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Abstract. In this research, we propose deep networks that discover Granger
causes from multivariate temporal data generated in financial markets. We in-
troduce a Deep Neural Network (DNN) and a Recurrent Neural Network (RNN)
that discover Granger-causal features for bivariate regression on bivariate time se-
ries data distributions. These features are subsequently used to discover Granger-
causal graphs for multivariate regression on multivariate time series data distri-
butions. Our supervised feature learning process in proposed deep regression net-
works has favourable F-tests for feature selection and t-tests for model compar-
isons. The experiments, minimizing root mean squared errors in the regression
analysis on real stock market data obtained from Yahoo Finance, demonstrate
that our causal features significantly improve the existing deep learning regres-
sion models.

1 Introduction

Causal inference is a central theme in computational sciences that construct mathemati-
cal models for causation. In statistics, causality is defined over conditional dependencies
modelled between features in the data. Such conditional dependencies are used to con-
struct data distributions linking causes with effects in causal relations defined on data
features. Such causal relations are useful for feature discovery in machine learning. The
impact and risk of including causal relations or causal features is validated by domain
knowledge.

The Granger-Sargent statistic and the Granger-Wald statistic are commonly used
to discover Granger-causal features on time-domain and frequency-domain formula-
tions of Granger causality [1]. In this paper we discover Granger-causal features by
measuring model improvement in deep networks. Our models are useful for simulating
time-dependent observations in application domains with neural computations in deep
learning.

Deep learning is a class of neural networks that learn hierarchical feature represen-
tations approximating non-linear functions. In data-driven analytics applications, deep
learning has been used to visualize, store, process and predict information. In super-
vised deep learning, the information is typically modelled as statistical correlations and



variable associations. Introducing causality methods into supervised deep learning cre-
ates analytics models for data-driven decision making in an application domain where
causal features are separated from spurious features.

In computational learning theory, loss functions are mathematical functions map-
ping a complex data-driven event in complex systems to real numbers. In decision and
estimation theory, loss functions relate empirical risk defined on actual data to expected
risk defined on predicted output of an analytics model.

In this paper, we analyze time series data distributions with the help of deep learning
networks to discover causal relations and causal graphs from Granger causality tests [2].
To derive data representations, the deep networks are trained to optimize squared error
loss functions between actual data and predicted output. The corresponding analytics
predictions are tested and validated with statistical significance tests on regression er-
rors. We also extend unrestricted models in Granger causality for supervised feature
discovery with bivariate regression as well as supervised causal inference with mul-
tivariate regression. Theoretically, the deep network architecture and its squared error
loss function determine empirical risk in our regression models.

Following are the major contributions of this paper:

– We identify Granger-causal features using deep networks that improve bivariate
regression predictions amongst temporal dependencies in time series distributions.

– We discover Granger-causal graphs in time series distributions to improve multi-
variate regression in deep networks.

– We evaluate our theoretical model on Yahoo Finance data to solve causal inference
problems defining stochastic processes found in financial markets.

The paper starts with related work in Section 2 comparing the new approach with
existing approaches. Algorithms and experiments for the proposed method are pre-
sented in Section 3 and Section 4 respectively. The paper ends with Section 5 which
summarises current and future work.

2 Related Work

Causality is generally defined on logical formalizations of different classes of knowl-
edge, reasoning and complexity in data. Causality also depends on features and repre-
sentations, patterns and noise from ground truth data generated in an application do-
main. Depending on a particular definition of causality, causal relations identify causal
features for machine learning.

2.1 Causal Inference in Deep Learning

Causality methods have been applied to deep learning problems such as semi-supervised
learning and transfer learning. In these problems informed priors retrieved from other
networks are used to center the weights in hybrid deep learning networks. Such net-
works then construct statistically significant hypotheses and corresponding data repre-
sentation on actual data from complex systems. An analytics model employing causal-
ity methods can then validate such hypotheses against causal features discovering pat-
terns, structure, context and content in actual data [3]. In general, the instance space for



learning causal features in actual data consists of concept adapting data structures like
strings, trees, networks and tensors.

