
Elsevier required licence: © <2019>. This manuscript version is made available under the CC‐BY‐NC‐

ND 4.0 license http://creativecommons.org/licenses/by‐nc‐nd/4.0/         

The definitive publisher version is available online at [insert DOI] 
 



Switching Cost Models as Hypothesis Tests∗

Samuel N. Cohen
Mathematical Institute, University of Oxford

Timo Henckel
Australian National University & CAMA

Gordon D. Menzies
University of Technology Sydney & CAMA†

Johannes Muhle-Karbe
Carnegie Mellon University

Daniel J. Zizzo
School of Economics, University of Queensland & CAMA

November 8, 2018

Abstract

We relate models based on costs of switching beliefs (e.g., due to inat-
tention) to hypothesis tests. Specifically, for an inference problem with a
penalty for mistakes and for switching the inferred value, a band of inac-
tion is optimal. We show this band is equivalent to a confidence interval,
and therefore to a two-sided hypothesis test.

Keywords: inference; switching cost; inferential expectations, hypoth-
esis test.
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1 Introduction

This paper provides a new micro-foundation for two-sided hypothesis tests.
Agents receive sequential information and conduct inference which penalizes
adjustments to the estimator and deviations from the classical Bayesian esti-
mate. We show that, to a first-order approximation for small adjustment costs,
the resulting estimator has a band of inaction with width proportional to the
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Bayesian estimator’s standard deviation. This makes it equivalent to a confi-
dence interval and therefore to a two-sided hypothesis test.

Our result locates belief formation models based on hypothesis tests, such
as Menzies and Zizzo’s (2009) inferential expectations model, within a wider
literature on switching costs due to sticky belief adjustment. Switching costs
may arise, say, from ‘menu costs’, transactions in illiquid markets, cognitive
effort in attention and observation or the consultation of experts (Caplin and
Spulber, 1987; Alvarez et al., 2017; Magnani et al., 2016; Carroll, 2003).

State-dependent belief adjustments describe how new information about the
underlying economic state Xt is incorporated. In our model, agents passively
observe until new information exceeds a threshold, depending on the uncertainty
of the estimated state, and only then readjust their policy. This infrequent
adjustment is similar to models of inattention and portfolio choice (Abel et al.,
2013; Huang and Liu, 2007).

A concrete example for our analysis is portfolio choice with partial informa-
tion. Here, Xt represents the unknown expected returns which are estimated
from time-series data. If X̂t denotes the Bayesian estimate of Xt, the optimal
portfolio then is typically of the form h(X̂t). With transaction costs, this ideal
portfolio cannot be implemented and instead has to be replaced by an approxi-
mation h(Θt), where Θt is an alternative estimate of Xt that only changes infre-
quently. The optimal Θt is in turn identified by our tradeoff between switching
costs and inefficiency costs due to deviations from the optimal estimator.

Key to our approach is the use of asymptotic approximation methods, to
allow closed-form solutions which are valid when costs are small. This typically
yields an approximate ‘no-action region’, within which agents accept deviations
from the no-cost optimum (Korn, 1998; Lo et al., 2004). Our specific contri-
bution is to link switching cost models to hypothesis tests using the results of
Altarovici et al. (2015). Their purpose is to describe trade within a financial
market; we propose that their asymptotic approximation can also be applied to
a wide class of recursive estimation problems.

2 The model

We base our setting on a Kalman–Bucy filter (Kalman and Bucy, 1961), as this
has a wide variety of applications (see Bain and Crisan, 2009).

We write X for a hidden process, which we seek to estimate using observa-
tions Y . We suppose X and Y satisfy1{

dXt = FtXtdt+
√
QtdWt, X0 ∼ N(X̂0, P0),

dYt = AtXtdt+
√
RtdBt, Y0 = 0,

1For simplicity, we assume here that X and Y are both scalar processes. The Kalman
filter, and the results of Section 3, can also be obtained with multivariate X and Y , at a
corresponding increase in notational complexity. In this case regions of inaction emerge,
rather than intervals of inaction.
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where W and B are independent Brownian motions. Here F,A,Q and R are
deterministic functions, R and A are nonzero, and (X̂0, P0) are the mean and
variance of our initial estimate of X0. We write Ft for the information available2

from observing Y up to time t.
For these dynamics Kalman–Bucy filtering shows that, conditional on our

observations {Ys}0≤s≤t, the hidden state Xt has a normal distribution:

Xt|Ft ∼ N(X̂t, Pt).

