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ABSTRACT Community detection is a key technique for identifying the intrinsic community structures
of complex networks. The distance dynamics model has been proven effective in finding communities
with arbitrary size and shape and identifying outliers. However, to simulate distance dynamics, the model
requires manual parameter specification and is sensitive to the cohesion threshold parameter, which is
difficult to determine. Furthermore, it has difficulty handling rough outliers and ignores hubs (nodes that
bridge communities). In this paper, we propose a robust distance dynamics model, namely, Attractor+-+,
which uses a dynamic membership degree. In Attractor4++, the dynamic membership degree is used to
determine the influence of exclusive neighbors on the distance instead of setting the cohesion threshold.
In addition, considering its inefficiency and low accuracy in handling outliers and identifying hubs,
we design an outlier optimization model that is based on triangle adjacency. By using optimization rules,
a postprocessing method further judges whether a singleton node should be merged into the same community
as its triangles or regarded as a hub or an outlier. Extensive experiments on both real-world and synthetic
networks demonstrate that our algorithm more accurately identifies nodes that have special roles (hubs and
outliers) and more effectively identifies community structures.

INDEX TERMS Community detection, complex network, distance dynamics model, membership function.

I. INTRODUCTION

Many complex systems in the real world can be viewed as
complex networks [1], such as social networks, sensor net-
works, collaboration networks, biological networks and other
types of complex networks. In recent years, the discovery
of community structures in complex networks has gradually
become a hot research field. Community detection plays
an important role in complex network analysis because it
provides comprehensive insight into the organizational struc-
ture, functional behavior, and evolutionary dynamics of the
network [2], [3]. The main objective of community detection
is to group similar nodes into the same community while par-
titioning dissimilar nodes into different communities, where
a community can be regarded as a group of nodes with high-
density links within the group and relatively low-density

links with nodes in external groups [4]. Understanding the
community structure of a network is an important problem
and is very useful in our lives. The development of algo-
rithms for detecting communities in networks has attracted
the interest of physicists, sociologists, and especially com-
puter scientists [5]-[7].

Up to now, many community detection algorithms have
been developed to reveal hidden community structures,
which mainly include the graph-partitioning method [8], [9],
modularity-based method [10], [11], density-based method
[12], [13], and dynamic method [14], [15]. Most existing
community detection algorithms use a greedy optimization
metric to qualify community structure from various points of
view and each algorithm has its own advantages and limita-
tions. Apart from the user-defined metric algorithm, how can
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we identify the communities in a real-world network in an
intuitive way?

Lately, one of the most successful community detection
methods, namely, Attractor, which is a distance dynamics
model, was proposed by Shao et al. [15]. Unlike the tra-
ditional algorithms [8], [12], [14], [16], Attractor provides
an intuitive way to analyze the community structure of a
network. This model views the entire graph as an adaptive
global dynamical system and simulates the synchronization
dynamics over time. The process of the traditional distance
dynamics model involves the following stages: First, each
edge is associated with an initial distance. Then, in a sequen-
tial process, each distance gradually shrinks or stretches via
interaction with its local topological structure. Finally, all
distances converge to 0 or 1. As a result, all communities and
outliers are naturally obtained by removing the edges with
distance that are equal to 1. The traditional model has several
attractive benefits, such as intuitive community detection,
small community detection, and anomaly detection. How-
ever, there are several limitations of the traditional distance
dynamics model.

o Extremely Sensitive Parameter Settings: In the tradi-
tional distance dynamics model, the global cohesion
parameter, which is denoted as A, is used to determine
the positive or negative interaction influence on the dis-
tances for exclusive neighbors. Typically, a lower value
of A yields larger communities whereas a higher value
of A produces more communities. However, different
networks have different local structures and may require
different parameter settings. Thus, it is difficult to find a
proper value of the cohesion parameter A for a specified
network. In some cases, minor changes to parameter A
may cause great differences in the resulting community
structure.

o Unreasonable Influence From Exclusive Neighbors:
During the local dynamic interaction process, the struc-
tures of the communities are constantly changing as new
distances converge. In the traditional distance dynam-
ics model, once the underlying influence of exclusive
neighbors on the distances has been determined by the
cohesion parameter A, the influence does not change
during the entire dynamic interaction process. Even if
an exclusive neighbor has a positive influence on the
distance at time step 0, it would have a negative influence
on the distance at time step t (the exclusive neighbor may
have been moving far away from the corresponding node
at time step t).

o Poor Quality of Anomaly Detection: In the process of
synchronization dynamics, the traditional model easily
produces many rough outliers, especially in a large-
scale, high-density, or noisy network. Many outliers
that are identified by the traditional distance dynamics
model belong to a community in the ground truth of the
network. Consider the typical email-enron network as
an example: The network consists of 1133 nodes and
5451 edges. By using the traditional distance dynamics
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model with parameter A = 0.5, we identify 359 classes,
namely, 300 outliers and 59 communities. In this model,
many other real-world networks have similar scenarios.

o Unable to Identify the Differences Between Outliers and
Hubs: Actually, Some of the sparsely connected nodes
in a network may not be outliers but hubs. In addi-
tion to detecting communities and outliers, identifying
nodes with special roles, such as hubs, is a challenging
task in determining the structure of a complex network,
as hubs play important roles in many real complex
networks [12]. For instance, hubs in epidemiology net-
works can be core nodes for spreading diseases; in col-
laboration networks, hubs can be core nodes for sharing
ideas.

To describe the hubs more clearly, let us consider a sim-
ple example; see Figure 1. By using the traditional distance
dynamics model, we identify 2 communities and 2 outliers.
All nodes with the same color belong to the same community
and the two red nodes are the outliers. Our method, namely,
Attractor++-, identifies two communities, namely, 1, 2, 3, 4,
5,6 and 9, 10, 11, 12, 13, 14, and identifies node 7 as an
outlier and node 8 as a hub.

FIGURE 1. Running example.