Backpropagation learning algorithms for deep networks have been improved by
incorporating ideas for training probabilistic graphical models typically used in causal
inference. Such training is inherently Bayesian where prior distributions inform and
constrain analytics models predicting posterior distributions [4]. The improved deep
learning algorithms result in a predicted output informed by a causality graph.

2.2 Causal Inference in Time Series Analysis

In time series analysis, causal inference is identifies and classifies events in time series
such that the events have either deterministic or probabilistic causal relations. Events
are identified by mapping logic and structure of natural language to concept lattices
and causal graphs [5]. Historically, causal reasoning in time series builds on statisti-
cal analysis of covariance or correlation between two or more events in time series.
The calculated correlation strength is then used to predict causal relation between two
events [6]. The disadvantage of this approach is that it cannot determine the direction
and significance of causation. It also cannot discover hidden causes and patterns for
which observed events are effects.

Granger causality is a simple learning mechanism that allows us to explore all pre-
ceding ideas about causality methods in deep learning for time series analysis [7]. Here,
Granger causality does not empirically prove actual causation between events but acts
as a stepping stone to explore the phenomenon relating two events participating in a
cause-effect relationship. Granger-causal features have been discovered with rule-based
analytics models [8] and feature-based analytics models [9]. Our approach to causal in-
ference also builds a feature-based analytics model.

3 Our Proposed Algorithms

We predict stock prices in financial markets with Deep Neural Networks (DNNs) for
discriminative learning based regression models and Recurrent Neural Networks (RNNs)
for sequence learning based regression models. Outputs from bivariate regression mod-
els are used to search Granger-causal features in multivariate time series data.

3.1 Empirical Risk training in Deep Learning Networks

Suppose a regression model for stock y having actual value y(t) at time t predicts
ŷ(t;α) parameterized by regression parameters α belonging to parameter space A.
In computational learning theory, the regression model is analyzed in terms of ex-
pected risk E(L(ŷ(t;α), y(t))), which is defined as expected value of the loss function
L(ŷ(t;α), y(t)), learning probability density function P (ŷ(t;α), y(t)) underlying the
data [10]:

Expected Risk : E(L(ŷ(t;α), y(t))) =

∫
d(ŷ(t;α))d(y(t))L(ŷ(t;α), y(t))P (ŷ(t;α), y(t))

(1)



The expected risk E(L(ŷ(t;α), y(t))) is posed as a regression model when loss func-
tion L(ŷ(t;α), y(t)) is defined on squared errors computed between ŷ(t;α) and y(t). If
the regression model defining L(ŷ(t;α), y(t)) is learning a training dataset of finite size
m, then expected riskE(L(ŷ(t;α), y(t))) is called empirical risk [11] Ê(L(ŷ(t;α), y(t))).

Empirical Risk : Êy(t)∼P (ŷ(t;α),y(t))(L(ŷ(t;α), y(t))) =
Σm
i=1L(ŷ(t;α)(i), y(t)(i))

m
(2)

The computational complexity of empirical risk Ê(L(ŷ(t;α), y(t))) is determined by
the computational complexity of L(ŷ(t;α), y(t)) which in turn is determined by the
regression model’s feature selection and model validation. Thus, our intuition is that
introducing causal features into deep networks not only minimizes empirical risk but
also minimizes regression error.

In our deep network based regression models, regression error is minimized by the
weights α learnt on Squared Error (SE) Loss function L(ŷ(t;α), y(t)) as in Equation 3:

SE Loss : L(ŷ(t;α), y(t)) = (ŷ(t;α)− y(t))2 (3)

L(ŷ(t;α), y(t)) is determined by the deep network’s data representationP (ŷ(t;α), y(t)))
of actual data y(t). For training data of sizem, the total loss functionLMSE(ŷ(t;α), y(t))
is given in Equation 4:

MSE Loss : LMSE(ŷ(t;α), y(t)) =
Σm
i=1L(ŷ(t;α)(i), y(t)(i))

m
(4)

By training a deep network model, we use either a DNN or RNN to minimize empirical
risk in Equation 2. The backpropagation training algorithm solves for α in Equation 4
with a stochastic gradient descent procedure finding best model fit on P (ŷ(t;α), y(t)).