The values of (X̂t, Pt) have joint dynamics{
dX̂t = FtX̂tdt+KtdV̂t,

dPt/dt = 2FtPt +Qt −RtK2
t ,

(1)

with initial values (X̂0, P0), where Kt = PtAt/Rt denotes the Kalman gain
process, and dV̂t = dYt − AtX̂tdt defines the innovations process V̂ , which is
a martingale under {Ft}t≥0, with quadratic variation d〈V̂ 〉t = Rtdt. Observe

that X̂t is in general random, while Pt is a deterministic function of time.

Example 1 (Bayesian estimation of a constant average drift). A natural example
of the Kalman–Bucy filter is when Y has a constant drift Xt ≡ X0, which we
estimate in a Bayesian manner. As (Yt+h − Yt)/h ≈ N(Xt, 1) = N(X0, 1)
for small h, this gives the continuous-time analogue of a Bayesian estimation
problem for an unknown mean X0 with normal errors, with prior N(X̂0, P0)
leading to posterior N(X̂t, Pt).

In this example, we have F,Q ≡ 0 and A,R ≡ 1. Then X ≡ X0 is a
(random) constant and Kt = Pt, so we obtain a closed-form solution to our
filtering equations:

dPt
dt

= −RtK2
t = −P 2

t ⇒ Pt =
1

1/P0 + t
,

dX̂t = KtdV̂t =
1

1/P0 + t
dV̂t ⇒ X̂t = wt

Yt
t

+ (1− wt)X̂0

where wt = t/(t + 1/P0) weights our estimate between the estimate from ob-
servations Yt/t and the prior estimate X̂0. Observe that if P0 ≈ ∞ (i.e. we
have a diffuse prior), then the posterior variance Pt collapses like 1/t, as we
would expect from a standard observation problem and X̂t ≈ Yt/t is the classic
(‘frequentist’) estimate for the drift of Y .

2.1 The cost of an estimator

We suppose that, over a fixed time period [0, T ], our agent estimates Xt with an
approximation Θt of X̂t. She has initial wealth z, from which she continuously
pays:

2Formally, Ft = σ(Ys; s ≤ t) is the filtration generated by Y .
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• Monetary costs ρ(X̂t − Θt) due to tracking error relative to the optimal
filter estimate. We assume ρ is convex, smooth and minimized at ρ(0) = 0.

• A cost λ whenever Θt changes.

For a differentiable utility function U , our agent wishes to optimize her utility
of expected wealth

J(t, z,Θ;λ) = E
[
U(ZT )

∣∣∣Ft] = E
[
U
(
z−
∫ T

t

ρ
(
X̂t−Θt

)
−λ

∑
t≤s≤T

I{∆θs 6=0}

)∣∣∣Ft]
(2)

over piecewise constant adapted processes Θ. As X̂ is a Markov process, there
exists a value function

v(t, X̂t, z,Θt;λ) = sup
Θ′:Θt=Θ′

t

J(t, z,Θ′;λ).

Like in Korn (1998), Lo et al. (2004) and Altarovici et al. (2015), the value
function can be expanded3 in powers of λ. If λ is small, by ignoring higher order
terms, we obtain an approximation to v, and hence to the optimal choice of Θ.

3 Dynamic programming

As is usual in dynamic decision making, we now seek to find an equation de-
scribing the value function v.