A robust distance dynamics model should be able to
overcome the above limitations. We propose a robust dis-
tance dynamics model for community detection. To overcome
the parameter-sensitivity problem, the dynamic membership
degree is introduced to determine the influence of an exclu-
sive neighbor on the distance. Furthermore, the dynamic
influences from exclusive neighbors can also be easily deter-
mined by our algorithm. The membership degree is a dynamic
function that is based on the characteristics of the communi-
ties during the local dynamic interaction process in real time.
To overcome the rough-outlier problem, an outlier optimiza-
tion rule is proposed for further judging whether an outlier
should be merged into a community based on the adjacent
triangle. To overcome the unidentified-hub problem, another
outlier optimization rule is developed for further judging
whether an outlier should be as hub based on the connected
triangle. We summarize the main contributions of this paper
as follows.

e A Robust Distance Dynamics Model: Based on a
dynamic membership degree, we propose a robust dis-
tance dynamics model that has improved robustness.
The dynamic membership degree is used to handle the
traditional cohesive parameter A. The dynamic member-
ship degree is a similarity index that is used to measures
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the similarity between nodes and communities. The
experimental results demonstrate the effectiveness and
accuracy of finding communities via the robust distance
dynamics model.

e An Outlier Optimization Model: To further judge
whether each outlier should be merged into the same
community as its triangles or classified as a hub,
we design two outlier optimization rules that help iden-
tify vertices that have special roles (i.e., hubs and out-
liers) and integrate them into the distance dynamics
model.

o Robust Algorithm (Attractor++): A robust commu-
nity detection algorithm, namely, Attractor4+-, is pro-
posed. It is based on a robust distance dynamics model
and an outlier optimization model. Experimental results
on artificial and real-world networks demonstrate that
Attractor++ is more robust and efficient in overcoming
the above limitations than the original algorithm.

The remainder of this paper is organized as follows:
Related works are discussed in Section /I. Section III
presents our robust model and corresponding community
detection algorithm. An extensive experimental evaluation
is presented in Section /V. Finally, Section V presents the
conclusions of this paper.

Il. RELATED WORKS

Community detection has been studied for decades in many
fields. Recently, scholars have proposed many algorithms for
detecting community structures in complex networks, par-
ticularity in computer science [2]. We review related works,
which are organized according to the community detection
algorithms, dynamic method and distance dynamics model,
and dynamic membership degree.

Community Detection Algorithms: Currently, the most
widely used and practical community detection algorithms
can be divided into four categories: graph-partitioning algo-
rithms, modularity-based algorithms, density-based-method
algorithms and dynamics algorithms. In graph-partitioning
algorithms, community detection was first modeled as a
graph partitioning problem. Hence, graph-partitioning algo-
rithms [8], [9] are natural choices for community detection.
However, these algorithms rely on a prespecified number of
communities k, which renders them not highly applicable
to real-world networks. Since the community structures are
highly complex, it is often expensive or impossible to obtain
the number of communities in many real-world networks.
For modularity-based algorithms, many researchers devoted
their efforts to improving the effectiveness of community
detection. One typical method is to optimize the modu-
larity measure [10], which is widely used to evaluate the
community structure of a network from a global perspec-
tive. Unfortunately, although modularity-based algorithms
are effective in many applications [10], [11], they are diffi-
cult to apply to large-scale networks due to their high time
complexity (which is called the resolution limit problem).
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Due to the resolution limit of modularity-based algorithms,
density-based algorithms have attracted wide research inter-
est [12], [17]. One of the most successful density-based
algorithms, namely, SCAN [12], not only detects meaningful
communities but also identifies hubs and outliers. To over-
come the problems of parameter sensitivity and exhaustive
similarity evaluations in SCAN, two parameter-free meth-
ods, namely, SHRINK [18] and SkeletonClu [17], have been
proposed and SCAN++ [13] and pSCAN [19] have been
proposed to reduce the time complexity.

Dynamic Method and Distance Dynamic Model: Dynamic
algorithms that support additional community semantics are
another research area. Dynamic-process-based methods are
important in the field of complex network community discov-
ery. Typical dynamic methods include label propagation [16],
random walk [20], and distance dynamics [15]. Owing to
the simplicity of its procedure, the label propagation method
can detect communities in almost linear time; however, it has
poor stability due to the randomness in the label propaga-
tion process [2]. Random-walk-based methods are routinely
used for community detection from the global perspective
[20], [21]. However, the quality of the detected communities
heavily depends on the choice of the seed node. Recently,
inspired by synchronization clustering [22], Shao et al. [15]
consider the problem of community detection from a new
point of view: distance dynamics. Unfortunately, this method
has several problems, which were analyzed in Section /.
To overcome the sensitivity of parameter A, E-Attractor [18]
was recently proposed. It improves the stability of Attractor
by employing Ego-Leader to replace cohesion parameter A
in the dynamic interaction process. By using Ego-Leader,
the underlying influence of exclusive neighbors can be deter-
mined by identifying the top-k neighbors. However, it still
has difficulty determining the globally optimal value of k
and lacks an automated way to find a satisfactory value of k.
Moreover, clustering based on the global parameter settings
cannot always describe the intrinsic community structure
accurately and easily produces many rough outliers. In addi-
tion, Fan et al. [23] proposed a semisupervised community
detection method that integrates the prior information into
the distance dynamics model to improve the accuracy of
community detection. Although this approach is novel, it does
not consider these problems. To the best of our knowledge,
ours is the first work to solve these problems systematically.

Dynamic Membership Degree: The dynamic member-
ship degree is essentially a dynamic membership function.
Dynamic membership functions have been extensively stud-
ied [24], [25] and are widely used in fuzzy systems to
describe the system dynamics [26]. Nepusz et al. [27] define
a numerical membership degree and develop an algorithm
for determining the optimal membership degree that is able
to identify outlier vertices that do not belong to any of the
communities, which are called bridge vertices, and quan-
tify the centrality of a vertex with respect to its dominant
community. Kundu et al. [28] proposed a community detec-
tion algorithm that identifies fuzzy-rough communities in
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which a single node can belong to many groups with vari-
ous membership degrees. The method performs well when
the network contains overlapping communities. Recently,
Luo et al. [29] used various dynamic membership func-
tions to describe the dynamics of the process of commu-
nity formation and achieved satisfactory result. Therefore,
evidence increasingly supports that dynamic membership
functions have substantial advantages in describing system
dynamics.

Motivated by the advantageous properties of dynamic
membership functions, we replace cohesion parameter A by a
dynamic membership degree to simulate the distance dynam-
ics more accurately. In this paper, we integrate the dynamic
membership degree into the distance dynamics model and
propose a robust distance dynamics model that has no param-
eters. We combine the original network topology with the
membership degree to modify the distance model, which
can substantially shorten the time step to accelerate the con-
vergence of the distance between nodes and improve the
accuracy of our algorithm.

Ill. PROPOSED METHOD:ATTRACTOR++
A. PRELIMINARIES
Before introducing our method, we present the basic notions
and related definitions that we use throughout the paper.
In this paper, we focus on an undirected graph G =
(V,E,W), where V, E and W denote the node set, edge
set, and edge weight set, respectively. The distance between
two nodes depends on their shared neighbors. Thus, prior to
computing distances, the structural neighbors of a node are
defined. The structural neighbors of a node are its adjacent
nodes and the node itself.