3.2 Granger Causality testing in Deep Learning Networks

Causal features can be discovered by changing loss function L(ŷ(t;α), y(t)) in Equa-
tion 2 according to data representation P (ŷ(t;α), y(t)) in deep learning networks con-
ditioned on actual past data y(t − j), j = 1, 2, ..., p with p lags. In the deep network,
P (ŷ(t;α), y(t)) = P (ŷ(t;α)|y(t − j)) is the conditional probability of predicting re-
gression value ŷ(t) or it parameterized version ŷ(t;α) for stock y.

If another stock x at time point x(t) with q lagged values x(t − k), k = 1, 2, ..., q,
indicates the occurrence of y(t) then we create a deep network conditioned on not only
y(t − j), j = 1, 2, ..., p but also x(t − k), k = 1, 2, ..., q. Then, P (ŷ(t;α;β), y(t)) =
P (ŷ(t;α;β)|y(t−j), x(t−k)) is conditional probability of predicting regression value
ŷ(t) or it parameterized version ŷ(t;α;β) for stock y parameterized by regression pa-
rameters tensors α and β belonging to deep network parameter spacesA andB respec-
tively.

From data representations P (ŷ(t;α), y(t)) and P (ŷ(t;α;β), y(t)) defined above,
we devise following Granger causality test using Equation 3 to predict ŷ(t;α) and
ŷ(t;α;β) as dependent test variables for y(t−j), x(t−k) as independent test variables.

restricted model: ŷ(t;α) = L(P (ŷ(t;α), y(t))) = L(P (ŷ(t;α)|y(t− j))) (5)



unrestricted model: ŷ(t;α;β) = L(P (ŷ(t;α;β), y(t)))

= L(P (ŷ(t;α;β)|y(t− j), x(t− k)))
(6)

The null hypothesis of no Granger causality is rejected if and only if x(t− k) has been
retained along with y(t− j) in the ŷ(t) regression according to an F-test on Root Mean
Squared Errors (RMSEs) between ŷ(t) and y(t). The F-test in Definition 1 [2] deter-
mines the Granger causality relation between stocks x and y where RMSE is computed
for unrestricted regression as RMSEur and restricted regression as RMSEr.

Definition 1. F-statistic =

RMSEr−RMSEur

q−p
RMSEur

n−q

To compute causal features overN multivariate time seriesX = {X(t)u}, u ∈ [1, N ], t ∈
[1, n] selected from N stock prices at n time points in financial markets, we repeat the
F-test for every pair of stocks x and y. In each F-test, the null hypothesis is that the
sample means of predictions are equal and the regression parameters β are zero. The
alternative hypothesis is that there is significant variation between the sample means
of predictions for some non-zero α and β. The null hypothesis is rejected if p-value
on F-test has a significance level less than 0.05. If the null hypothesis is rejected, deep
network features y(t− j) and x(t− k) Granger cause predicted output ŷ(t) with actual
stock price y(t). In experiments with deep learning networks, a Granger-causal feature
is represented by the causal relation x→ y for stocks x and y.

3.3 Multivariate Regression validation with Deep Learning Networks

While we introduced theory to identify single Granger-causes in the previous subsec-
tion, in this subsection we explain the discovery of multiple Granger-causes for a given
stock. Incorporating multiple Granger-causal features into the F-test allows us to im-
prove deep learning with causal reasoning on multivariate time-dependent data.

Therefore, we discover multiple Granger-causal features with multivariate regres-
sion in an unrestricted model. The multiple Granger-causal features discovery process
validates the single Granger-causal features and predictions. We extend the unrestricted
model for bivariate regression in Equation 6 to the unrestricted model for multivariate
regression as in Equation 7.

multivariate unrestricted model: ŷ(t; {αw}) = L(P (ŷ(t; {αw}), y(t)))
= L(P (ŷ(t; {αw})|y(t− j), {x(t− k)w}))

(7)

Equation 7 predicts ŷ(t) by discovering statistically significant Granger-causal features
{xw} → y, w ∈ [1, N ] from multivariate regression. As detailed in Algorithm 2 in the
next subsection, Granger causality test of Equation 5 is applied to all pairs of restricted
and unrestricted models that differ in one independent variable xw discovered by bi-
variate regression. A feature selection procedure for multivariate regression searches
candidate feature sets in the power set of the set {xw}. The optimal feature set is deter-
mined by {αw} with minimum RMSE RMSEmv .