With fixed adjustment costs, it will be optimal to leave Θ unchanged until
X̂t − Θt is sufficiently large. Write K for the region where Θ remains fixed. A
standard dynamic programming argument yields a partial differential equation
for the value function v(t, x̂, z, θ;λ). The optimal filter X̂ without adjustment
costs has the diffusive dynamics (1). We seek to find the optimal times to change
the value of Θ. By the martingale principle of optimality4, the value function
evaluated along the state variables (t, X̂t, Zt,Θt) is a martingale for the optimal
Θ, and a supermartingale otherwise. Applying Itô’s lemma, we can identify the
drift of the random process v(t, X̂t, z,Θt;λ), which should never be positive,
and is zero whenever it is not optimal to change Θt. In other words, writing

Σt = RtK
2
t = P 2

t A
2
t/Rt, (3)

we have

0 ≥ ∂tv − (∂zv)ρ
(
x̂− θ

)
+ (∂x̂v)Fx̂+

1

2
Σt ∂x̂x̂v, (4)

with equality on K (when it is not optimal to change θ).

3Corresponding verification theorems could be derived using stability results for viscosity
solutions as in Altarovici et al. (2015) or martingale methods, cf. Feodoria (2016).

4This is a form of the dynamic programming principle for stochastic control problems.
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Considering the possibility of changing θ, we know that our value function
can never be lower than it would be after the optimal change in θ, so

v(t, z, x̂, θ;λ) ≥ sup
θ′
v(t, z − λ, x̂, θ′;λ), (5)

with equality on the complement Kc (when it is optimal to change θ). Combining
these inequalities, we obtain the dynamic programming equation (or Bellman
equation)

0 = min

{
− ∂tv + (∂zv)ρ

(
x̂− θ

)
− (∂x̂v)Fx̂− 1

2
Σt ∂x̂x̂v,

v(t, z, x̂, θ;λ)− sup
θ′
v(t, z − λ, x̂, θ′;λ)

}
,

(6)

with terminal value v(T, z, x̂, θ;λ) = U(z). The difficulty is that the set K needs
to be determined as part of the solution (we have a ‘free boundary’ problem).

3.1 Asymptotic analysis

We will now analyze the behaviour of v when λ is small. In particular, we
expand (4) and (5) in powers of λ, and by considering the first terms in our
expansion, we are able to find an approximate closed-form solution.

When λ = 0, v is easy to calculate – one can use Θt = X̂t to achieve
v(t, z, x̂; 0) ≡ U(z). We expect that the optimal strategy5 will involve switching
whenever |x̂− θ| = O(λ1/4), resulting in a cost of O(λ1/2). Writing

ξ := λ−1/4(x̂− θ),

this suggests the ansatz

v(t, z, x̂, θ;λ) = U(z)− λ1/2φ(t, z)− λψ(t, z, x̂, ξ) + o(λ) (7)

where φ(T, z) = 0 and infξ ψ(t, z, x̂, ξ) = ψ(t, z, x̂, 0) = 0 for all (t, z, x̂). See
Muhle-Karbe et al. (2017) for further discussion. Recalling our assumptions on
ρ,

ρ(x̂− θ) = ρ(λ1/4ξ) = λ1/2γξ2 + o(λ1/2),

where

γ =
∂xxρ(0)

2
> 0.

We now use this ansatz to expand our dynamic programming equation. First
considering the behaviour when we do not choose to switch, we substitute the
ansatz (7) into our drift condition (4), to obtain

0 ≤ λ1/2
(
∂tφ− γξ2U ′ +

1

2
Σt ∂ξξψ

)
+ o(λ1/2) (8)

5This asymptotic behaviour comes from analyzing, over long horizons, how often the
boundary of an interval will be hit by a random walk, averaging out the cost paid, then
optimizing over the width of the interval chosen. This can be verified using the (mathemat-
ically rigorous) scaling arguments of Altarovici et al. (2015) and Lo et al. (2004), which also
apply in our setting, mutatis mutandis.
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with equality on K (when switching is not optimal). Considering the possibility
of switching, from our optimality condition (5) we have

0 ≤ v(t, z, x̂, θ;λ)− sup
θ′
v(t, z − λ, x̂, θ′;λ)

