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Abstract

Elaboration of Bayesian phylogenetic inference methods has continued at pace in recent
years with major new advances in nearly all aspects of the joint modelling of
evolutionary data. It is increasingly appreciated that some evolutionary questions can
only be adequately answered by combining evidence from multiple independent sources
of data, including genome sequences, sampling dates, phenotypic data, radiocarbon
dates, fossil occurrences, and biogeographic range information among others. Including
all relevant data into a single joint model is very challenging both conceptually and
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computationally. Advanced computational software packages that allow robust
development of compatible (sub-)models which can be composed into a full model
hierarchy have played a key role in these developments.

Developing such software frameworks is increasingly a major scientific activity in its
own right, and comes with specific challenges, from practical software design,
development and engineering challenges to statistical and conceptual modelling
challenges. BEAST 2 is one such computational software platform, and was first
announced over 4 years ago. Here we describe a series of major new developments in the
BEAST 2 core platform and model hierarchy that have occurred since the first release
of the software, culminating in the recent 2.5 release.

Author summary

Bayesian phylogenetic inference methods have undergone considerable development in 1

recent years, and joint modelling of rich evolutionary data, including genomes, 2

phenotypes and fossil occurrences is increasingly common. Advanced computational 3

software packages that allow robust development of compatible (sub-)models which can 4

be composed into a full model hierarchy have played a key role in these developments. 5

Developing scientific software is increasingly crucial to advancement in many fields of 6

biology. The challenges range from practical software development and engineering, 7

distributed team coordination, conceptual development and statistical modelling, to 8

validation and testing. BEAST 2 is one such computational software platform for 9

phylogenetics, population genetics and phylodynamics, and was first announced over 4 10

years ago. Here we describe the full range of new tools and models available on the 11

BEAST 2.5 platform, which expand joint evolutionary inference in many new directions, 12

especially for joint inference over multiple data types, non-tree models and complex 13

phylodynamics. 14

Introduction 15

Bayesian Evolutionary Analysis by Sampling Trees (BEAST) is a software package for 16

performing Bayesian phylogenetic and phylodynamic analyses. BEAST samples from 17

the posterior distribution of trees (or networks) and parameters given the input data 18

using the Markov chain Monte Carlo (MCMC) algorihtm. Four years ago, BEAST 19

2 [1, 2] was published as a complete rewrite of the original BEAST software. A main 20

goal of this rewrite was to develop a more modular software framework, one that could 21

be easily extended by third parties. The software platform is comprised of various 22

standalone programs including BEAUti (a graphical user interface [GUI] for setting up 23

an analysis), BEAST to run MCMC analysis, and post processing tools such as 24

LogAnalyser, LogCombiner, TreeAnnotator, DensiTree [3], as well as a package 25

manager. 26

Shortly after its release, a number of packages were added, such as MASTER for 27

simulating stochastic population dynamics models [4], MultiTypeTree for inferring 28

structured coalescent models [5], RBS for reversible jump across substitution models [6], 29

SNAPP for multi species coalescent over SNP data [7], subst-bma for Bayesian model 30

averaging over site models [8], and BDSKY for the birth-death skyline tree model [9]. 31

All these packages have been very popular on their own right, and since the initial 32

release of BEAST 2 a large amount of functionality and packages have been added, 33

showing the success of the approach. In this paper, we summarize the significant 34

advances that have been made. 35

November 15, 2018 2/29

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/474296doi: bioRxiv preprint first posted online Nov. 19, 2018; 

http://dx.doi.org/10.1101/474296
http://creativecommons.org/licenses/by/4.0/


What is BEAST? 36

BEAST is a package for conducting Bayesian phylogenetic inference using MCMC. At 37

its core are rooted time trees (or time networks in latest developments), which can be 38

inferred from multiple sources of data. BEAST supports sequence data for nucleotides, 39

amino acids, codon models, discrete and continuous morphological features, language, 40

microsatellites and SNPs as well as user-defined discrete and biogeographical data. 41

Bayesian inference allows the incorporation of many sources of information in the same 42

analysis, such as DNA sequences from extant and extinct species, combined with 43

information from the fossil record. Apart from inferring rooted time trees, which are 44

valuable in and of themselves [10], BEAST also allows addressing many kinds of micro- 45

and macroevolutionary questions, such as determining the age and location of the origin 46

of species and cultures, rates of mutation and migration, and rate of spread of epidemics. 47

New BEAST functionality 48

At the core of BEAST is its MCMC sampling mechanism. This mechanism has been 49

improved for better performance, which is especially useful for analyses with a large 50

number of taxa but little data, such as a geography-only analysis. The calculation time 51

of Felsenstein’s likelihood, i.e., the probability of sequence data given a tree or network 52

and model parameters, which typically takes up the bulk of computing time, has been 53

made more efficient for the case where there is a proportion of invariable sites. 54

BEAUti has been improved so as to make it easier and more intuitive to set up an 55

analysis. For example, when many tip or clade calibrations are required, these can now 56

be read from a NEXUS file, which tends to be easier to manage than editing calibrations 57

one by one in a GUI. BEAUti now also allows specification of custom tree models, such 58

as multi-monophyletic constraints with multifurcating trees in Newick format as well as 59

switching top-level analyses from MCMC to nested sampling, for example. 60

While the core of BEAST 2 provides basic functionality for Bayesian phylogenetic 61

analyses, it is mostly a platform for building packages on. Package management has 62

matured to include a command line as well as graphical user interface that can deal 63

with different package repositories. Different versions of packages can be installed at the 64

same time. This is as practical as it is important for reproducibility, because an analysis 65

specification file (the BEAST XML file) generated using an older package version can 66

still be run using that older version without the usual necessity of uninstalling the latest 67

package release. Packages are linked by the GUI to websites, making it easy to find 68

information such as tutorials and user documentation. Packages can also be 69

automatically updated to ensure the latest bug fixes and new features are available. 70

Finally, BEAST 2 and its tools have been improved and extended to facilitate the 71

implementation of several new packages, which have also been made faster as well as 72

more efficient in their memory usage. The new packages contain most of the new 73

features. In particular, (i) the time trees were extended to generalized phylogenetic 74

structures, (ii) new models for the existing and new structures were developed, (iii) 75

tools for model selections were developed, (iv) and tools for simulating under such 76

models were implemented. We outline these advances in the rest of this paper. 77

Beyond time trees: extended phylogenetic structures 78

BEAST software packages have always dealt exclusively with phylogenetic trees that 79

have an explicit time dimension. The developers of BEAST (and some other Bayesian 80

phylogenetics packages) have championed the notion that time is a fundamental 81

dimension to connect independent sources of evidence about evolution and ancestry; in 82
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other words, all evolutionary hypotheses should have the time dimension as an explicit 83

part of their parameterisation. The attraction of doing so is manifold, and has been the 84

primary means by which different quantitative theories from phylo- and population 85

genetics have been melded together into increasingly sophisticated hierarchical 86

phylogenetic models that are now starting to be more regularly employed. 87

The ancestral structures estimated by BEAST all have a time dimension, but they 88

are not all the classic binary rooted time trees with samples at the tips. Generalizations 89

of a binary rooted time tree structure (Fig. 1a) are essential in certain cases, for 90

example: 91

• population and transmission trees: branches represent not one lineage, but 92

entire populations (or species) [7, 11], and branching events represent population 93

splits (or speciation or transmission events) [12] (Fig. 1b), 94

• sampled ancestors: fossils may be direct ancestors of other fossils or extant 95

species [13] (Fig. 1d), 96

• structured populations: branches are painted according to which population 97

the individual belongs to [5] (Fig. 1c), 98

• clonal frame ancestral recombination graph: some gene regions have 99

alternative parent edges added to a “clonal frame” phylogeny, resulting in a 100

tree-based network [14] (Fig. 1e), 101

• species networks: hybridization or admixture after isolation events are included 102

in the species history (so that the species history is a directed network) but gene 103

histories (genealogies) are still represented by binary trees [15] (Fig. 1f), 104

