0.9295 0.9462 0.9476 0.9567
FMM  0.8732 0.8668 0.9417 0.8951 0.8916 0.8956 0.9402 0.9361 0.9319
(£0.0049)  (£0.0015)  (+£0.0023) (£0.0034)  (+£0.0040)  (£0.0036) (£0.0049)  (£0.0051)  (£0.0012)
PMF 0.9203 0.9129 0.9949 0.9277 0.9337 0.9295 0.9462 0.9476 0.9567
(£0.0021)  (£0.0012)  (£0.0013) (£0.0006)  (£0.0017)  (£0.0009) (£0.0001)  (£0.0003)  (£0.0005)
RMGM  0.8636 0.8576 0.8532 0.8748 0.8717 0.8734 0.8976 0.8971 0.9322
RMSE (£0.0023)  (£0.0031)  (£0.0032) (£0.0028)  (£0.0027)  (£0.0031) (£0.0028)  (£0.0034)  (£0.0015)
CBT 0.9159 0.9084 0.9110 0.9143 0.9156 0.9124 0.9194 09716 0.9165
(£0.0031)  (£0.0041)  (+£0.0034) (£0.0031)  (£0.0024)  (+£0.0030) (£0.0032)  (£0.0042)  (£0.0020)
PMFTL  0.9057 0.9029 09163 0.9292 0.9399 0.9130 0.9382 0.9442 0.9449
(£0.0016)  (£0.0016)  (+£0.0012) (£0.0005)  (£0.0012)  (£0.0019) (£0.0013)  (£0.0006)  (£0.0003)
KerKT — 0.8597 0.8430 0.8362 0.8483 0.8602 0.8485 0.8572 0.8641 0.8572
(£0.0049)  (£0.0091)  (£0.0054) (£0.0054)  (£0.0137)  (£0.0039) (£0.0067)  (£0.0101)  (£0.0104)
TABLE VI
OVERALL COMPARISON RESULT ON THE DOUBAN DATA.
1.00% 1.50% 2.00%
Method 5 100 50 200 100 50 200 100 50
PCC 0.6695 0.6700 0.6700 0.6317 0.6306 0.6298 0.6076 0.6079 0.6154
FMM  0.5950 0.6013 0.5936 0.5834 0.5857 0.5834 0.5775 0.5828 0.5787
(£0.0011)  (£0.0015)  (£0.0009) (4£0.0008)  (£0.0011)  (£0.0006) (£0.0008)  (£0.0010)  (£0.0008)
PMF 0.6256 0.6288 0.6248 0.5962 0.6033 0.5993 0.5848 0.5864 0.5867
(£0.0008)  (£0.0008)  (£0.0011) (£0.0008)  (£0.0011)  (£0.0011) (£0.0004)  (£0.0005)  (£0.0003)
RMGM  0.5929 0.6004 0.5912 0.5835 0.5860 0.5832 0.5773 0.5835 0.5795
MAE (£0.0008)  (£0.0013)  (+£0.0011) (£0.0009)  (£0.0009)  (£0.0005) (£0.0010)  (£0.0011)  (£0.0006)
CBT 0.6422 0.6627 0.6453 0.6410 0.6524 0.6324 0.6346 0.6418 0.6373
(£0.0138)  (£0.0126)  (£0.0145) (£0.0149)  (£0.0114)  (£0.0135) (£0.0096)  (£0.0109)  (£0.0115)
PMFTL  0.6308 0.6353 0.6256 0.6101 0.6139 0.6077 0.6009 0.5984 0.5949
(£0.0034)  (£0.0009)  (+£0.0011) (£0.0009)  (+£0.0033)  (+0.0032) (£0.0019)  (£0.0058)  (£0.0015)
KerKT — 0.5863 0.5922 0.5835 0.5778 0.5812 0.5788 0.5721 0.5752 0.5757
(£0.0013)  (£0.0020)  (+£0.0012) (£0.0013)  (£0.0020)  (£0.0019) (£0.0005)  (£0.0016)  (£0.0011)
PCC 0.8618 0.8686 0.8655 0.8052 0.8082 0.8021 0.7672 0.7724 0.7744
FMM  0.7508 0.7585 0.7504 0.7358 0.7373 0.7337 0.7267 0.7332 0.7278
(£0.0014)  (£0.0020)  (+0.0011) (£0.0007)  (£0.0012)  (£0.0006) (£0.0007)  (£0.0012)  (£0.0008)
PMF 0.7876 0.7980 0.7857 0.7500 0.7609 0.7498 0.7327 0.7394 0.7332
(£0.0011)  (£0.0015)  (+£0.0015) (£0.0009)  (£0.0014)  (+£0.0013) (£0.0005)  (£0.0009)  (£0.0003)
RMGM 07461 0.7557 0.7452 0.7344 0.7371 0.7316 0.7261 0.7341 0.7273
RMSE (£0.0009)  (£0.0016)  (£0.0010) (£0.0006)  (£0.0012)  (£0.0007) (£0.0008)  (£0.0015)  (£0.0007)
CBT 0.8292 0.8484 0.8312 0.8239 0.8378 0.8189 0.8159 0.8290 0.8158
(£0.0054)  (£0.0050)  (£0.0074) (£0.0071)  (£0.0057)  (£0.0083) (£0.0041)  (£0.0041)  (£0.0054)
PMFTL  0.8059 0.8095 0.7896 0.7761 0.7761 0.7635 0.7605 0.7548 0.7454
(£0.0044)  (£0.0017)  (+£0.0013) (£0.0017)  (£0.0046)  (£0.0046) (4£0.0033)  (£0.0085)  (£0.0018)
KerKT — 0.7369 0.7429 0.7352 0.7268 0.7272 0.7246 0.7185 0.7258 0.7248
(£0.0013)  (£0.0027)  (+£0.0013) (£0.0008)  (£0.0024)  (£0.0022) (£0.0007)  (£0.0036)  (£0.0023)
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TABLE VII
OVERALL AVERAGE RESULT ON FOUR TASKS.