Definition 1 (Neighbors of Node u): In an undirected graph
G = (V,E, W), the neighbors of node u, which are denoted
by N(u), are defined as follows:

N@w ={veV|{uvleE} U {u}. (1)

The distance between adjacent nodes is computed accord-
ing to the common nodes in the structural neighborhoods.
This measurement is called the Jaccard distance and is
defined as follows:

Definition 2 (Jaccard Distance): In an unweighted undi-
rected graph G = (V, E), the Jaccard distance between node
u and node v is defined as:

_IN@ NN )

== ON o

@)

In the above equation, | * | denotes the number of nodes
in set *x and N(x) denotes the neighbors of node *. The
Jaccard distance is a score that varies from O to 1 and indicates
the scale of the matching degree of the common neighbors.
When two adjacent nodes share few common neighbors, their
Jaccard distance is large.

For a weighted undirected graph, because each edge has
a different weight, the equation for the Jaccard distance is
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different:
erN(u)ﬁN(v) w @, x)+w(,x))

du,v)y=1-—
Z{x,y}eE;x,yeN(u)UN(v) w(x, y)

(€)

B. DYNAMIC MEMBERSHIP DEGREE CONSTRUCTION

To systematically address the limitations of the traditional
distance dynamics model and enable efficient community
detection, we propose a new metric, namely, the dynamic
membership degree, for measuring the similarity between an
exclusive neighbor node and core nodes and border nodes.
Specifically, if an exclusive neighbor node has a stronger
membership degree to the core nodes than to the border
nodes, the exclusive neighbor node will have a positive influ-
ence on the distance. Moreover, because the node set of core
nodes and border nodes will change over time, the member-
ship degree is dynamic. The key to the dynamic membership
degree is that each community in a graph consists of a set
of core nodes and the border nodes that are associated with
these core nodes. Thus, the dynamic membership degree can
replace traditional cohesion parameter A to determine the
influence of an exclusive neighbor on the distance. To com-
pute the membership degree of an exclusive neighbor node,
we define the core nodes of the community that is associated
with a node as follows:

Definition 3 (Core Nodes): For any arbitrary node u,
the core nodes C(u) are defined as follows: First, the node
u and its neighbors are considered core nodes if they have
nonzero similarity degree with node u. Second, for a node
that is not a neighbor of node u to become a core node, it must
have a distance of 0 from node u or any other core node.

These core nodes are more likely to cluster with node u.
The core membership degree of exclusive neighbor node x to
the community that is associated with node u is computed as
follows:

T x)NC |
CM (x,u) = —To 4

where T'(x) is the set of neighbors of the exclusive neighbor
node x and not include the node x and C(u) is the set of core
nodes that are associated with node u.

Definition 4 (Border Nodes): For any arbitrary node u and
exclusive neighbor node x such that u # x, the border nodes
B(u) are define as follows: First, node x and its neighbors are
considered border nodes if they are not core nodes that are
associated with node u. Second, for a node that is not a core
node that is associated with node u to become a border node,
it must have a distance of 0 from node x or any other border
node.

The border nodes are those nodes that have a small prob-
ability of clustering with node u. The border membership
degree of exclusive neighbor node x is computed as follows:

T(x)NB
BM (v, u) = T (x) (u)|7 )

1T (x)]
where T (x) is the set of neighbors of exclusive neighbor node
x and does not include the node x and B(u) is the set of border

nodes that are associated with node u.
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Core Nodes Border Nodes

Border Nodes

(a)

FIGURE 2. lllustration of the dynamic membership degree.

After computing both the core membership degree and
the border membership degree, we can easily determine the
positive or negative influence of exclusive neighbors on the
distances. To illustrate the dynamic membership degree more
clearly, Figure 2 shows two examples.

Consider the graph G in Figure 2(a). Node 4 and node
5 are indirectly connected and node 1 is an exclusive neighbor
of node 5 on edge e(4, 5). The core nodes (circled by a red
dotted line) of node 5 are nodes 3, 4, 5, 6 and 7, according
to Definition 3. The border nodes (circled by a blue dotted
line) of node 5 are nodes 1 and 2, according to Definition 4.
Since CM(1,5) = 2/3 and BM(1,5) = 1/3, node 1 is more
similar to the core nodes than to the border nodes. Therefore,
exclusive neighbor node 1 will have a positive influence and
reduce the distance on edge e(4, 5). For comparison, consider
the graph G in Figure 2(b). Node 7 and node 9 are indirectly
connected nodes and node 6 is an exclusive neighbor of node
9 on edge e(7,9). The core nodes (circled by a red dotted
line) of node 9 are nodes 7, 8, 9, 10 and 12, according to
Definition 3. The border nodes (circled by a blue dotted line)
of node 9 are nodes 1, 4, 5 and 6, according to Definition 4.
Since CM (6,9) = 1/4 and BM (6, 9) = 3/4, node 6 is more
similar to the border nodes than to the core nodes. Therefore,
exclusive neighbor node 6 will have a negative influence and
increase the distance on edge e(7, 9).

Furthermore, as time evolves, the node sets C(u) and B(u)
change as distances converge (to 0 or 1). Thus, CM (x, u)
and BM (x, u) are dynamic membership degree functions. For
instance, after many time steps, the distance on edge e(4, 1),
e(4,2), e(3,2) or e(6, 1) may converge to 0 in Figure 2(a).
As a result, node 1 or node 2 may join the core nodes
of node 5 and may be removed from the border nodes of
node 1.

FIGURE 3. Three distinct interaction patterns.
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C. ROBUST DISTANCE DYNAMICS MODEL

In the traditional distance dynamics model, three interaction
patterns (DI, CI, and EI) are designed for simulating the
distance dynamics. However, a naive cohesion parameter A
is used to determine the positive or negative influence of an
exclusive neighbor on the distance in interaction pattern EI.
A poor choice of parameter A may lead to bad results. Hence,
we use notions of core nodes and border nodes and the prop-
erties of the dynamic membership degree that are discussed
above to improve the EI pattern. Because the traditional DI
and CI patterns do not use cohesion parameter A, these two
patterns are unchanged in our robust model.

Robust Pattern 1: In the first interaction pattern
(Figure 3(b)), the distance d(u,v) is influenced by two
directly linked nodes: u and v. In this scenario, one node
attracts another to move toward itself, thereby leading to a
decrease in the distance d(u, v). Formally, the influence from
the directly linked nodes, which is denoted as DI, is defined
as follows:

bl — <f(1 —d (w,v)
deg (1)

In the pattern DI, f (x) is a coupling function and sin(x) is
used in Attractor, deg(*) indicates the degree of node *. The
DI is score of varying from -1 to O that indicates the degree
of influence on the distance from direct linked nodes. When
two direct linked nodes are more similar, the higher influence
between each other they will have, and vice versa.