• polytomies: one individual gives rise to many lineages at the same time. 105

Since the first release of BEAST 2, a range of Metropolis-Hastings proposal 106

distributions has been developed to sample these extended phylogenetic data structures 107

using MCMC. Additionally, we need to assume a phylogenetic (or “tree”) prior or 108

model for each such phylogenetic structure. This expansion of the space of possible 109

hypotheses that can be addressed by BEAST 2 continues at pace. In the next section, 110

we will highlight the generative priors for the first four classes of extended phylogenetic 111

structures as well as recent advances on new models for classic binary rooted time trees. 112

In addition, some of us (TGV, TS) are currently working on including time tree 113

polytomies in BEAST 2, as may be relevant to, for example, super-spreading events in 114

infectious disease. 115

New models 116

A Bayesian phylodynamic analysis requires the specification of a model for 117

substitutions, a clock model, and a population dynamic model generating the 118

phylogenetic structure, whether that be a tree, a phylogenetic network or a hierarchical 119

combination of the two. These models induce probability distributions for the proposed 120

states of the MCMC, the MCMC samples from the posterior distribution 121

P (T, θ|D) ∝ P (D|T, θ)P (T |θ)P (θ).

Here D is the sequence data and any other sort of data, T is the phylogenetic 122

structure as introduced in the previous section, θ is the collection of the phylodynamic 123

model parameters, as well as parameters for the substitution, site and branch rate 124

sub-models. The strength of BEAST 2 is that developers can contribute new 125
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b)

e)

c)

d) f)

d ancestor
time tree

l gene conversion
graph

Species network
with embedded gene tree

Multi-species coalescentTip-dated time tree
(conditioned on leaf times) Multi-type time tree

a)

Sample Ancestra

Fig 1. Phylogenetic structures available in BEAST 2. (a) A tip-dated time tree, with
leaf times as boundary conditions but not data (generally a coalescent prior is applied in
this setting). (b) A species tree with one or more embedded gene trees (c) A multi-type
time tree has measured types at the leaves and the type changes that paint the ancestral
lineages in the tree are sampled as latent variables by MCMC. (d) A sampled ancestor
tree, with two types of sampling events: extinct species (red) and extant species (blue).
Extinct species can be leaves or, if they are the direct ancestor of another sample,
degree-2 sampled ancestor nodes. (e) An ancestral gene conversion graph is composed of
a clonal frame (solid time tree) and an extra edge and gene boundaries for each gene
conversion event. (f) A species network with one or more embedded gene trees.
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(sub-)models via packages. Table 1 shows the majority of currently available packages - 126

ordered by their features. An up-to-date list of packages can be seen either from the 127

Package Manager embedded in BEAST 2 or using Package Viewer 128

(http://compevol.github.io/CBAN/) online. 129

Table 1. BEAST 2 packages
Package Subspecification Special Feature Reference

Substitution models :

bModelTest nucleotide subst.1 model model averaging, model comparison [16]
SSM nucleotide. subst. model standard named nucleotide models -

CodonSubstModels codon subst. model M0 [17,18]
MM morphological model discrete [19]

BEASTvntr microsatellite model variable number of tandem repeat data [20,21]

RBS subst.1 model model averaging for contiguous site partitions [6]
PoMo nucleotide subst. model mutation-selection [22]

& species tree [11]
Site models :

MGSM site model multi-gamma & relaxed gamma [23]
substBMA site model Dirichlet mixture model for site partitions [8]
Clock model :

FLC molecular clock model strict and relaxed clocks within local clock model [24]

Tree models :

SA unstructured population, non-par.2 sampled ancestor∗ / fossilized BD3 [13]
CA unstructured population, non-par. calibration density, sampling rate estimate [25]

BDSKY unstructured population, non-par. BD serial skyline∗, BD serial sampling [9]
BD incomplete sampling (no ψ) [26]

phylodynamics unstructured population, par.2 deterministic closed SIR, stochastic closed SIR [27]
birth-death SIR [28]

EpiInf unstructured population, par. prevalence estimation, particle filtering [29]

PhyDyn unstructured and structured populations, par. define epidemic model by ODEs4 [30]
MultiTypeTree structured population structured tree [5]

BadTrIP structured population within-host, transmission inference [12]

BDMM structured population multitype BD3 model and sampled ancestors [31]
BASTA structured population approx. structured coalescent [32]

MASCOT structured population approx. structured coalescent and time variant GLM’s [33,34]
SCOTTI structured population transmission inference [35]

BREAK AWAY geographical model break-away model of phylogeography [36]
GEO SPRE geographical model whole world phylogeography [37]

SSE Geographical and structured population State-dependent birth-death + cladogenic events [38]

Network models :
BACTER network model clonal frame ancestral recombination graph [14,39]

SpeciesNetwork network model species networks [15]

Nested models :
DENIM multispecies coalescent species tree estimation with gene flow [40]
SNAPP multispecies coalescent from independent biallelic markers [7]
STACEY multispecies coalescent species delimitation & species tree estimation [41]

StarBEAST 2 multispecies coalescent faster, species tree clocks, FBD-MSC, AIM [42–45]

Model selection :
MODEL SELECTION model selection path sampling, stepping stone [46]

NS model selection nested sampling [47]

Simulation tools :
MASTER simulation stochastic population dynamics simulation [48]

TreeModelAdequacy model adequacy using simulation phylodynamic model adequacy using phylogenetic tree test statistics [49]

∗ birth-death skyline handles sampled ancestors.
1 subst. for substitution models; 2 par. for parametric and non-par. for nonparametric models;
3 BD for birth-death; 4 ODEs for ordinary differential equations;
5 analy. integ. of pop. for analytical integration of population.