TABLE IX
ELAPSED TIME COMPARISON ON NETFLIX DATASET

Non-transfer Cross-domain

Non-transfer Cross-domain

Method

PCC PMF FMM CBT PMFTL RMGM  KerKT PCC PMF FMM CBT PMFTL RMGM  KerKT
MAE  Taskl 09134 07773 07338 0.8541 07913 07333 07247 Time(s)  12.32 1131 592 525.95 6599 22043 18833
Task2 07696  0.6848  0.6872 06712 0.6840  0.6704  0.6566
Task3  0.7330 0.6798  0.6571 0.7495  0.6979 0.6559 0.6456
Taskd  0.6369 0.6040  0.5868 0.6433 06131 05864  0.5803
RMSE Taskl 1.1608 09630 0.9323 10370 09738 09307 os0 D. Complexity Analysis
Task2 09314 09314  0.9005 09242 09267 08771  0.8554 . . .
Task3 09374 08579  0.8401 09654 08786 08380  0.8228 This complexity analysis covers each step of the proposed
Task4  0.8139  0.7597  0.7394 0.8278  0.7757 0.7375 0.7292 method KerKT. For SlmphClty, the dimensions of the user and
item features in both domains have all been set to k. The time
TABLE VIII complexity of each step is listed below.
OVERALL IMPROVEMENT OF KERKT ON FOUR TASKS. 1) Step 1
. . 0 0
Non-transfer Cross-domain a) - O(kn?), for each iteration to update U§ ), VS( ),
0 0 . . .
PCC  PMF FMM CBT  PMFIL RMGM Ut( ) and Vt( ), and for each iteration to approxi-
MAE  Taskl 20.66% 6.76% 1.24% 15.14% 841%  1.17% mate X, and X; for the matrix factorization.
Task2  14.69% 4.12%  4.46% 218%  401%  2.06% 2 . .
Task3 11929  5.03% 1.75%  1387% 749%  1.57% b) - O(k*n), for the domain adaptation process to ad-
Taskd  8.89%  3.92% 1.11% 9.79%  534%  1.04% just the feature matrixes of the overlapped entities.
RMSE Taskl 2075% 447% 1.32% 11.28% 553%  1.15% 2) Step 2 - O(kn?) for each iteration to update the feature
Task2  8.16%  8.16% 5.01% 744%  1.69%  2.47% : : w
Task3  12.22%  4.09%  2.05% 1476% 6.35%  181% matrixes w1th0u2t the overlapped entities. .
Task4  1041% 4.02%  1.38% 1191%  6.00%  1.13% 3) Step 3 - O(kn®) to calculate the similarity matrix of

methods for partially overlapping entities. As meth-
ods designed for partially overlapping entities are rare
and methods developed for fully overlapping entities
cannot be used to solve the problem proposed in this
paper, only PMFTL serves as a representative of cross-
domain recommendation method for partially overlap-
ping entities. PMFTL was developed on the basis of
PMF with partially overlapping entities. The results of
the experiments show that PMFTL was not effective
in every situation since it ignores divergence between
the source and target domains. As a result, KerKT
outperformed PMFTL in each of the four tasks with all
three data sparsities.