Robust Pattern 2: Influence from common neighbors.
In the second interaction pattern (Figure 3(c)), the distance
d(u, v) is influenced by the common neighbors. The common
neighbors have links with both nodes « and v and are denoted
as CN = (N(u) — u) N (N(v) — v). In this scenario, each
common neighbor attracts both node u and node v to move
toward itself, thereby resulting in a decrease in the distance
d(u, v). Formally, the influence of the common nodes, which
is denoted as CI, is defined as follows:

f(ld—d(u, V)))_ ©)
eg (v)

xeCN deg (u)
1 —dx,v) (1 —d(x,
-y (f( (x ;)) (1-d(x u))). o
xeCN eg (v)

In the pattern CI, for any common neighbor x, the CI is
score of varying from -1 to O that indicates the degree of
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influence on the distance from common neighbor x. When
the common neighbor x share many members between node
u and node v, the influence becomes large, and vice versa

Robust Pattern 3: Influence from exclusive neighbors.
Unlike in the DI pattern and CI patterns, where directly
linked nodes or common nodes can only exert a positive influ-
ence on the distance, in the EI pattern exclusive neighbors
can exert a positive or negative influence on the distance
(Figure 3(d)); otherwise, all distances would converge to 0.
To avoid this problem, instead of using a cohesion parameter
A to determine the underlying influence, we focus on the
dynamic membership degree. For edge e(u, v), node x is an
exclusive neighbor of node u and we calculate the values of
CM (x, u) and BM (x, u). If CM (x, u) > BM(x, u), the rela-
tionship between x and u is very close and results in the
decrease of the distance d(u, v). Similarly, if CM(x, u) <
BM (x, u), the relationship between x and u is not close and
results in the increase of the distance d(u, v). To determine
the positive or negative influence of an exclusive neighbor
on distance d(u, v), the dynamic membership degree is used,
which is defined as:

(I1-d (x,v)),
(d (x,v)—1),

(CM (x, u)—BM (x, u)) > 0,
otherwise.

o(x,u)= {
(®)

In equation 8, CM (x, u) and BM (x, u) are localized simi-
larity indices for assessing the similarity between the exclu-
sive neighbor and the core nodes and border nodes, respec-
tively. The function o (x, «) not only characterizes the degree
of influence of the exclusive neighbor x on the distance
but also indicates the direction (positive or negative) of this
influence. Based on the function o (x, u), the robust pattern
of influence by exclusive neighbors, which is called REI,
is defined as follows:

B fAd—=d,uw) ox,u
REL= - 2 ( deg (u) )
x€EN (u)

f(l —d(y,V)) 'U()’:V)
2 deg (v) - @
yeEN (v)

where EN (1) and EN (v) are node sets of exclusive neighbors
of nodes u and v, respectively and are expressed as EN (1) =
N@w)— (Nw)NN@w))and EN(v) = N(v) — (N(u) N N(v)).

As a result, we obtain the robust distance dynamics model
by considering three interaction patterns together. The dis-
tance dynamics d(u, v, t + 1) between nodes u and v over
time is defined as follows:

dw,v,t+1)=d u,v,t)+ DI (u,v, 1)

+CI (u,v,t) + REI (u,v,t), (10)
where d(u, v, t + 1) is the new distance at time step 7 + 1 and
DI(u,v,t), CI(u, v, t)and REI(u, v, t) indicate the influences
of directly connect end nodes, common neighbors, and exclu-

sive neighbors, respectively, on the distance d(u, v, t) at time
step t.
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Finally, as time evolves, all distances will converge, and all
communities and outliers can be easily identified by remov-
ing the edges with the distances equivalent to 1.

D. OUTLIER OPTIMIZATION MODEL

In a network, an outlier has few links in its neighbor set [13].
Therefore, we try to exploit the structure connectivity of
neighbors to further optimize the accuracy of outliers, which
are identified via the distance dynamics model. The concept
of structure connectivity has been widely used in community
detection [12]. Contrary to traditional methods [12], [13],
we take the triangles instead of the edges as the basic indicator
of a strong relation in the graph. The main reason we choose
the triangle structure connectivity is that real-world graphs
such as social networks contains more triangles than random
graphs and have many triangles in a community [30]. More-
over, triangles are known as fundamental building blocks of
anetwork. In a network, a triangle implies a strong tie among
three nodes or the existence of a common node between
other two nodes. In this section, we introduce two outlier
optimization rules: triangle adjacency and triangle connectiv-
ity. Based on these optimization rules, we propose an outlier
postprocessing method. If the triangles of an outlier satisfy
triangle adjacency and all adjacent triangles belong to the
same community, this outlier should cluster with its triangles.
For that, we define triangle adjacency.

Definition 6 (Triangle Adjacency): Two triangles, namely,
A, and Ag, in G = (V, E) are adjacent if and only if A, and
A, share a common edge, which is denoted by A, N A, =
e(x,y) € E(G).

For the graph G in Figure 4(a), As 14,15 and Asg 15 are
adjacent as they share a common edge: e(5, 15). Based on
triangle adjacency, we propose the first optimization rule.

Optimization Rule 1: Given the set C of clusters in a graph
G, a vertex u that is not in any cluster in C is not an outlier
vertex if its triangles are only adjacent to other triangles that
are in same community, which is denoted as C;. In this case,
the outlier u belongs to community Ci(u € C;).

FIGURE 4. lllustration of the optimization model.

To describe the rule more clearly, we consider a simple
example. In Figure 4(a), a simple social network is illus-
trated. By using the robust distance dynamics model, we find
3 classes and 2 outliers, where all nodes with same color
belong to the same community and the two green nodes
are the outliers. The triangles of outlier 5, namely, As 14,15
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and As g 15, are adjacent to triangles Aq,14,15 and Ag 0,15,
respectively. Furthermore, triangles Ajj 14,15 and Ag 10,15
both belong to the blue community. Hence, optimization rule
1 is satisfied. Therefore, node 5 is not an outlier and should
be merged into the blue community. Unlike node 5, node
22 doesn’t satisfy optimization rule 1. Therefore, node 22 is
an outlier and should not merged into the purple community.

In many real-world networks, there are typically hub
nodes [12] that bridge many clusters but don’t belong to any
cluster. Outliers are the nodes that are neither clusters nor
hubs. Each outlier is only weakly associated with a cluster.
If the triangles of an outlier are connected and belong to
different communities, this node is not an outlier; it is a hub.
For that, we define triangle connectivity.

Definition 10 (Triangle Connectivity): Two triangles,
namely, A, and A., in G = (V, E) are connected if and only
if A, and A, share only one common node, which is denoted
by A, NA,=uec E(V).

For the graph G in Figure 4(b), As g 15 and As 17,18 are
connected as they share a common node: node 5. Based on
the triangle connectivity, we propose the second optimization
rule.