Below, we highlight some of the key new models in BEAST 2.5, that have been 130

developed since our first description of the BEAST 2 software platform. 131

Site models 132

The site model (encompassing the substitution model and the model rate heterogeneity 133

across sites), together with the clock model, determine the probability P (D|T, θ) (the 134

phylogenetic likelihood). Model averaging and model comparison of site models are 135

both provided by the new bModelTest package [16]. This package implements 136

reversible-jump MCMC between time-reversible site models for nucleotides, as well as 137

the estimation of the relative support for (i) equal or unequal base frequencies, (ii) 138

uniform or gamma rate heterogeneity across sites, and (iii) zero or non-zero proportion 139

of invariable sites. By providing model averaging of site models within a single MCMC 140

analysis the uncertainty of the site model is integrated out, so that the phylogenetic 141

analysis does not depend on committing to a specific site model. If the site model is not 142

of direct interest, then the posterior distribution on site models can be ignored (knowing 143

it has been model-averaged); otherwise, if the site model is of interest, then bModelTest 144

provides a posterior distribution over site models, so that a credible set of site models 145
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Fig 2. bModelTest analysis for 36 mammalian species [50]. a) Posterior distribution of
substitution models. Each circle represents a substitution model indicated by a six digit
number corresponding to the six rates of reversible substitution models. In alphabetical
order, these are A! C, A! G, A! T, C! G, C! T, and G! T, which can be shared in
groups. The six digit numbers indicate these groupings, for example 121121 indicates
the HKY model, which has shared rates for transitions and shared rates for
transversions. Here, only models are considered that are reversible and do not share
transition and transversion rates (with the exception of the Jukes Cantor model). Other
substitution model sets are available. Links between substitution models indicate
possible jumps during the MCMC chain from simpler (tail of arrow) to more complex
(head of arrow) models and back. There is no single preferred substitution model for
this data, as the posterior probability is spread over a number of alternative substitution
models. Blue circles indicate the eight models contained in the 95% credible set, models
with red circles are outside of this set, and models without circles have neglegible
support. b) Posterior tree distribution resulting from the bModelTest analysis.
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can be constructed, and all pairs of site models can be compared for relative support a 146

posteriori. 147

Figure 2 shows the posterior distribution resulting from a bModelTest analysis of 148

substitution models for 906 nucleotides of cytochrome oxidase II and cytochrome b of 36 149

mammalian species [50] (for details see 150

http://www.doi.org/10.5281/zenodo.1475369). Each circle represents a 151

substitution model indicated by a six digit number corresponding to the six rates of 152

reversible substitution models (see Figure 2 caption for more details). 153

Other substitution and site models added are PoMo [11,22] (which can account for 154

within-species variation and GC-biased gene conversion), pseudo Dollo [51], codon 155

models [17,52], standard named nucleotide models (SSM package), standard empirical 156

amino acid models (OBAMA package), morphological models (MM package) [19] and 157

microsatellite models (BEASTvntr package) [21]. 158

Molecular clock models 159

The core BEAST 2 package already provides the relaxed [53] and random local [54] 160

clock models to model substitution rate heterogeneity along a phylogeny. The FLC [24] 161

package provides a framework that integrates the flexibility of the relaxed clock model 162

into the local clock model. Specifically, the FLC model allows a local clock to be either 163

strict (i.e. as in the original local model definition) or relaxed. In practice, this means 164

closely related lineages can be modelled with a single constant rate substitution model 165

(i.e. strict clock model) while other lineages with significant rate variation can be 166

described more accurately with a relaxed clock model. As in the original formulation of 167

the local clock model, the user needs to define the location of the local clock a priori. 168

Population dynamic models for trees 169

Population dynamic models provide the probability density of the phylogeny given the 170

parameters, P (T |θ). Population dynamic models giving rise to phylogenies are also 171

called phylodynamic models. 172

Tree models for unstructured populations 173

There are two common approaches for modelling the phylogenetic tree, or the genealogy, 174

in phylogenetic inference. The first assumes a classic population dynamic model, namely 175

the birth-death model [55,56], to model the growth of a tree. In a population dynamic 176

birth-death model, through time, each individual gives rise to one additional offspring 177

with rate λ and dies with rate µ. As we only analyse a fraction of individuals arising in 178

this process, it is necessary to model the sampling process for tips of a birth-death tree. 179

For a variety of simple partially-sampled birth-death trees, the distribution of branch 180

lengths has been derived exactly [57]. 181

Alternatively, a mathematical model for trees known as the coalescent [58,59] can be 182

used to parameterize the tree in terms of the effective size of the background population, 183

and changes in this effective population size through time. One can interpret the 184

effective population size and its changes as birth-death parameters when making some 185

coalescent approximations [30]. Partially-sampled birth-death models do not make the 186

approximations that coalescent models do, but they depend on a model of the sampling 187

process, and simple sampling models may not always be an adequate description of real 188

data sets. It is an ongoing debate and topic of research to investigate the consequences 189

of coalescent approximations and sampling model assumptions. 190

Coalescent approaches have been embedded within BEAST since its genesis [60,61]. 191

Thus, we will not further discuss the basic coalescent approach here. In what follows, 192
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we will introduce the basic birth-death models which underwent major development in 193

recent years. Then, we discuss the more sophisticated birth-death and coalescent 194

approaches side by side. 195

In birth-death models, it is assumed that the first individual appears at some time t0 196

before the present. Through time, each individual gives rise to one additional offspring 197

with rate λ and dies with rate µ. An individual is sampled (e.g. the pathogen of an 198

infected individual is sequenced, or ancient DNA for an individual is sequenced; or a 199

fossil is observed) with rate ψ. Upon sampling, we assume that the individual 200

representing the sample is removed from the population with probability r. In the case 201

of infectious diseases, r is the probability of being cured or treated, such that the 202

individual is not infectious any more upon sampling. In the case of species, we typically 203

assume r = 0 as the species continues to exist upon sampling of a fossil. At the end of 204

the process, each extant individual is sampled with probability ρ. The probability of a 205

tree (Fig. 1d), given parameters t0, λ, µ, ψ, r, ρ has been derived in [57] for r = 0, and 206

generalized for r ∈ [0, 1] in [62]. A value r < 1 necessitates using an MCMC algorithm 207

capable of producing trees with sampled ancestors. Such an algorithm is provided in 208

BEAST 2 via the SA (sampled ancestor) package [13]. 209

This basic model has been extended to account for changes of parameters through 210

time within the bdsky package [9]. In bdsky, time is divided up into one or more 211

intervals, inside of which parameters are held constant but between which parameters 212

may be completely different (i.e. the change of parameters occurs in a non-parametric 213

way). 214

In epidemiological investigations the birth-death model can be reparameterised by 215

setting the rate of becoming noninfectious, δ = µ+ ψr (the total rate at which lineages 216

are removed), the effective reproductive number, Re = λ/δ, and the sampling 217

proportion p = ψ/δ (the proportion of removed lineages that are sampled). Fig. 3 shows 218

the posterior estimates from a bdsky analysis of the 2013–2016 West African Ebola 219

epidemic. Estimates are based on the coding regions of 811 sequences sampled through 220

October 24, 2015, representing more than 2.5% of known cases. There is evidence that 221

hospital-based transmission and unsafe burials contributed infections to the 222

epidemic [64], thus the SA (sampled ancestor) package was used to account for some 223

percentage of patients continuing to transmit the virus after being sampled (by allowing 224

r to be less than 1). Re was allowed to change over 20 time intervals, equally-spaced 225

between the origin of the epidemic (t0) and the time of the most recent sample, while 226

the sampling proportion was estimated for every month from March 2014 onwards 227

(when an Ebola virus disease outbreak was declared and the first samples collected). 228

The estimated origin time of the epidemic coincides with the onset of symptoms in the 229

suspected index case on December 26, 2013 [63]. Estimates of Re are consistent with 230