4) The number of overlapping entities. We tested three
different levels of overlapping entities in these experi-
ments: 200, 100, and 50. There were 2000 users/items
in the target domain, so these proportions of overlapping
entities represent just a small number of the overall total.
However, even these small proportions still allowed
knowledge to be transferred from the source to the
target domain. We did not observe a very obvious in-
crease/decrease in the precision of KerKT as the number
of overlapping entities increased.

To further study the overall effectiveness of the KerKT
method on these four tasks, we calculated the average MAEs
and RMSEs as displayed in Table VII. The results show that
in each task, KerKT outperformed all the other baselines.
Table VIII contains the percentage of improvement, which
shows that KerKT delivered the greatest improvement over
the memory-based recommendation method PCC by around
20%. Compared to the cross-domain recommendation method
RMGM, KerKT attained an improvement of 2%. It again
shows that our method has the advantage when transferring
knowledge from the source domain to the target domain.

users and items.

4) Step 4 - O(n?) for the diffusion kernel completion.

5) Step 5 - O(kn?) for each iteration to update Eq. (22).
Since the number of iterations in Steps 3 and 5 are not infinite,
KerKT'’s the total complexity is O(n?). We have also listed the
time taken for each of the methods to complete Task 2 in Table
IX. This experiment was conducted with 200 overlapping
entities and 0.5% sparsity on a computer with 16GB memory
and 2.2 GHz Intel Core i7. We can see that the non-transfer
methods were faster. This is due to their general simplicity and
because they do not take cross-domain data into consideration.
Most of the time was spent on the user and item similarity
matrix calculations. However, some parallel computing could
be used to speed up these computations. Alternatively, these
matrixes could be pre-calculated and stored so as not to
affect the speed of online recommendation. Overall, the time
complexity analysis shows that the KerKT method can be
used with large-scale datasets and for online e-commerce or
business-to-business systems.

E. Parameter Analysis

There are three important parameters in KerKT: A\, A\, and
A. Each is a trade-off parameter in Equation (21). For sim-
plicity, we have only presented the results for the Movielens
dataset. This experiment was conducted with a sparsity ratio
of 99.0% and 200 overlapping entities. M AE and RMSE
were used as metrics. The results are presented in Figures 7
and 8.

To analyze the parameters A\, and \,, we set parameter \ to
0.0001. From Figure 7, we can see that the M AF and RMSE
change with different settings for A,, and \,. These parameters
reflect the influence of the user and item similarities on the
matrix factorization while parameter A restricts the complexity
of the algorithm to avoid overfitting. We used a grid search
to find the optimized settings for each of these parameters, A,
Ay and )\, which resulted in a setting of 0.01 for all.
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VI. CONCLUSION AND FURTHER STUDY

Today’s landscape of online sales is characterized by many
websites, all selling the same item, and many online shoppers
with a multitude of shopping choices. Hence, in practice, it
is quite common for cross-domain recommender systems to
encounter overlapping entities. This paper presents a novel
cross-domain recommendation method for knowledge transfer,
called KerKT. This method exploits overlapping entities as a
bridge between the source and target domains and is applicable
to e-commerce websites, such as Amazon, where book rating
data are very dense but data in other categories are sparse.
Unlike previous research, KerKT does not require that the
entities be fully overlapped; it performs well in scenarios
with partially overlapping entities. One advantage of this
method is that it aligns the latent features of the entities
extracted from the original ratings matrix. This fixes shifts in
the entity feature space caused by user preference deviations
between the domains. Further, the entity similarity matrix
is completed through diffusion kernel completion to tackle
the inconsistencies caused by heterogeneous feature spaces
between two domains. The similarity matrix is extended into
matrix factorization with more flexible constraints to integrate
the overlapping entity information. Experimental results from
a comparison with six non-transfer learning and cross-domain
recommendation methods show that KerKT achieved the best
performance. Even with a small ratio of overlapping entities,
it was still possible to transfer knowledge from the source
domain to the target domain.

There is practical significance in studying and develop-
ing cross-domain recommender systems. Smart BizSeeker, a
B2B recommender system, aims to recommend appropriate
business partners to businesses in Australia [43]. In a future
study, we plan to implementing our proposed method into their

system. Furthermore, there are still some interesting issues
to be explored. For example, how to choose the best source
domain if several domains are available? And which sparsity
ratio in the target domain benefits transfer learning the most?
In future work, we intend to apply our method to other kinds of
data beyond ratings, such as web browser records and social
media records. Methods for integrating explicit and implicit
data within one system and extracting common knowledge
from two domains with different data structures are still open
and challenging issues.
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