= U(z)− λ1/2φ(t, z)− λψ(t, z, x̂, ξ)

− U(z − λ) + λ1/2φ(t, z − λ) + inf
ξ′
ψ(t, z − λ, x̂, ξ′) + o(λ)

= λU ′(z)− λψ(t, z, x̂, ξ) + o(λ)

(9)

with equality on Kc (when switching is optimal).
Combining (8) and (9), the leading-order terms for small λ in each region

in turn lead to the following approximate version of the dynamic programming
equation (6):

0 = min
{
∂tφ− U ′(z)γξ2 +

1

2
Σt ∂ξξψ, U ′(z)− ψ(t, z, x̂, ξ)

}
. (10)

Following Atkinson and Wilmott (1995), we propose6 a solution of the form

ψ(t, z, x̂, ξ) =

{
U ′(z)

(
− 1 + (Mξ2 − 1)2

)
on K = {ξ : ξ2 < 1/M},

−U ′(z) on Kc = {ξ : ξ2 ≥ 1/M},
(11)

where M > 0 is to be determined. On K we have

∂ξξψ = 4M(3Mξ2 − 1)U ′(z)

so

0 = ∂tφ− U ′(z)γξ2 +
1

2
Σt
(
4M(3Mξ2 − 1)U ′(z)

)
=
(
∂tφ− 2U ′(z)ΣtM

)
+ U ′(z)

(
6ΣtM

2 − γ
)
ξ2.

(12)

This has to hold for all ξ ∈ K, so the coefficient of ξ2 must equal zero. We solve
for M and simplify using (3),

M =

√
γ

6Σt
= P−1

t

√
γ

6A2
t/Rt

. (13)

This gives the approximately optimal no-switching region, and hence the fol-
lowing result:

K =
{
|ξ| ≤

( Σt
γ/6

)1/4}
=
{
|x̂− θ| ≤

√
Pt

( At√
Rt

)1/2(6λ

γ

)1/4}
. (14)

6This is the smallest family of polynomials satisfying our assumptions which are smooth
across the boundary.
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From (12), substituting the value of M , we can also solve for φ:

φ(t, z) = −U ′(z)
√

2γ/3

∫ T

t

√
Σsds = −U ′(z)

√
2γ/3

∫ T

t

Ps
As√
Rs

ds. (15)

By construction, with this choice of φ and ψ, our ansatz (7) satisfies the approx-
imate dynamic programming equation (10), and hence the original equation (6)
up to an error of order o(λ1/2).

To summarize our results, with the choices (15), (11), (13) and (14) for
φ, ψ,M and K, we obtain the following result7:

Theorem 1. At the leading order O(λ1/2), for small adjustment costs λ, the
estimator {Θt}t≥0 which maximizes the expected utility (2) is given by the rule:

• If

|X̂t −Θt−| ≥
√
Pt

( At√
Rt

)1/2(6λ

γ

)1/4

then set Θt = X̂t.

• Leave Θt = Θt− otherwise.

4 Interpretation as hypothesis testing

We now explore the connection with hypothesis testing. Consider testing the
hypothesis

H0 : Xt = Θt− vs. H1 : Xt 6= Θt−

on the basis of observation of {Ys}s≤t. Recall that the true state Xt is estimated

by X̂t, with error variance Pt, so the standard two-sided hypothesis test rejects
H0 whenever Θt− lies outside the confidence interval(

X̂t − c
√
Pt, X̂t + c

√
Pt

)
(16)

where c is the usual Gaussian critical value (for example, c ≈ 1.96 for a 95%
confidence level). We can therefore make the following connection with our
optimal estimation problem with switching costs:

Theorem 2. The approximately optimal choice of Θ given by Theorem 1 can
be equivalently expressed as:

• If we reject the hypothesis H0 : Xt = Θt− (using the confidence interval
approach) at a critical level ct, then set Θt = X̂t.

• Leave Θt = Θt− otherwise.