WHO estimates [65], based on surveillance data alone, but with greater uncertainty. For 231

the majority of the period between mid-May and October 2014 Re is estimated to be 232

above 1, consistent with the observation that September 2014 was the turning point of 233

the epidemic and that case incidence stopped growing in October [65]. After peak 234

incidence was reached during the last week of September 2014, Re estimates drop below 235

1 during October and November 2014 and then fluctuate around 1 during 2015 as 236

transmissions persisted in some areas, due to a combination of unwillingness to seek 237

medical care, unsafe burials and imperfect quarantine measures [63]. Re estimates 238

before May 2014 and after August 2015 have a large amount of uncertainty attached to 239

them, due to the small amount of sequences sampled during these time periods. Trends 240

in sampling proportion estimates follow empirical estimates based on the number of 241

confirmed cases; however, the sampling proportion is overestimated during the period of 242

intense transmission, which suggests the existence of transmission chains not 243

represented in the sequence dataset. In the final two months of the study period the 244
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Fig 3. Birth-death skyline (bdsky) analysis of the 2013–2016 West African Ebola virus
disease epidemic. (a) The maximum clade credibility tree of the 811 sequences used in
the analysis. (b) The median posterior estimate of the estimated effective reproductive
number (Re) over time is shown in orange, with the 95% highest posterior density
(HPD) interval in orange shading. The red dotted line indicates the epidemic threshold
(Re = 1). If Re is below this threshold the epidemic has reached a turning point and is
no longer spreading. The posterior distribution of the origin time of the epidemic (t0) is
shown in green. The number of laboratory-confirmed cases per week is shown in blue.
Red arrows indicate weeks with fewer than 10 confirmed cases. The dotted line at A
indicates the onset of symptoms in the suspected index case [63]. The dotted lines at B
and C indicate the dates at which the WHO declared an Ebola virus disease outbreak in
Guinea and a Public Health Emergency of International Concern (PHEIC), respectively.
The dotted line at D indicates the first time any of the three countries with intense
transmission (Liberia) was declared Ebola free following 42 days without any new
infections being reported (new cases were subsequently detected in Liberia in June
2015). (c) The median posterior estimate of the monthly sampling proportion is shown
in purple, with the 95% HPD interval in purple shading. The red dashed line indicates
the number of sampled sequences in the dataset, divided by the number of
laboratory-confirmed cases, for each month in the analysis. This serves as an empirical
estimate of the true sampling proportion. The posterior distributions and medians
(dashed lines) of the infected period and the mean clock rate (truncated at the 95%
HPD limits) are shown in panels (d) and (e).

sampling proportion is underestimated, which may indicate ongoing cryptic 245

transmission during this period, but may also be indicative of a model bias resulting 246

from the remaining transmission chains at this time being highly isolated from each 247

other, which is not taken into account by the model. 248

Popular models in epidemiology, such as the SIR model [66], or in macroevolution, 249

such as the diversity-dependent model [67], assume that parameters change as a 250

function of the number of susceptible individuals or non-occupied niches, for example. 251
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Thus, they are called parametric birth-death models. Such parametric rate changes can 252

be assumed when using the EpiInf package [29]. This latter package additionally 253

samples the trajectory of infectious and susceptible individuals through time and allows 254

for the inclusion of case count data in addition to sequences. In a faster, but 255

approximate way, the phylodynamics package [28] performs inference under the SIR 256

model using genetic sequences. 257

Parametric birth-death-based population dynamic models are computationally 258

expensive because parameters are a function of the number of co-occurring individuals: 259

typically we do not know this number and thus have to sample it via MCMC. An 260

alternative is to approximate the population dynamics using the coalescent, which 261

essentially means that we assume that our sample is small within a large population, 262

and that we condition on the sampling times instead of them being part of the data, as 263

in the birth-death model. The phylodynamics package provides an approach to 264

estimate the trees and parameters assuming an either deterministically or stochastically 265

changing population size under an SIR-type coalescent framework [27]. 266

The analysis of genetic data and fossils for reconstructing a species phylogeny can be 267

achieved using the birth-death model when setting r = 0. This setting is also referred to 268

as the fossilized birth-death (FBD) process [68–70]. These approaches generalize the 269

total-evidence dating method [71,72] by allowing for sampled ancestor fossils (instead of 270

assuming all fossils are tips in the tree) and modelling of the fossil sampling process. 271

These FBD approaches are an alternative to dating phylogenies by node-calibration 272

approaches. Some constructions of the latter result in complex marginal priors for 273

calibrated nodes [73], and it is not straightforward to specify a prior distribution for 274

each calibration node. Furthermore, node-calibration approaches do not coherently use 275

all comparative data within a joint inference framework, since the decision of which 276

node to calibrate with which fossil is made before phylogenetic inference. This 277

incoherency is overcome by total-evidence approaches where all data is analyzed 278

together and node ages and tree topology are estimated jointly. On the other hand, the 279

FBD models use each fossil age as an observation, and can be very sensitive to a biased 280

fossil or extant species sampling [69, 74]. This is particularly problematic when only the 281

oldest fossils of clades are included in the analysis, as is commonly done in node dating 282

approaches. I such cases, the CA (CladeAge) [25] package allows unbiased age 283

estimation; however, it requires that sampling parameters are known a priori of the 284

analysis while the FBD approach estimates these parameters alongside the tree. On the 285

other hand, this requirement of the CladeAge approach means that different sampling 286

parameters can be specified for different clades, whereas all (coexisting) species are 287

assumed to share the same sampling parameters in the FBD model. 288

Tree models for structured populations 289

Methods for studying population structure and reconstructing migration history have 290

seen considerable progress in recent years, and have been particularly bolstered by the 291

modularity and extensibility of BEAST 2. These features represent a remarkable 292

opportunity for end users, who can now use, test and compare different models and 293

approaches without the need to switch platforms and formats. It also encourages 294

method development, as the availability of packages in a single, modular platform aids 295

future development through easy integration of ideas and code. 296

In analogy with the situation for unstructured populations, the two approaches for 297

structured populations are (i) multi-state birth-death models [9], implemented in the 298

bdmm [31] package, and (ii) structured coalescent approaches, with an exact 299

implementation available within MultiTypeTree [5]. The birth-death and coalescent 300

approaches from above are essentially generalized to allow for more than one population 301

by assuming migration rates between, and variable birth rates across, populations. 302
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The bdmm package allows for changes in dynamics through time by using a skyline, 303

analogous to the unstructured birth-death models. Furthermore, it can quantify its 304

parameters, such as migration rates, without MCMC sampling of the states in ancestral 305

lineages. In other words, for T being a phylogenetic tree with its tips being assigned 306

states, bdmm uses equations for P (T |θ) under the multi-state birth-death model. The 307

bdmm functionality was recently extended for macroevolutionary trees through the SSE 308

package [38]. This package implements a family of (birth-death) models of 309

state-dependent speciation and extinction ranging back to the original BiSSE model [75] 310

where all tips are sampled at one point in time. The “state” a species or population is 311

in can represent the state of one of its traits, but it can also be seen as its geographical 312

distribution. When inputs are geographical ranges, state transition parameters can be 313

interpreted as migration rates. 314

For the structured coalescent, the MultiTypeTree package samples the ancestral 315

states of all lineages (Fig. 1c), using MCMC, which can become very slow (i.e. 316