Optimization Rule 2: Given the set C of clusters in a graph
G, a vertex u that is not in any cluster in C is not an outlier
vertex if its triangles are connected to other triangles that are
in different communities, which are denoted as C; and C;j.
In this case, node u is not an outlier, but a hub.

To describe the rule more clearly, let us consider a simple
example. In Figure 4(b), a simple social network is illustrated.
By using the robust distance dynamics model, we identify
3 classes and 2 outliers, where all nodes with the same color
belong to the same community and the two green nodes are
the outliers. Triangles As 17,18 and As g 15 of outlier 5 are
connected to triangles Aj7,19,20 and Ajg 11,15, respectively.
However, triangles A17,1920 and Ajg,11,15 belong to the
purple community and blue community, respectively. Hence,
optimization rule 2 is satisfied. Therefore, node 5 is not an
outlier; it is a hub. Unlike node 5, node 22 does not satisfy
optimization rule 2 and should be identified as an outlier.
Since outliers have little or no influence on the clustering of
a network, they should be isolated as noises.

Based on the two optimization rules, we propose an
outlier postprocessing algorithm for further optimizing the
outliers that were identified by the distance dynamics model,
to enhance the accuracy of outlier identification. Before we
describe the postprocessing algorithm, we make three impor-
tant remarks: First, when an outlier is a leaf node, we do
not change it. Second, when neighbors of an outlier are also
outliers, they will be excluded from the neighbor set and
not considered in the two optimization rules. Finally, in this
paper, we consider a partition that has less than two nodes to
be an outlier.

The outlier postprocessing algorithm is presented as
Algorithm 1. First, the postprocessing method checks if
the singleton node satisfies the triangle adjacency condi-
tion in Definition 6 (line 8). If the singleton node satisfies
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triangle adjacency, the method merges the singleton node into
the community via optimization rule 1 (line 9). After that,
the postprocessing method classifies the singleton nodes that
do not belong to any community as either hubs or outliers. If a
singleton node satisfies the definition of triangle connectivity,
it is regarded as a hub according to optimization rule 2
(line 11); otherwise, it is regarded as an outlier (line 13).

Algorithm 1 : Outlier Postprocessing
1: Input: Rough communities Cg, and outliers Og;
: Output: Final communities C, hubs H, and outliers O;
: Procedure: Outlier_Optimization(Cg, OR);
. // Initialization.
SetC =Cgr,H=0,0=40;
: // Handling Outliers.
: for each outlier o € O do
if o satisfies optimization rule 1 then
merge o in to the C with its adjacent triangles;
else if o satisfies optimization rule 2 then
label o as a hub and add it to node set H;
12: else
label o as an outlier and add it to node set O;
14: end if
15: end for
16: Return: C, H, O;

© N QWL AW N

—_ -
—_ o

(95}

E. THE ATTRACTOR++ ALGORITHM

In this section, we discuss the main components of our
algorithm. The proposed algorithm, namely, Attractor++,
consists of three stages: the distance initialization stage,
the dynamic clustering stage and the cluster refinement stage.
The output of the dynamic clustering method is the input
of the cluster refinement method. In the dynamic cluster-
ing stage, Attractor++ roughly clusters the specified graph.
At this stage, the communities and outliers have been roughly
identified. After identifying the candidate clusters and out-
liers, Attractor++ refines the clusters by isolating hubs and
outliers in the cluster refinement stage.

The pseudocode of our proposed method, namely,
Attractor++, is given in Algorithm 2. First, Attractor++
runs the distance initialization stage (lines 5-8). At the initial
time (t = 0), without any interaction, all the edges are
associated with an initial distance via the Jaccard-distance
function, which is expressed in Eq. 2 and Eq. 3 (line 7).
Then, the dynamic clustering stage begins (line 10-31), which
relies on the three proposed interaction patterns (DI, CI, and
REI) and the distances among nodes change gradually as
time evolves (lines 11-24). Because the dynamic membership
degree is used to determine the underlying influences, nodes
that share the same community tend to synchronize and the
distances between these nodes decrease. By contrast, nodes
that are in different communities will separate and the dis-
tances between these nodes will increase. As a result, all dis-
tances will converge to either O or 1 and the communities and
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Algorithm 2 : Attractor++

1: Input: An undirected Graph G = (V, E, W);
: Output: Final communities C, hubs H, and outliers O;
: Procedure: Attractor++(G);
. // Stage 1: Initialization Distance
SetCr=0,0r=0,C=0,H=0,0 =0,
: for each edge ¢ = (u,v) € E do
compute the distance d(u, v, t9) via Eq.(2) or Eq.(3);
: end for
: // Stage 2: Dynamic Clustering

10: while any edge has not converged to 0 or 1 do
11: for each edge e = (1, v) € E do

12: if 0<d(u, v t;) <1 then

13: compute DI(u, v, t;) via Eq.(6);

14: compute Cl(u, v, t;) via Eq.(7);

15: compute REI(u, v, t;) via Eq.(9);

16: update distance d(u, v, t;+1) via Eq.(10);
17: end if

18: if d(u, v, ti+1) < O then

19: d(u, v, tiy1) = 0;

20: end if

21: if d(u, v, ti+1) > 1 then

22: d(u, v, tip1) = I

23: end if

24: end for

25: end while
26: for each edge e = (u,v) € E do
27: if d(u, v, ti+1) = I then

28: remove edge e from graph G;
29: end if
30: end for

31: the communities Cg and outliers Og are roughly identi-
fied.

32: // Stage 3: Cluster Refinement

33: use the algorithm 1 Outlier_Optimization(Cgr, Og) to
obtain C, H, and O.

34: Return: C, H, O;

outliers will be roughly identified by removing all edges with
distances of 1 (line 26-30). Finally, the cluster refinement
process is executed (line 33). After classifying all singleton
nodes as communities, hubs, and outliers, Attractor+-+ ter-
minates the community detection procedure.

F. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of
algorithm Attractor++4-. Given a graph with |V| nodes and
|E| edges, Attractor++ finds all communities, hubs and out-
liers without any parameter settings. For the time complexity
analysis, Attractor is divided into three parts: initialization,
dynamic clustering and cluster refinement. First, each edge is
associated with an initial distance; thus, the computation time
is O(|E]). After that, for dynamic clustering, Attractor+-+
must compute the corresponding core membership degrees
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and border membership degrees for exclusive neighbors at
each time step. Thus, time complexity of this process is O(T *
K x |E|), where T is the number of time steps and K is the
average number of exclusive neighbors of two linked nodes.
Finally, the outliers must be further optimized. The time
complexity is O(D % |O]), where D is the average degree of
the graph and |O] is the number of outliers that are identified
in the dynamic clustering phase. In total, the time complexity
of Attractor++ is O(|[E| + T * K * |E| + D * |O|).