In bivariate regression, the single Granger-causal features are discovered by a DNN-
based and RNN-based regression model. In multivariate regression, multiple Granger-
causal features are discovered by a DNN-based regression model.



Algorithm 1 Discovery of Granger-causal features using deep learning networks
Input: Multivariate time series :X = {X(t)u}, u ∈ [1, N ], t ∈ [1, n]; Granger causality lags p, q ∈ Z;
Output: Predictive model output : Bivariate Granger-causal features graph GMSE ; Multivariate Granger-causal features

set Cmv ; Bivariate regression errors RMSEr, RMSEur for restricted and unrestricted model; Multivariate regres-
sion errorsRMSEmv for unrestricted model;

1: GMSE = Cmv = Φ,RMSEr = RMSEur = RMSEmv = Φ
2: for u ∈ [1, N ] do
3: y(t) = X(t)u

4: for v ∈ [1, N ] and v 6= u do
5: x(t) = X(t)v

6: Create preprocessed and lagged cross validation data y(t− j), x(t− k) with lags p, q from time series
y(t), x(t), t ∈ [1, n]

7: Construct restricted and unrestricted regression model on actual data y(t), x(t) according to Equation 5
and Equation 6.

8: Construct MSE loss predictions ŷ(t) from Equation 4 for DNN as well as RNN networks.
9: Calculate regression errorsRMSEr andRMSEur for each ŷ(t) and y(t).
10: From Definition 1, compute F -statistic overRMSEr andRMSEur .

11: if F -statistic > 0.05 then

12: if model is restricted then
13: Update bivariate regression error,RMSEr[u][v] = RMSEr , for restricted model
14: else
15: Update bivariate regression error,RMSEur[u][v] = RMSEur , for unrestricted model
16: Update Granger-causal features, GMSE [u] = GMSE [u] ∪ x(t) → y(t), for bivariate

regression
17: for u ∈ [1, N ] do
18: y(t) = X(t)u

19: Retrieve bivariate Granger-causal features {x(t)w} for u fromGMSE

20: RMSEmv[u], Cmv[u] = multivar granger(y(t), {x(t)w}, RMSEur) to compute multivariate regres-
sion outputs.

21: returnRMSEr, RMSEur, RMSEmv, GMSE , Cmv

3.4 Deep Learning Networks based Regression Models

Algorithm 1 gives learning algorithm implementing Equation 5 and Equation 6 for loss
function in Equation 4. The algorithm requires a multivariate time series X = {X(t)u}
to predict regression model’s causal graph GMSE of Granger-causal features and cor-
responding regression errors RMSEr, RMSEur, RMSEmv for the restricted model,
the unrestricted model and the multivariate model participating in Granger causality.

Algorithm 1 executes from Line 1 to Line 16 for every pair of time series y(t), x(t) ∈
X with lags p, q. Line 6 prepares crossvalidation data for training deep network on Line
8 which depends on the prediction ŷ(t) from Granger causality models in Line 7. ŷ(t)
is predicted as a complex nonlinear combination of features y(t − j) and x(t − k)
in Line 9. On Line 13 and Line 15, bivariate regression errors RMSEr, RMSEur
are computed on actual time point y(t) and predicted time point ŷ(t). Line 11 applies
F-test to discover Granger causality relations in Line 16. The null hypothesis of not
finding Granger-causal features is rejected at 5% significance level. The corresponding
Granger-causal graph GMSE is searched on Line 19 to improve multivariate regression
errors RMSEmv on Line 20. In Algorithm 1, while loop from Line 2 to Line 16 dis-
covers single Granger-causal features GMSE with bivariate regression, loop from Line
17 to Line 20 discovers multiple Granger-causal features Cmv with multivariate regres-
sion. Algorithm 1 ends on Line 21 by returning Granger-causal features GMSE , Cmv
as well as their regression errors RMSEr, RMSEur and RMSEmv .