MultiTypeTree considers P (T |θ) with T being a phylogeny where all lineages at all 317

times have states assigned). Furthermore, the package needs to assume constant 318

population sizes through time for the different demes. These limitations have been 319

overcome by tracking ancestral states probabilistically using different 320

approximations [30, 76], avoiding the need to sample ancestral states using MCMC. The 321

approximation originally proposed by [30] tracks state probabilities assuming that the 322

state of each lineage evolves completely independently of other lineages in the phylogeny. 323

Thus, an approximate equation for P (T |θ) under the structured coalescent is employed, 324

where T is a phylogenetic tree, with its tips being assigned states. BASTA [32] 325

implements a highly optimized version of the approach of [30] in BEAST 2.5, allowing 326

one to rapidly analyse scenarios with many different sub-populations. 327

MASCOT [33] implements an improved approximation, derived in [76], that is more 328

closely related to the exact structured coalescent, in that lineage state probabilities 329

reflect the likelihood of each lineage coalescing with other lineages based on their 330

probable location. Simulations using MASCOT revealed no biases in the estimates of 331

parameters and node locations [76]. MASCOT additionally allows estimates of 332

migration rates and effective population sizes across different sub-populations and time 333

to be informed from predictor data (such as clinical, demographic, or behavioural 334

variables) using a generalized linear model (GLM) approach [34]. 335

The PhyDyn package [77] supports a highly flexible mark-up language for defining 336

demographic or epidemiological processes as a system of ordinary differential equations. 337

PhyDyn implements three approximations of the structured coalescent and extended 338

previous work [30] to improve accuracy and reduce computational cost. The package 339

calculates migration and coalescent rates from population trajectories and uses the 340

structured coalescent approximations to calculate the states of lineages through time. A 341

suitable application for this approach is the estimation of parameters from complex 342

infectious disease models with multiple compartments, and it provides a means of 343

taking advantage of categorical metadata which is not related to geography, such as 344

clinical, demographic, or behavioural variables in phylodynamic studies of infectious 345

disease dynamics. 346

These coalescent frameworks in BEAST 2.5 extend earlier developments on the 347

coalescent. Among the most popular earlier models of this class for studying migration, 348

spread and structure were the structured coalescent-based methods of Migrate-n [78]. 349

Migrate-n targets the same structured coalescent distribution as MultiTypeTree, but 350

differs with respect to the exact implementation. In particular, since not embedded 351

within BEAST, it cannot be coupled with e.g. relaxed clock models. 352

The very popular discrete trait model and continuous phylogeographic methods from 353

Lemey and colleagues [79,80] assume that the whole tree was generated under an 354
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unstructured model, and that the trait evolved—just like a nucleotide—on that tree. 355

This approach is extremely computationally efficient and allows the study of a large 356

number of samples with many distinct trait values. However, these models make strong 357

assumptions about the distribution of sampled trait values which can bias inference 358

results [32]. This issue can be overcome by the newer but computationally more 359

demanding methods above. The Lemey et al. models are available in BEAST 2 through 360

the beast-classic package (except for the generalized linear model feature introduced 361

in [81]). 362

Another class of models of population structure deals with the fact that each host in 363

an outbreak contains a separate within-host pathogen population during colonisation. 364

In this context, transmission between hosts is a migration event into a new deme that is 365

consequently colonised. The common aim of such models is to reconstruct the series of 366

transmission events between hosts that led to the establishment of the considered 367

outbreak. BEAST 2.5 offers two different models of such dynamics; SCOTTI [35] 368

models transmission in a structured coalescent setting, and assumes that there is no 369

recombination, that transmission inocula are small, and that each sample consists of an 370

individual haplotype (however, multiple samples from the same host are allowed). 371

BadTrIP [12] instead models transmission with a multispecies coalescent (MSC) 372

paradigm, allowing recombination, large transmission inocula, and within-sample 373

pathogen genetic diversity information from read-based allele counts, while accounting 374

for sequencing error. BadTrIP can efficiently utilize information from genetic variation 375

within samples to reconstruct more detailed transmission histories than SCOTTI, but it 376

is also more computationally demanding [12]. 377

Multispecies coalescent models 378

The multispecies coalescent (MSC) model describes the evolution of genes within 379

species [82]. Broadly, it assumes that the sampled alleles for a given gene have evolved 380

according to a common coalescent process within each species, typically thought of as 381

occurring backwards in time. For each branch in the species tree, this process begins at 382

the tipward end of the branch, and apart from the root is truncated by the speciation 383

event at the rootward end. Thus the MSC models trees within trees, and the probability 384

density P (T |θ) becomes more complex, as described below. 385

An emergent property of the MSC known as incomplete lineage sorting (ILS) occurs 386

when two or more lineages do not coalesce in their immediate ancestral population 387

(Figure 4), which can lead to gene trees with discordant topologies among themselves 388

and with the species tree. The probability of ILS increases as branch lengths are 389

shortened in time, and/or when the effective population size Ne is increased. Species 390

trees with four or more ingroup species can have a region of their parameter space (the 391

“anomaly zone” [83]) where most gene trees have a topology different to the one of the 392

species tree. 393

Discordance between gene trees and species tree in their topologies and times can 394

lead to incorrect species tree estimates from concatenated gene sequences – this has 395

been shown to occur with both maximum likelihood and Bayesian methods like those 396

implemented in BEAST. More specifically, in the anomaly zone, gene tree topological 397

discordance can result in incorrect estimates of the species tree topology [84,85], and 398

systematic bias in branch length estimates [86]. Even in the case of just two species 399

where gene tree discordance is impossible, speciation times estimated using 400

concatenation will be wrong because the expected time to coalescence is 2Ne 401

generations older than the speciation time [87]. The concatenation estimates of 402

speciation times are therefore expected to be 2Ne generations older than the truth. 403
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Fig 4. The multispecies coalescent (MSC) model with three species and a single gene
tree. A separate coalescent process applies to each of the five branches in the tree; the
branches for the extant species A (red), B (green) and C (blue), the ancestral branch of
A and B (yellow), and the root branch (grey). Several individuals have been sampled
per species. In this example the ancestral lineage of individual b4 does not coalesce in
species B or ancestral species 4. In ancestral species 5, it coalesces with the ancestral
lineage of species C. This leads to incomplete lineage sorting and enables gene tree
discordance – in this example b4 is a sister taxon to individuals from species C, rather
than to individuals from its own species, or sister species A. If b4 was the representative
individual for its species, then this gene would exhibit gene tree discordance. Other
individuals which show concordance at this locus are expected to show discordance at
other unlinked loci when populations are large or speciation times are recent.