IV. EXPERIMENTS

In this section, we preform extensive experiments to evaluate
the effectiveness and efficiency of the proposed algorithm
using a variety of synthetic and real-world networks.

A. EXPERIMENTAL SETUP

Baseline: To evaluate the performance of Attractor++,
we compare it to four representative community detection
algorithms. All comparison algorithms are listed in Table 1,
of which the Louvain algorithm has been recognized as
a state-of-the-art community detection algorithm, the LPA
algorithm shows linear time complexity for community
detection, and the E-Attractor algorithm is a state-of-the-art
algorithm that was extended from Attractor and provides a
parameter-insensitive distance dynamics model that is based
on Ego-Leader. In addition, the Attractor algorithm, as the
native algorithm that is based on the traditional distance
dynamics model, is indispensable. For all community detec-
tion algorithms, unless otherwise stated, the recommended
default parameter values are used to obtain the best experi-
mental results.

TABLE 1. Comparison algorithms.

Algorithm Type Implementation
Louvain [11] modularity based algorithm | Python
LPA [16] dynamic algorithm Python
Attractor [15] dynamic algorithm Python
E-Attractor [31] | dynamic algorithm Python
Attractor++ dynamic algorithm Python

Experimental Platform: To simulate the performances of
all algorithms on both real and synthetic graphs, we rented
a high-performance server (IBM x3650 m4) from National
Super Computing Center of Changsha, which is located in
Hunan province, China. The server is comprised of one CPU
with 8 cores (Intel Xeon Processor E5-2603) and 16 GB main
memory. All algorithms are run on the high-performance
server using the Windows server 2012 operating system. The
Attractor, E-Attractor and Attractor++- algorithms are imple-
mented in Python. For the other two algorithms, we have
downloaded the Python implementations from the official
websites of the corresponding authors.

Evaluate Metrics: To extensively compare the community
detection algorithms in terms of effectiveness, we adopt the
following three quality measures:
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NMI: The first metric is the normalized mutual informa-
tion (NMI [32]), which is based on information theory and
compares the similarity between the memberships of two
communities. It has been most widely used to measure the
quality of a community when the ground truth is known.
The NMI provides a real number that ranges from 0 to 1 via
normalization. If the detected communities are completely
independent of the real communities, then NMI = O0; if the
detected communities are identical to the real communities,
then NMI = 1.

F-measure: We also use F-measure [33] to quantify the
performances of the identified communities. F-measure is a
commonly used criterion for community detection algorithms
when the community ground truth is known. F-measure
provides a real number that is between zero and one and
combines recall and precision. A poorly performing com-
munity detection algorithm should be associated with a low
F-measure. The higher the F-measure value, the better the
algorithm performs.

ARI: The Adjusted Rand Index (ARI [34]) is selected as the
third metric for all algorithms. ARI measures the similarity
between two clustering results (the agreement on whether to
put two nodes in the same cluster or in different clusters). ARI
has a value that is between 0 and 1, where 1 indicates that the
two clustering results are completely same. If the detected
communities are poor, then ARI = 0.

B. SYNTHETIC NETWORKS

1) NETWORK GENERATION

To evaluate the performance and the sensitivity to
community-structure of the selected algorithms, we inves-
tigated the results on synthetic networks that were gen-
erated by the Lancichinetti Fortunato Radicchi (LFR)
benchmark.

The network generation model, namely, LFR(N, C, k,
kmax, I, - . .), has five important parameters: N is the number
of nodes in the network, C is the number of communities, k is
the average degree of the nodes, kmax 1S the maximum degree
of the nodes, and w is the mixing parameter, which indicates
the proportion of a node’s neighbors that reside in other
communities. Typically, the larger the mixing parameter of a
network is, the more difficult it is to identify the intrinsic com-
munities. Furthermore, the average degree and community
size follow power-law distributions. By varying the parame-
ters of the LFR benchmark, we can analyze the performances
of the algorithms in detail. In these experiments, we generate
eight synthetic networks with ground-truth information. The
values of the parameters for the generated networks are listed
in Table 2.

To make the synthetic networks more consistent with the
real-world networks, we generate eight networks with vari-
ous numbers of communities. By setting parameters k, kmax
and u, we ensure that all synthetic networks have different
average degrees, maximum degrees of nodes and noise edges
in each community.
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TABLE 2. Synthetic networks and parameters for the LFR benchmark.

Networks | NV C k Kmax | 1 Edges
LFR1 200 4 15 18 0.25 3208
LFR2 800 8 15 18 0.25 12453
LFR3 2000 |20 20 25 0.2 35268
LFR4 4000 |50 20 25 0.2 79011
LFR5 10000 |80 10 12 0.15 107056
LFR6 20000 |120 10 12 0.15 216717
LFR7 40000 | 180 12 15 0.10 453054
LFR8 60000 |250 12 15 0.10 674128

2) COMMUNITY DETECTION PERFORMANCE
We evaluate the community detection performances of vari-
ous algorithms on LFR synthetic networks. Then, the average
values of NMI, F-measure, ARI and running time are calcu-
lated. The experimental results are shown in Figure 5.
Figure 5(a) displays the MNI results of various algorithms
on LFR synthetic networks, from which we make the fol-
lowing observations: (1) The five community detection algo-
rithms yield satisfactory results and the average value of NMI
exceeds 0.6. (2) Comparing the five algorithms, we find that
Attractor++ and E-Attractor offer better efficiency and sta-
bility, followed by Attractor and Louvain; the LPA algorithm
performs worst. (3) Focusing on the Attractor, E-Attractor
and Attractor++ algorithms, we find that Attractor++ and
E-Attractor are more stable than Attractor on most LFR
networks and E-Attractor has very similar performance to
Attractor++-.
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FIGURE 5. Community detection performances of various algorithms on
LFR networks.

Figure 5(b) displays the F-measure of various algo-
rithms on LFR synthetic networks, from which we make
the following observations: (1) On the high-noise networks
(LFR1 LFR4, mixing parameter x > 0.2), the F-measure
fluctuation is substantial for all five algorithms, of which
Attractor++ and E-Attractor perform best, followed by
Attractor and Louvain, and LPA performs worst. (2) On the
low-noise networks (LFRS5 LFRS, mixing parameter ¢£1<0.2),
the performances of five algorithms are similar.
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Figure 5(c) displays the ARI values of the five algorithms
on LFR synthetic networks, from which we make the follow-
ing observations: (1) For the ARI, the differences among the
five algorithms are substantial and the performances of the
algorithms are unstable among the LFR networks. (2) Com-
paring the five algorithms, we find that Attractor++ offers
higher efficiency and stability.