The critical level 8 is given by ct = (At/
√
Rt)

1/2(6λ/γ)1/4.

7For clarity, we here write Θt− := lims↑t Θs for the value of Θ before any change at t.
8Recall that γ = ∂xxρ(0)/2 relates to the cost of deviating from the Kalman–Bucy estimate.
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Corollary 1. If the infinitesimal signal-noise ratio At/
√
Rt in our Kalman

filter is constant, the optimal switching problem is equivalent to a hypothesis
test with a constant confidence level determined by the ratio of cost coefficients
λ/γ.

Example 2. Suppose we are in the setting of Example 1, so F = Q = 0, A =
R = 1 and Xt = X0 is the (constant) unknown drift of our observations Y .
For simplicity, take a diffuse prior, so P0 ≈ ∞. Recall that the Kalman filter
estimate of Xt is X̂t ≈ Yt/t and our estimation variance is Pt ≈ 1/t. Using our
result, the (approximately) optimal time to change Θt is when

|Θt − Yt/t|
1/
√
t

> c

for c = (6λ/γ)1/4. Here the left hand side is the usual two-sided test statistic
for testing H0 : Xt = Θt. In particular, we observe the O(t−1/2) convergence
of the width of the no-switching region, which agrees with the convergence of a
confidence interval.

Remark 1. If the signal-noise ratio At/
√
Rt is not constant, the critical value

ct in Theorem 2 will vary through time. Our results imply that in periods of
lower-quality data the agent switches more frequently, or equivalently, uses a
test with lower confidence level.

References

A. B. Abel, J. C. Eberly, and S. Panageas. Optimal inattention to the stock
market with information costs and transaction costs. Econometrica, 81(4):
1455–1481, 2013.

A. Altarovici, J. Muhle-Karbe, and H. M. Soner. Asymptotics for fixed trans-
action costs. Finance Stoch., 19(2):363–414, 2015.

F. Alvarez, F. Lippi, and J. Passadore. Are state and time dependent models
really different? In M. Eichenbaum and J. Parker, editors, NBER Macroeco-
nomics Annual 2016, volume 31, pages 379–457. University of Chicago Press,
2017.

C. Atkinson and P. Wilmott. Portfolio management with transaction costs: an
asymptotic analysis of the Morton and Pliska model. Math. Finance, 5(4):
357–367, 1995.

A. Bain and D. Crisan. Fundamentals of Stochastic Filtering. Springer, New
York, 2009.

A. S. Caplin and D. F. Spulber. Menu costs and the neutrality of money. QJE,
102(4):703–725, 1987.

8



C. Carroll. Macroeconomic expectations of households and professional fore-
casters. QJE, 118(1):269–298, 2003.

M.-R. Feodoria. Optimal investment and utility indifference pricing in the
presence of small fixed transaction costs. PhD thesis, Christian-Albrechts-
Universität zu Kiel, 2016.

L. Huang and H. Liu. Rational inattention and portfolio selection. JF, 62(4):
1999–2040, 2007.

R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction
theory. J. Basic Eng., 83(1):95–108, 1961.

R. Korn. Portfolio optimisation with strictly positive transaction costs and
impulse control. Finance Stoch., 2(2):85–114, 1998.

A. W. Lo, H. Mamaysky, and J. Wang. Asset prices and trading volume under
fixed transactions costs. JPE, 112(5):1054–1090, 2004.

J. Magnani, A. Gorry, and R. Oprea. Time and state dependence in an Ss
decision experiment. AEJ: Macroeconomics, 8(1):285–310, 2016.

G. D. Menzies and D. J. Zizzo. Inferential expectations. B.E.J. Macroeconomics,
9(1):1–25, 2009.

J. Muhle-Karbe, H. M. Soner, and M. Reppen. A primer on portfolio choice
with small transaction costs. Ann. Rev. Fin. Econ., 9:301–331, 2017.

9


	Introduction
	The model
	The cost of an estimator

	Dynamic programming
	Asymptotic analysis

	Interpretation as hypothesis testing