Unlike concatenation, multilocus MSC methods can accurately and jointly estimate 404

the topology and times of the species tree and gene trees directly from multiple sequence 405

alignments (MSAs). The first BEAST multilocus MSC implementation was *BEAST, 406

which was introduced in BEAST 1.5.1 [88]. Let P (T,G, θ|D) be the joint posterior 407

probability density for a species tree (T ), a set of gene trees (G = {g1, g2, . . . , gL}) and 408

additional evolutionary parameters (θ), given a corresponding set of multiple sequence 409

alignments D = {d1, d2, . . . , dL}. Thus, we now enrich our posterior probability from 410

above, P (T, θ|D) by additionally sampling gene trees G, using P (T,G, θ|D). In the 411

MCMC, we calculate the product of phylogenetic likelihoods P (Di|gi, θ), the coalescent 412

probability density P (gi|T, θ) for each gene tree gi, and the prior probability of the 413

species tree given macroevolutionary parameters P (T |θ): 414

P (T,G, θ|D) ∝

(∏
i

P (Di|gi, θ)P (gi|T, θ)

)
P (T |θ)P (θ). (1)

StarBEAST 2 [43] built on *BEAST [88] introduced species tree relaxed molecular 415

clocks, where a separate substitution rate is estimated for each branch of the species 416

tree. The substitution rates across each gene tree, used to calculate gene tree 417

likelihoods, are then derived from the per-species rates and the per-gene rates [43]. This 418

clock model enables accurate inference of substitution rate variation across the species 419
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tree from multiple loci. 420

Recently, some of us have developed an integrative model of molecular and 421

morphological evolution which combines the FBD and MSC models to infer species 422

trees from neontological and paleontological data, called the FBD-MSC for short. In 423

this model, morphological data evolve along the species tree like the FBD model, but 424

the MSC is used to model molecular evolution. The FBD-MSC was implemented in 425

StarBEAST 2 v14. Using simulation, it was shown that differences in estimated ages 426

between concatenation and the FBD-MSC are likely due to systematic biases introduced 427

by concatenation [44]. 428

Although the MSC deals successfully with a ubiquitous source of discordance, it has 429

limitations. It relies on an assumption that there is no recombination within loci and 430

free recombination between loci. The MSC also ignores the possibility of hybridization. 431

Furthermore, in the MSC, speciation is assumed to be immediate, with an instant where 432

(going back in time) coalescence suddenly becomes possible. In practice, speciation is 433

usually expected to be gradual, and sometimes gene exchange occurs between non-sister 434

species. Newly developed approaches relaxing such strict tree constraints are described 435

in the next section on explicit models of reticulate evolution. 436

Another assumption of the MSC is that individuals can reliably be assigned to 437

species or populations, whereas in practice, this is often not the case, especially with 438

shallow phylogenies. DISSECT [89], extending the MSC, was first developed for BEAST 439

1.8.1, and it makes no assumption about how individuals are grouped into species, by 440

inferring species assignment and delimitation simultaneously with the joint inference of 441

the species and gene trees. It does so through an approximation to the Dirac delta 442

function, where the birth-death prior includes an additional probability ‘spike’ of very 443

short duration, ε, just before the present. This model is called the birth-death-collapse 444

model. When the most recent common ancestor (MRCA) of multiple individuals is 445

present inside the spike, those individuals are often interpreted as belonging to a single 446

species [90,91]. 447

Improving the computational performance of MSC methods is an ongoing challenge. 448

Increasing the number of individual specimens in an analysis will degrade computational 449

performance. Most seriously, the relationship between the number of loci used with 450

*BEAST and the time taken to collect enough independent samples from the posterior 451

distribution follows a power law distribution. The result is that whenever the number of 452

loci used in a study is doubled, the time taken to run *BEAST increases seven-fold [42]. 453

Both StarBEAST 2 and STACEY [41] (the successor of DISSECT) offer improved 454

MCMC mixing over their predecessors. STACEY introduced a number of new classes of 455

MCMC operators that simultaneously modify the species and gene trees in a 456

coordinated fashion. On a data set where *BEAST was not able to converge when used 457

with any more than 50 loci, STACEY was successfully run with 500 loci [41]. 458

Likewise StarBEAST 2 has implemented coordinated operators belonging to one of 459

the classes introduced by Jones [41]. Both StarBEAST 2 and STACEY also implement 460

analytical integration of population sizes, which reduces the number of parameters 461

which must be estimated using MCMC. The combination of new operators, analytical 462

integration and additional optimizations to data structures enables StarBEAST 2 to be 463

run with double the number of loci in roughly the same time as *BEAST. 464

Other approaches have addressed the computational burden associated with the 465

MSC by taking a different modeling path. In particular, it is possible to greatly reduce 466

the number of parameters associated with the gene trees in the MSC by integrating over 467

all possible gene trees at each locus and at each MCMC step. This way, the parameter 468

space does not increase as new loci are added to the analysis, and computational 469

demand increases typically only linearly with the number of loci. In order to simplify 470

gene tree integration, these models consider individual sites as loci, treating each SNP, 471
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or base, as unlinked from the others. While this modeling assumption can represent a 472

coarse approximation, it on the other hand has the advantage of allowing recombination 473

within genes, that otherwise can bias gene tree (and therefore species tree) inference. 474

One of the first gene tree-integrating approaches was SNAPP [7], which infers 475

species trees directly from a matrix of biallelic markers (without linkage between 476

markers), and is available as a package for BEAST 2. SNAPP integrates over all 477

possible gene trees for each marker at each MCMC step, enabling much wider data 478

matrices of thousands of markers to be used. The posterior probability density becomes: 479

P (S, θ|D) ∝

(∏
i

P (Di|S, θ)

)
P (S|θ)P (θ). (2)

Another similar approach is PoMo [11]. PoMo models each species in the species tree 480

as a small population (in particular, a Moran model [92]), affected by new mutations 481

(introducing new low-frequency alleles in a population) and genetic drift (changing allele 482

frequencies within populations). Differently from SNAPP, PoMo uses nucleotide data, 483

allowing more than two alleles at each SNP, but still allowing at most 2 alleles at one 484

time at any species/population. For each species and locus, PoMo reads 4 numbers, 485

corresponding to the allele counts of the 4 nucleotides at the considered species and 486

locus. PoMo is generally faster than SNAPP or MSC methods [11], and in its BEAST 2 487

implementation it can account for sequencing errors, as for allele counts derived from 488

reads mapped to a reference genome. 489

Reticulate evolution 490

Describing evolutionary history using tree structures is generally a simplification. 491

Genomes are subject to recombination, organisms are subject to horizontal gene transfer 492

and species undergo hybridization followed by introgression. With a small number of 493

exceptions (e.g. [93], [94]), computational phylogenetics has so far addressed these 494

processes only partially, by restricting gene tree reconstructions to relatively short 495

alignments that are assumed to be free from intra-locus recombination, or by excluding 496

taxa from phylogenetic analyses that were found to be involved in gene flow by other 497

approaches [95]. 498

However, while these approaches to some extent avoid bias resulting from 499

recombination, they at the same time ignore it as a potentially very useful source of 500

information that is increasingly provided by whole-genome sequencing. For example, it 501

has been shown that making use of this large-scale genomic structure can lead directly 502

to powerful insights into ancestral population dynamics [96,97]. Similarly, with the 503

increasing sophistication of species history reconstruction methods brought about 504

through the availability of MSC methods, the omission of important processes such as 505

hybridization and horizontal gene transfer from these models is becoming obvious. In 506

response to this demand, BEAST 2 package authors have contributed and/or 507

implemented a number of algorithms which perform phylogenetic/phylodynamic 508

inference under models which directly account for non-tree-like evolution. 509

Gene conversion 510

The package Bacter [14] provides a complete, carefully validated, reimplementation of 511

the ClonalOrigin model [39] which approximately describes networks produced by 512

homologous gene conversion in bacteria. This is done by approximating the 513

recombination graph using a tree-based network [98], in which the underlying tree is the 514