Algorithm 2 called on Line 20 of Algorithm 1 gives the search procedure imple-
menting Equation 7. Algorithm 2 requires unrestricted model error RMSEur found
for bivariate regression predicting y(t) from single Granger-causal features {x(t)w}.
The causal relations discovered between {x(t)w} are in Granger-causal graph GMSE .
Algorithm 2 then returns unrestricted model error RMSEmv from multivariate regres-
sion as well as corresponding multiple Granger-causal features set cmv discovered by
multivariate regression network. For all predicted {X(t)u}, Granger-causal feature sets
Cmv stored on Line 20 are the optimal Granger-causal feature sets discovered across
many multivariate regression networks. The loop from Line 4 to Line 19 in Algorithm 2
uses two sets of selected causes and candidate causes to generate and evaluate candi-
date Granger-causal feature sets for unrestricted model in multivariate regression. On
Line 2, selected causes are initialized to Granger-causal features {x(t)w} discovered
in GMSE of Algorithm 1. On Line 6, Cartesian product of selected causes and bivari-
ate Granger-causal features {x(t)w} generates candidate causes.Candidate RMSEr,
Candidate RMSEur are used to track regression errors of restricted and unrestricted
models built from candidate causes. On Line 10, initially a restricted model in mul-
tivariate regression is assumed to be the same as the unrestricted model in bivariate
regression. Later as the loop from Line 4 to Line 19 crosses more than one iteration as
tracked by counter iter, the restricted model is evaluated against Granger-causal fea-
tures c \ {x(t)w} on Line 12 while the unrestricted model is evaluated against Granger-
causal features c on Line 13. In any giver iteration iter, the restricted and unrestricted
models differ by only one of the Granger-causal features present in {x(t)w}. The mul-
tivariate regression error Candidate RMSEur is computed for each candidate c at
Lines 13-15. If the corresponding F-statistic is greater than a predefined threshold on
Line 17, then the candidate c is found to be a legitimate Granger-causal feature for sub-
sequent processing with multivariate regression. Such a c is updated to selected causes
on Line 18. For every new iteration iter, selected causes are reset to the empty set
on Line 7 immediately after being used to generate candidate causes on Line 6. This
loop convergence condition ensures that larger Granger-causal feature sets are gener-
ated across iterations. On convergence, no further selected causes are available for pro-
cessing. Algorithm 2 terminates the search procedure by returning the optimal Granger-
causal feature set cmv that minimizes multivariate regression error RMSEmv .

4 Experiments
Table 1: Companies Listing

Abbreviation Company Name Abbreviation Company Name
AAPL Apple Inc. MCD McDonald’s Corporation
ABT Abbott Laboratories MSFT Microsoft Corporation
AEM Agnico Eagle Mines Limited ORCL Oracle Corporation
AFG American Financial Group, Inc. WWD Woodward, Inc.
APA Apache Corporation T AT&T Inc.
CAT Caterpillar Inc. UTX United Technologies Corporation

In this section we discuss the empirical validation of Granger-causal features in deep
learning networks regression models. Table 1 lists the stocks from different financial
sectors in Standard & Poors 500 - a stock market index based on the market capitaliza-
tions of 500 large companies having common stock listed on the NYSE or NASDAQ.



Algorithm 2 Search procedure for constructing multivariate Granger-causal graphs
Input: Effect time series y(t); Bivariate Granger-causal features {x(t)w}; Bivariate Regression errors RMSEur for

unrestricted model
Output: Optimal Granger-causal feature set cmv and multivariate regression errorRMSEmv for unrestricted model
1: function MULTIVAR GRANGER(y(t), {x(t)w}, RMSEur)
2: Initialize selected causes to Bivariate Granger-causal features {x(t)w}
3: iter = 0, Candidate RMSEr = Candidate RMSEur = Φ
4: while selected causes 6= Φ do
5: iter += 1
6: Generate candidate causes, candidate causes = {x(t)w}× selected causes, from previous iteration’s se-

lected causes
7: Reset selected causes to Φ in current iteration
8: for each candidate cause c ∈candidate causes do
9: if iter == 1 then
10: Set restricted model error Candidate RMSEr[c] = RMSEur[c]
11: else
12: Set restricted model error Candidate RMSEr[c] = Candidate RMSEur[c \ {x(t)w}]
13: Construct multivariate unrestricted regression model on actual data y(t) and {x(t)w} according to

Equation 7
14: Construct MSE loss predictions ŷ(t) from Equation 4 for DNN networks.
15: Calculate regression error Candidate RMSEur[c] for all ŷ(t) and y(t).
16: From Definition 1, compute F -statistic over Candidate RMSEr[c] and

Candidate RMSEur[c].