Figure 5(d) displays the running times of the five algo-
rithms on the LFR synthetic networks, from which we make
the following observations: (1) Comparing the LPA and
Louvain algorithms, we observe that the running time of
LPA is 3~10 times shorter than that of Louvain on average
and a few orders of magnitude shorter than that of Attrac-
tor. (2) The running times of the Attractor, E-Attractor and
Attractor+-+ algorithms are very similar. Attractor is slightly
faster than E-Attractor and E-Attractor is slightly faster than
Attractor++.

In summary, for synthetic networks, Attractor++- performs
well in identifying ground-truth communities and is more
robust to noise than the other algorithms.

3) OUTLIER OPTIMIZATION PERFORMANCE
In the following, we compare the clustering accuracies of
Attractor++ and Attractor on various synthetic networks.
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FIGURE 6. Outlier optimization performances on LFR networks.

Figure 6 presents the outlier optimization results on the
eight LFR networks. In Figure 6, the “before” column lists
the number of outliers (#0) that are identified by Attractor
without the outlier postprocessing, the ““after”” column lists
the number of outliers (#0) that are detected by Attractor++
with the outlier postprocessing, and the red number indi-
cates the percentage reduction of #0. As shown in Figure 6,
Attractor (the distance dynamics model) easily finds many
outliers: the numbers of identified outliers exceed 450 on
the LFR-7 and LFR-8 networks. By using the outlier post-
processing, the number of identified outliers can be sub-
stantially reduced and the accuracy of outlier identification
enhanced. For example, on the four high-density and noisy
networks (LFR-1 LFR-4, parameter & > 0.2), the outlier
optimization percentages (reducing #0) are very large: 71%,
63%, 36% and 52% respectively. On the four low-density and
low-noise networks (LFR-5 LFR-8), the outlier optimization
percentages are slightly lower: 51%, 27%, 46%, and 34%,
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respectively. Considering all eight LFR networks, we find
that the distance dynamics model faces the drawback of
easily producing many rough outliers and the outlier opti-
mization step is highly necessary for the Attractor++ algo-
rithm. Moreover, according to Figure 6, our proposed outlier
postprocessing has a very good performance, which further
demonstrates the effectiveness of outlier postprocessing.

C. REAL-WORLD NETWORKS
1) NETWORK DESCRIPTION
To evaluate the performance and efficiency, it is necessary
to conduct experiments on real-world networks. We compare
the performances of algorithms in terms of the accuracy and
speed on networks with accurate ground-truth communities.
Six commonly used real-world networks are considered
in the experiments; the characteristics of the networks are
listed Table 3. These networks are selected because they
are very well-known and contain the real structures of
communities, which can be used to evaluate the results
of each algorithm with a desirable accuracy. Moreover,
the six selected real-world networks vary in terms of
graph density: polbooks, football and polblogs are dense
networks, whereas karate, adjnoun and DBLP are sparse
networks. All selected real-world networks are publicly
available from the UCI network data repository (https://
networkdata.ics.uci.edu/index.php) and the Stanford large
network dataset collection (http://snap.stanford.edu/data/).

TABLE 3. The characteristic of commonly used real-world networks.

Networks | Node Edge Average degree | Communities
karate 34 78 4.6 2

polbooks | 105 441 8.4 3

adjnoun | 112 425 7.6 2

football | 115 613 10.7 12

polblogs | 1490 19090 22.4 2

DBLP 317080 | 1049866 |6.6 13477

2) COMMUNITY DETECTION PERFORMANCE
We evaluate the community detection performances of var-
ious algorithms on real-world networks. Then, the average
values of NMI, F-measure, ARI and running time are calcu-
lated. The experimental results are shown in Figure 7.

Figure 7(a) displays the NMI results of the algorithms
on real-world networks, from which we make the following
observations: (1) In terms of NMI, the five algorithms yield
different results. Of particular interest, on football and pol-
blogs, which are high-density networks, Attractor++ obtains
the best NMI, followed by E-Attractor and Attractor, and
Louvain and LPA perform worst. (2) Focusing on the Attrac-
tor, E-Attractor and Attractor++ algorithms, we find that
Attractor++ is more stable than Attractor and E-Attractor on
most real-world networks and E-Attractor is more stable than
Attractor.

Figure 7(b) displays the F-measure of the algorithms on
real-world networks, from which we make the following
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FIGURE 7. Community detection performances of various algorithms on
real-world networks.

observations: (1) In terms of F-measure, the differ-
ences among the five algorithms are significant, where
Attractor++ outperforms the other four algorithms in terms
of average F-measure. (2) Focusing on the Attractor, E-
Attractor and Attractor++ algorithms, the performance of
E-Attractor is more stable than that of Attractor and that of
Attractor++- is more stable than that of E-Attractor.

Figure 7(c) displays the ARI values of the algorithms on
real-world networks, from which we make the following
observations: (1) In terms of average ARI, LPA performs
significantly worse than the other four algorithms. (2) Com-
paring the five algorithms, we find that Attractor++ has the
highest efficiency and stability on most real-world networks.

Figure 7(d) displays the running times of the algorithms
on real-world networks, from which we make the following
observations: (1) The average running time of the LAP algo-
rithm is slightly shorter than that of the Louvain algorithm.
(2) The running times of the LPA and Louvain algorithms are
a few orders of magnitude shorter than those of the Attractor,
E-Attractor and Attractor algorithms. (3) The running times
of the Attractor, E-Attractor and Attractor++ algorithms are
very similar. Specifically, Attractor is slightly faster than E-
Attractor and E-Attractor is slightly faster than Attractor++-.

In summary, Attractor++-, E-Attractor, Attractor and Lou-
vain outperform LPA on both the sparse real-world networks
(karate, adjnoun and DBLP) and the high-density real-world
networks (polbooks, football and polblogs). In addition,
on some real-world networks, Attractor++ outperforms the
Attractor and E-Attractor algorithms.

3) OUTLIER OPTIMIZATION PERFORMANCE
In this subsection, we compare Attractor++ with Attractor in
terms of clustering accuracy on various real-world networks.
Figure 8 presents the outlier optimization results on the six
real-world networks.

In Figure 8, the “before” column lists the numbers of
outliers (#0) that are detected by Attractor without the out-
lier postprocessing, the “after” column lists the numbers of
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FIGURE 8. Outlier optimization performances on real-world networks.

outliers (#0) that are identified by Attractor++ with the
outlier postprocessing, and the red number indicates the per-
centage by which #0 is reduced. According to Figure 8, the
distance dynamics model typically detects many outliers, e.g.,
on the polblogs and DBLP networks. By using our proposed
outlier postprocessing method, the number of outliers that are
identified by Attractor++- can be substantially reduced and
the accuracy of outlier identification enhanced. For exam-
ple, on the polbooks network, the outlier optimization per-
centage reaches 50%; on the adjnoun network, all outliers
are optimized; and on the DBLP network, the percentage
exceeds 60%. Considering all real-world networks, the dis-
tance dynamics model faces the drawback of easily producing
many rough outliers and the outlier optimization step is highly
necessary for the Attractor4-+ algorithm. Moreover, Figure 8
demonstrates the effectiveness of the proposed outlier post-
processing method.