“clonal frame” produced by the bacterial reproduction process and the additional edges 515

represent homologous gene conversion events. In contrast to the original 516
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implementation, BACTER allows for joint estimation of both the clonal frame and the 517

reticulations contributed by conversion events. Additionally BACTER provides a 518

heuristic algorithm for summarizing the posterior distribution over these trees in a 519

fashion similar to the MCC tree approach used by BEAST for binary trees. 520

Hybridization and horizontal gene transfer 521

For multispecies phylogenetic analyses, a model called the Multispecies Network 522

Coalescent (MSNC) has been developed [99,100]. This model generalizes the MSC by 523

replacing the species tree (which supports only speciation nodes) with a species network 524

(supporting speciation and reticulation nodes). Reticulation nodes and edges in the 525

network can represent multiple biological processes including hybrid species, 526

introgression or secondary contact. Gene trees, embedded within the species network, 527

are still used to model the evolution of individual loci. This means the MSC’s 528

assumption of no intra-locus recombination still applies. 529

SpeciesNetwork, a fully Bayesian implementation of the MSNC where the species 530

network and gene trees are estimated directly from MSAs, has been developed and is 531

available as a package in BEAST 2.5 [15]. Unlike for the MSC, there may be more than 532

one possible embedding of a gene tree of given topology and times within a species 533

network of given topology and times. The probability density of a possible embedding 534

thus depends on the inheritance probability γ at each reticulation node. 535

In SpeciesNetwork, the gene tree embeddings, Ψ, and inheritance probabilities, 536

γ ∈ Γ, are jointly estimated alongside the species network, gene trees and other 537

parameters. The posterior probability density for the model is similar to *BEAST and 538

StarBEAST 2, but T represents a species network rather than a tree, and the additional 539

jointly estimated parameters are included: 540

P (T,G,Ψ,Γ, θ|D) ∝

(∏
i

P (Di|gi, θ)P (gi|Ψi, T, θ)P (Ψi|Γ, T )

)
P (T |θ)P (Γ)P (θ). (3)

Isolation with migration 541

Sitting between the MSC and the MSNC are models where there is a species tree (not 542

network) but the exchange of genes is allowed between the branches of the species tree. 543

This exchange of genes is typically termed gene flow. Gene flow may occur between 544

sister species, known as isolation-with-migration (IM) [101] and between non-sister 545

species (paraphyly) [102]. It has been shown that ignoring gene flow can result in poor 546

estimates of species tree topologies and node times [102]. 547

One solution in the BEAST2 framework is the DENIM package [40], which is able to 548

infer species trees more accurately than MSC-based models such as STACEY when a 549

small amount of gene flow is present. It uses an approximation which breaks down if 550

there is too much gene flow. DENIM is also able to identify which loci are subject to 551

gene flow. 552

Another solution is AIM [45], which is part of StarBEAST 2 since version v15. AIM 553

implements an IM model that allows the estimation of species trees, rates of gene flow 554

and effective population sizes from genetic sequence data of independently evolving loci. 555

Inferring the species tree topology alongside the other parameters of interest is possible 556

due to the ability to integrate over migration histories [76]. For every set of effective 557

population sizes of extinct and extant species and rates of gene flow between these 558

species, AIM can calculate the probability of a gene tree given a species tree without 559

inferring the migration events. This allows changing the species tree topology and node 560

order while still computing the probability of gene trees under these new settings. 561
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MCMC can thus be used to explore the different combinations of species trees, rates of 562

gene flow, effective population sizes and gene trees jointly. 563

Figure 5 shows the species tree and migration events inferred with AIM from a set of 564

100 nuclear gene sequence alignments for five species of Princess cichlid fishes 565

(Neolamprologus savoryi -complex [103]) from the East African Lake Tanganyika and the 566

outgroup species Metriaclima zebra from Lake Malawi. Princess cichlids are well known 567

to hybridize in captivity when placed in the same aquarium [103], and hybridization in 568

their natural habitat has been supported by observed discordance of mitochondrial and 569

nuclear among-species relationships [104]. Whole-genome sequence data for the six 570

species have been generated by [105] and [106] and were used by [106] to generate 426 571

time-calibrated phylogenies from individual regions of the genomes; a comparison of 572

these phylogenies then supported three past hybridization events in Princess cichlids: 573

between Neolamprologus brichardi and N. pulcher, between N. marunguensis and the 574

common ancestor of N. pulcher and N. olivaceous, and between N. marunguensis and N. 575

gracilis [106]. For the analysis shown in Figure 5, we reused the genome data of [105] 576

and [106] to generate alignments for 100 one-to-one orthologous genes following [107], 577

and estimated the species tree jointly with the support for gene flow under the AIM 578

model. We fixed the height of the species tree to be 9.2 Mya [95] and inferred the clock 579

rate and transition/transversion ratio for each locus jointly with all other parameters. 580

The backwards in time rate of gene flow between any two species (except the outgroup) 581

was assumed to be inversely proportional to the time these two species co-existed. For 582

each possible direction of gene flow, we inferred the support for this rate being 583

non-zero [79] and the rate scaler itself. The rate scaler was assumed to be exponentially 584

distributed around 0.05. While not exactly equal, this corresponds in scale to about 5% 585

of lineages to have originated from a different species. 586

Model selection and model adequacy 587

The model selection package has been extended with a number of existing methods, and 588

now contains path sampling, stepping-stone, Akaike information criterion for MCMC 589

(a.k.a. AICM), conditional predictive ordinates [108] and generalized 590

stepping-stone [109]. 591

The NS package implements nested sampling [47] for phylogenetics, which can also 592

be used for model selection. Nested sampling is a general purpose Bayesian 593

method [110] for estimating the marginal likelihood, which conveniently also provides an 594

estimate of the uncertainty of the marginal likelihood estimate. Such uncertainty 595

estimates are not easily available for other methods. Furthermore, nested sampling can 596

be used to provide a posterior sample, and, for some cases where standard MCMC can 597

get stuck in a mode of a multi-modal posterior, nested sampling can produce consistent 598

posterior samples [47]. The marginal likelihood estimates produced by nested sampling 599

can be used to compare models, so provide a basis for model selection. 600

While model selection compares different models, in model adequacy studies, we 601

assess if a model is a good fit by itself. The key idea of model adequacy assessments is 602

to perform direct simulation of data from generative models (i.e. any of the models 603

discussed above). More precisely, simulations are used to assess the absolute model fit 604

in a posterior predictive framework. First, data is simulated using parameter values 605

sampled from the posterior distribution. Such simulations are known as posterior 606

predictive simulations [111–113]. A test statistic is calculated for the empirical data and 607

for the simulated data. The model is considered to adequately describe the data if the 608

test statistics for the empirical data fall within the range of those from the posterior 609

predictive simulations, for example using a posterior predictive p-value (analogous to the 610

frequentist p-value). For example, a phylodynamic model can be used to estimate the 611
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Fig 5. AIM analysis of 100 nuclear gene alignments for the five Princess cichlid species
Neolamprologus marunguensis, N. gracilis, N. brichardi, N. olivaceous, and N. pulcher, as
well as the outgroup Metriaclima zebra. a) to d) show the best-supported tree
topologies. Arrows show directions of gene flow that are supported with a Bayes Factor
of more than 10. Trees a) and c) only differ in the timing of the speciation events;
however, AIM differentiates between differently ranked topologies, since these have to
be characterized by using different parameters.