17: if F -statistic > 0.05 then
18: Update Granger-causal features: selected causes = selected causes ∪ c
19: end while
20: Among unrestricted modelsCandidate RMSEur , find optimal Granger-causal feature set cmv with minimum

multivariate regression errorRMSEmv

21: returnRMSEmv, cmv

22: end function

The stocks daily closing prices were obtained from Yahoo Finance website 3. The data
is obtained for a period of 21 years from 26-07-1996 to 25-07-2017.

The regression model’s feature learning is determined by deep network structure
weights α, β and {αw} with MSE loss function. Deep network structure is designed
to minimize bivariate/multivariate regression errors and maximize significant Granger
causes in the unrestricted model. We treat the regression model as a time-dependent
data-based model with causal lags p, q set to a default value of 200 days. 5285 days
of time points are used to create the crossvalidation data. Each data record has delayed
prices time series predicting current price of a given stock. For fair comparison of base-
line models, we split 30% of crossvalidatiton data into testing data while remaining
70% of crossvalidatiton data is taken to be training data.

On bivariate data, we treat regression modelling problem as a discriminative learn-
ing problem in DNNs as well as a sequence learning problem in RNNs to show that dis-
covered Granger-causal features are not specific to a given network structure. On multi-
variate data, we treat regression modelling problem as a discriminative learning problem
in DNNs to validate generalization capability of proposed feature discovery procedure.
The regression errors for discovering Granger-causal features are also compared with
those from a Autoregressive Integrated Moving Average (ARIMA) regression model. A
grid search procedure is used to select ARIMA training parameters. Number of training
epochs in DNN is set to a default value 50 over a total of 12 stocks. The DNN has three

3 https://finance.yahoo.com/



Table 2: RMSEs with MSE loss for bivariate regression. DNN is selected as the best network
structure for Granger causality.

Abbreviation ARIMA LSTM GRU DNN
AAPL 0.807 1.449 1.475 0.504
ABT 0.748 0.461 0.469 0.626
AEM 1.643 1.115 1.107 0.143
AFG 0.795 0.580 0.588 0.485
APA 2.795 1.558 1.520 0.145
CAT 1.254 1.474 1.452 0.106
MCD 0.319 0.981 0.994 0.425
MSFT 1.555 0.597 0.606 0.361
ORCL 0.190 0.521 0.520 0.497

T 0.786 0.335 0.339 0.078
UTX 0.209 1.110 1.113 0.297

WWD 0.237 0.817 0.819 0.311
t-test 1.24× 10−2 2.21× 10−4 1.89× 10−4 Base

hidden layers consisting of dense activation units and dropout regularization units. It is
implemented in Keras 4 – a Tensorflow based API for deep learning. All time series are
subject to min-max normalization before training.

We experiment with two variants of RNN with Long Short Term Memory (LSTM)
and Gated Recurrent Unit (GRU) activation units. The number of training epochs in
RNN is set to a default value 15. The LSTM has one hidden layer consisting of LSTM
activation unit with 50 neurons. The GRU has three hidden layers consisting of GRU
activation units with 25 neurons. Dropout units are the regularization units. LSTM as
well as GRU state is reset after each training epoch. The LSTM and GRU are trained
for 200 time steps - one record at a time - over lagged data. The time series data is
differenced and scaled to a range of [-1,1]. For multivariate regression, all the identified
single Granger-causal features are used as input. On multivariate testing data, regression
values are predicted one time step at a time.

4.1 Single Granger-causes validation

For each company’s price time series, autoregression models RMSEs are reported in
Table 2. From t-test statistics in Table 2, we find DNN generally has better performance
than competitive models. So we choose DNN as the regression model for discover-
ing Granger-causal features with bivariate regression in Table 3 as well as multivariate
regression in Figure 1. For experimental validation of our algorithms, we also report
Granger-causal features discovered by a GRU model in Table 4.