D. TIME STEPS

In the distance dynamics model, the dynamics of each dis-
tance is simulated according to the three interaction patterns.
Before all distances in the network converge (either 1 or 0),
the entire interaction process needs to go through multiple
time steps. In this experiment, we compare the number of time
steps of our proposed algorithm, namely, Attractor++4-, with
that of the Attractor algorithm on two real-world networks
(polblogs and DBLP).
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FIGURE 9. Comparison of the number of time steps for convergence on
the polblogs network.

Figure 9 shows the convergence ratio of the edges at each
time step on the polblogs network. The green dashed line
in Figure 9 indicates the time steps when at least 99% of
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the edges have converged. Attractor++ is much faster than
the original algorithm, namely, Attractor. For the Attractor
algorithm, it takes at least 9 time steps to achieve convergence
of 99% of the distances and all distances converge after
34 time steps. However, for the Attractor++ algorithm, all
distances converge after 17 time steps and it only take 6 time
steps to achieve 99% convergence of 99% of the distances.
Although the total number of time steps of Attractor++ is
much less than that of Attractor, the convergence speed of
Attractor++ is slower than that of Attractor at the early
time steps. Unfortunately, the convergence speed of Attractor
slows as the number of time steps increases, whereas the
convergence speed of Attractor4-+ increases. For example,
after one time step, nearly 42% of the distances have con-
verged when the Attractor algorithm is used, compared to
only 23% distances for the Attractor++- algorithm. However,
after six time steps, nearly 99% of the distances have con-
verged with the Attractor4-+ algorithm, compared to nearly
98% distances with the Attractor algorithm. The main reason
is that Attractor adopts a global parameter setting to deter-
mine the underlying influence of exclusive neighbors on the
distance, but the structures of the communities are constantly
changing with the convergence of new distances. In con-
trast, Attractor++ adopt the dynamic membership degree to
determine the underlying influence of exclusive neighbors
on the distance. A similar result can easily be obtained from
Figure 10; it is not discussed due to space limitations.

= Attractor Attractor++

Edge Convergence(%

R S g O
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FIGURE 10. Comparison of the number of time steps on the DBLP
network.

E. CASE STUDIES

To evaluate the effect effectiveness of our robust distance
dynamics model, we select two well-known real-world net-
works, namely, dolphins (without class labels) and polbooks
(with ground truth), for case studies. These real-world net-
works are publicly available from the UCI data repository at
https://networkdata.ics.uci.edu/index.php.

The first network is the dolphins social network, which
consists of 62 vertices and 159 undirected edges. There are
two communities in the dataset but no class label information.
Each node in the network represents a dolphin that lives
in New Zealand. If two dolphins are in contact frequently,
there is an edge between their two nodes. Figure 11 shows
the detection results that were obtained by the Attractor
algorithm, which identified 2 communities and 11 outliers.
In Figure 11, all nodes that are the same color belong to the
same community and the 11 green nodes are outliers. Of the
11 outliers that were identified by the Attractor algorithm,
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FIGURE 11. Case study on the dolphins network using the Attractor
algorithm.

7 are leaf nodes and we cannot intuitively decide whether
these nodes are real outliers. For the other 4 outliers, we can
use the outlier postprocessing algorithm to further optimize
the results.

Figure 12 shows the detection results that are obtained by
the Attractor++ algorithm, which identifies 2 communities
and 7 outliers. According to Figure 12, the 3 outliers (nodes
36, 44 and 55) in the red dashed circle are optimized and the
other 8 outliers are filtered out in the optimization process.
Specifically, nodes 4, 11, 12, 22, 31, 35 and 48 are leaf
nodes and do not satisfy the optimization rules and nodes
36 and 44 should be merged into the light-blue community
because all the triangles of these two nodes are only adjacent
to the light-blue community. Similar to nodes 36 and 44, node
55 should be merged into the light-red community. Because
node 39 is not in any of the triangles, it is an outlier.
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FIGURE 12. Case study on the dolphins network using the Attractor++
algorithm.

The second network is the Books About US Politics
network, which is referred to as the polbooks network and
consists of 105 nodes and 441 edges. There are three com-
munities in the network and ground-truth information is
available. Each node in the network represents a book about
US politics. An edge between two books indicates that
they are often purchased together by customers. Figure 13(a)
shows the ground truth of the polbooks network, which
covers 3 clusters. Figure 13(b) shows the detection results
that were obtained by the Attractor algorithm, which iden-
tified 4 communities and 6 outliers (red dashed circle).
Figure 13(c) shows the detection results that were obtained by
the Attractor++- algorithm, which identified 3 communities
and 1 hub (red dashed circle). Comparing Figure 13(b) to

63945



IEEE Access

T. Meng et al.: Modified Distance Dynamics Model for Improvement of Community Detection

é@

cl c3
2.; 000000000
'\(2 \,\‘»\@QD
@0 @ @ O @
.®... 0 X "Aw@ @@@
..@ c-:)\ @(5%
m.. ooo ® @@ ®

%.o .
A8Y)

e

Jd0pemy (q)
H+10)enV (9)

FIGURE 13. Case study on the polbooks network.

Figure 13(a) and Figure 13(c) to Figure 13(a), Attractor++
performs better in identifying ground-truth communities.

Based on the above two case studies, we make the follow-
ing remarks: (1) Our algorithm, namely, Attractor++, can
effectively identify vertices that have special roles (hubs and
outliers). (2) Our robust distance dynamics model, which is
based on the dynamic membership degree, is effective on
various networks.

V. CONCLUSIONS

In this paper, we have presented the novel concept of dynamic
membership degree. It enables us to avoid strong dependence
on the cohesion parameter A. Thus, we can conveniently
identify high-quality communities. Based on this concept,
a robust distance dynamics model has been developed, along
with a robust community detection algorithm: Attractor++-.
Moreover, to improve the accuracy of outlier node identifi-
cation, we further propose two optimization rules for judging
whether an outlier should be merged into same community as
its triangles or be classified as a hub. We conduct extensive
experiments on both synthetic and real-world networks, and
the results demonstrate the effectiveness and efficiency of the
proposed algorithm.

However, complex networks in the real world change
dynamically over time and their community structures are
dynamically updated. In the face of dynamic networks with
complex changes, designing dynamic community discov-
ery algorithms that are based on distance dynamics models
requires further study. In addition, multiobjective optimiza-
tion, game theory, statistics and other theories can be used
in dynamic community discovery scenarios to design better-
performing dynamic community discovery algorithms.
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