reproductive number, the origin of the outbreak, and epidemic trajectories (e.g. [27–29]). 612

The package TreeModelAdequacy (TMA; [49]) can sample the posterior distribution of 613

these parameters to generate trees using MASTER [4] and it calculates a number of test 614

statistics. In Figure 6 we assess the adequacy of stochastic and deterministic 615

phylodynamic models by comparing the root-height of trees generated using posterior 616

predictive simulations for a data set of the 2009 H1N1 influenza pandemic. 617

New simulation tools 618

Many of the models that are implemented in BEAST are generative models that present 619

simplistic, yet mathematically precise, biological hypotheses about the way in which 620

genetic sequences and phylogenetic trees are produced. The focus of BEAST is 621

predominantly learning about biologically meaningful processes via inference of model 622

parameters or model selection. However, models can differ greatly in their assumptions 623

about these processes and the data they generate. Obviously, one must have a clear 624

picture of what generative models imply about data, and if some predicted data features 625

(under a model) are never seen in nature, appropriateness of the model must be 626

questioned. In the previous section, we discussed how to assess model adequacy using 627

simulations. 628

Furthermore, direct simulation also forms the basis for many inference algorithm 629
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Fig 6. The right column shows the trajectories of the reproductive number over time
for a set of 100 publicly available genomes from the 2009 H1N1 influenza pandemic in
North America using stochastic (birth-death SIR; [28]) and deterministic (deterministic
coalescent SIR [27]) models. Each blue line is a trajectory sampled from the posterior
distribution. The models make different inferences of when the reproductive number
falls below 1 (vertical dotted line; the horizontal dashed line is for R=1), indicating that
the pandemic is past its infectious peak. The right column shows the posterior
predictive distributions of the root height for both models (grey histograms) and the
value for the empirical data (orange vertical lines). Trees simulated from the stochastic
model produce trees that are more consistent with the empirical tree than those from
the deterministic model, suggesting that stochasticity may play an important role in the
early stages of the pandemic (samples were collected up to June 2009).

validation strategies. Often the best test for correctness of implementation involves 630

judging whether the parameters inferred from data simulated under the model match 631

those used during the simulation. This kind of test can be done qualitatively, or may 632

form the basis for a quantitative validation study by organizing a well-calibrated 633

analysis in which parameters for the data simulation stage are drawn from the same 634

probability distributions used as priors in the inference stage. 635

BEAST 2.5 provides a number of tools for simulating genetic sequence data and 636

phylogenetic trees. Sequence data simulation is provided as a core feature, and is 637

possible for any of the substitution and clock models supported by BEAST itself or as 638

third-party packages. Phylogenetic tree simulation under specific phylodynamic models 639

(e.g. unstructured/structure coalescent, FBD models, etc.) is provided by the packages 640

that implement those models. General simulation of trees and networks under arbitrary 641

birth-death and coalescent models is provided by MASTER [4], which allows models to 642

be specified using a readable chemical reaction notation and for a wide variety of 643

sampling schemes to be simulated. 644

BEAST methods have been applied extensively in cultural evolution 645

(e.g., [36, 114,115]) using the observation that linguistic data can be represented by 646

binary sequence data, and these can be treated similarly to genetic sequence data. The 647

LanguageSequenceGen package [48] can be used to simulate language data under 648

common linguistic models of evolution, with languages specific features like borrowing 649

and burst of evolution shared among different words. 650
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Availability and Future Directions 651

BEAST is available under the LGPL licence from 652

https://github.com/CompEvol/BEAST2 and is based on Java, so runs on any platform 653

that supports Java. More information, including downloads, tutorials, news updates, 654

frequently asked questions, etc. can be found on http://BEAST2.org/. Additionally, 655

tutorials for many of the described packages can be found as part of the 656

http://taming-the-beast.org/ platform [116]. At Google groups, there is a forum 657

(https://groups.google.com/forum/#!forum/beast-users) for users to discuss 658

questions. 659

BEAST 1 is still being developed with a focus on epidemiology of infectious disease, 660

and given its common pedigree it is not surprising that there is considerable overlap in 661

functionality of BEAST 1 and 2. With this in mind, the project X-BEAST (pronounce 662

cross-beast) (https://github.com/rbouckaert/xbeast) is being developed which 663

aims at making two versions of BEAST interoperable, so models from both versions can 664

be used in the same analysis. This non-trivial software engineering problem is 665

something we hope will yield fruit in the near future. 666

Discussion and Conclusion 667

Since the first release of BEAST 2 there has been a large expansion of core features, an 668

increase in the number of developers, and a large increase in the number of models and 669

the number of packages available. There has also been the publication of a book [2] and 670

the introduction of a regular series of week-long in-depth Taming the BEAST 671

workshops [116]. The BEAST 2 community has rapidly grown over the past 5 years and 672

the software has grown (with respect to other similar software packages) in a number of 673

distinct directions: (i) hierarchical multi-species coalescent models for species tree 674

estimation, (ii) fossilized birth-death models for macroevolution and total-evidence 675

analyses and (iii) multi-state birth-death and structured coalescent epidemiological 676

models for understanding rapidly evolving infectious diseases, (iv) new model averaging 677

and model comparison methods including nested sampling. BEAST 2 now occupies a 678

unique niche in the landscape of Bayesian phylogenetic inference software, but still 679

shares a very similar modeling philosophy with both BEAST 1.10 [117] and 680

RevBayes [118]. There are pros and cons to having many different platforms that both 681

compete and complement each other. On the positive side of the ledger, multiple 682

platforms provide the opportunity to validate complex new models by comparing 683

independent implementations. On the negative side, a lack of interoperability means 684

that combining models from two different platforms is currently not possible. So one 685

aim for the future may be to work harder on interoperability between these different 686

platforms. To do so will require a common language for model specification. This is 687

currently the biggest hurdle and an obvious target for future work. 688

Supporting information 689

The XML file and log files used for the bModelTest analyses shown in Fig. 2 are 690

available from http://www.doi.org/10.5281/zenodo.1475369. 691

The XML file, log file, MCC tree and post-processing scripts for the bdsky analyses 692

shown in Fig. 3 are available from http://www.doi.org/10.5281/zenodo.1476124. 693

The alignments, XML files, log files and post processing scripts for the AIM analysis 694

shown in Fig. 5 can be found at https://github.com/nicfel/Neolamprologus. 695

The XML files and a script to generate the TreeModelAdequacy analyses shown in 696

Fig. 6 are available from http://doi.org/10.5281/zenodo.1473852 697
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