Table 3 and Table 4 report RMSEs for restricted model RMSEr and unrestricted
model RMSEur. RMSEur is consistently lower than RMSEr for Granger causal-
ity models given in Equation 5 and Equation 6 respectively. Each row in Table 3 and
Table 4 shows pairwise causal relations and their RMSEs. From t-test p-value statistic
comparing RMSEs with and without Granger-causal features in Table 3 and Table 4,
we conclude that unrestricted model shows non-trivial reduction in RMSE compared
to restricted model for any random pair of stocks involved in Granger causality. Fig-
ure 1(a) represents Granger-causal features discovered from bivariate regression as a
causal graph between time series of stock prices represented by vertices where F-test
statistics represented by edges show the strength of Granger causality.

4 https://www.tensorflow.org/api_docs/python/tf/contrib/keras



Table 3: RMSEs with MSE loss for Granger-causal feature discovery. The rows show causal
relations with the restricted model and the unrestricted model RMSEs RMSEr and RMSEur

in bivariate regression with DNN.

Causal Relation

RMSEr

Restricted
model
(DNN
without
causes)

RMSEur

Unrestricted
model
(our model
with
single cause)

Causal Relation

RMSEr

Restricted
model
(DNN
without
causes)

RMSEur

Unrestricted
model
(our model
with
single cause)

AAPL → ABT 0.626 0.198 AAPL → AFG 0.485 0.293
AFG → ABT 0.626 0.191 WWD → AFG 0.485 0.396
APA → ABT 0.626 0.477 AAPL → MCD 0.425 0.315
CAT → ABT 0.626 0.372 AFG → MCD 0.425 0.418

MCD → ABT 0.626 0.261 UTX → MCD 0.425 0.365
MSFT → ABT 0.626 0.501 WWD → MCD 0.425 0.353
ORCL → ABT 0.626 0.362 ABT → MSFT 0.361 0.295

T → ABT 0.626 0.535 AFG → MSFT 0.361 0.249
UTX → ABT 0.626 0.271 UTX → MSFT 0.361 0.297

WWD → ABT 0.626 0.184 WWD → MSFT 0.361 0.183
WWD → UTX 0.297 0.219 UTX → ORCL 0.497 0.202

t-test 1.17× 10−6 Base t-test 1.17× 10−6 Base

Table 4: RMSEs with MSE loss for Granger-causal feature discovery. The rows show causal
relations with the restricted model and the unrestricted model RMSEs RMSEr and RMSEur

in bivariate regression with RNN.

Causal Relation

RMSEr

Restricted
model
(RNN
without
causes)

RMSEur

Unrestricted
model
(our model
with
single cause)

Causal Relation

RMSEr

Restricted
model
(RNN
without
causes)

RMSEur

Unrestricted
model
(our model
with
single cause)

ABT → AAPL 1.475 0.403 AFG → APA 1.529 0.788
AFG → AAPL 1.475 0.781 MCD → APA 1.571 0.944

MCD → AAPL 1.475 0.936 MSFT → APA 1.522 0.859
MSFT → AAPL 1.475 0.851 ORCL → APA 1.551 0.732
ORCL → AAPL 1.475 0.726 T → APA 1.527 0.741

T → AAPL 1.475 0.734 UTX → APA 1.522 1.021
UTX → AAPL 1.475 1.012 WWD → APA 1.526 0.846

WWD → AAPL 1.475 0.839 ABT → CAT 1.445 0.474
ABT → AEM 1.107 0.458 AFG → CAT 1.445 0.918
ABT → AFG 0.588 0.303 MSFT → CAT 1.445 1.001
ABT → APA 1.545 0.407 ORCL → CAT 1.444 0.853
ABT → MCD 0.994 0.382 T → CAT 1.445 0.863

ORCL → MCD 0.994 0.687 WWD → CAT 1.444 0.986
T → MCD 0.994 0.695 ABT → UTX 1.113 0.421

ABT → ORCL 0.521 0.257 ORCL → UTX 1.113 0.756
ABT → T 0.338 0.231 T → UTX 1.114 0.765
ABT → MSFT 0.606 0.256 ABT → WWD 0.821 0.397
t-test 3.21× 10−11 Base t-test 3.21× 10−11 Base

Thus Table 3 and Table 4 validate our proposal to use Granger causality in feature
selection for deep networks based regression models. We also observe that the proposed
feature discovery process and supervised learning process are robust to any particular
deep network structure.



(a) Granger-causal graph with F-
test statistics computed on RMSEs
RMSEr ,RMSEur in the restricted
and unrestricted models for bivariate
regression

(b) Two sets of Granger-causal features discov-
ered by Algorithm 2 for predicting stock price
ABT with multivariate regression. They reduce
restricted model RMSEr from 0.626 to unre-
stricted model RMSEmv 0.141 and 0.178 re-
spectively.

Fig. 1: Granger-causal features, F-statistics on RMSEs RMSEr ,RMSEur and multivariate re-
gression RMSEs RMSEmv for the unrestricted model with DNN. The edge directions indicate
the causal relations between pairs of stocks and the edge weights show the corresponding F-test
statistic given in Definition 1.

4.2 Multiple Granger-causes validation

Figure 1(a) shows the Granger-causal graph with directed weighted edges that are out-
comes of Definition 1. It indicates Granger-causal relations discovered for bivariate
regression. The edge weights are F-test statistics for all the unrestricted models that re-
duce RMSEs in bivariate regression. For example, the causal relation UTX → ORCL
indicates that UTX causes ORCL or ORCL is caused by UTX with F-test statistic 0.129.
This relation has been selected in the Granger-causal graph because the unrestricted
model including UTX prices in ORCL price prediction leads to a RMSE reduction
from 0.497 to 0.202 according to Table 3. Figure 1(a) shows all the causalities identi-
fied on the training data. We do not assume causalities change at every time point. From
Figure 1(a), we not only can identify causal features but also indicate the strength of
causality.

Figure 1(b) shows the top ranked Granger-causal features discovered by Algo-
rithm 2 from Figure 1(a). These causal features are suitable for multivariate regres-
sion. In Figure 1(a), vertices like APA without Granger-causes, ORCL and MSFT with
one and two Granger-causes result in no output from Algorithm 2. For vertices like
ABT with non-zero single Granger-causes, Algorithm 2 identifies multiple Granger-
causes. For ABT, Algorithm 2 outputs a total of 69 Granger-causes which reduces
RMSE RMSEmv in multivariate regression models from RMSEr = 0.626 in the
restricted model to RMSEmv ∈ [0.141, 0.541] in the unrestricted model. In Fig-
ure 1(b), the multivariate Granger-cause {AAPL, AFG, APA, UTX} has regression
error ofRMSEmv = 0.141 while {AAPL, CAT, MCD, MSFT, T} has regression error
of RMSEmv = 0.178 in the unrestricted model. Of the 69 causes, the longest but not
optimal Granger-causes are found to be {AAPL, APA, CAT, MCD, ORCL, T, UTX,
WWD} with RMSEmv = 0.162 and {AAPL, APA, CAT, MCD, MSFT, T, UTX,



WWD} with RMSEmv = 0.174 in the unrestricted model. We also find two Granger-
causes of length 8, six Granger-causes of length 7 and ten Granger-causes of length 6.
From Figure 1(b), we observe that multivariate regression on Granger-causal features
results in a better unrestricted model than bivariate regression on Granger-causal fea-
tures. In bivariate regression as well as multivariate regression, while F-test statistics on
RMSEs validate our feature selection on regression errors, t-test statistics on RMSEs
support our model validation on regression errors.

5 Conclusion and Future Work
We presented deep networks based regression models to augment and discover Granger-
causal features analyzing multivariate time series data from finance domain. Our Granger-
causal features are able to significantly improve multivariate regression performance.
We also constructed Granger-causal graphs to capture temporal dependencies in mul-
tivariate data. On real stock market data we demonstrate that our theoretical model
significantly outperforms existing deep learning regression models. As future work we
shall combine multiple data sources to extract regularized features for cost sensitive
concept learning and big data pattern detection.
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