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On a theorem of Avez
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Abstract. For each symmetric, aperiodic probability measure � on a finitely generated
group G, we define a subset A� consisting of group elements g for which the limit of the
ratio ��n.g/=��n.e/ tends to 1. We prove that A� is a subgroup, is amenable, contains
every finite normal subgroup, andG D A� if and only ifG is amenable. For non-amenable
groups we show that A� is not always a normal subgroup and can depend on the measure.
We formulate some conjectures relating A� to the amenable radical.

1 Introduction

Let � be a symmetric, aperiodic probability measure � on a finitely generated
group G whose support generates G. Let e denote the identity element of G, and
let ��n denote the n-fold convolution of the measure, so that ��n.g/ is the prob-
ability that an n-step random walk induced by � starting at e ends at g. Avez [2]
showed that when G is amenable,

lim
n!1

��n.g/

��n.e/
D 1 for all g 2 G:

In this paper, we extend Avez’ result in the following way: For an arbitrary
finitely generated group G, we consider the set, which we call A�, of all g 2 G
for which the limit of the ratio ��n.g/=��n.e/ tends to 1. Avez’ result says that
if G is amenable, then A� D G. We prove that when G is non-amenable, A�
is a proper, amenable subgroup. Moreover, A� contains every finite normal sub-
group, so contains the elliptic radical (the largest normal, locally finite subgroup
ofG), and so is non-trivial in many cases. We compute A� for some examples and
show that, in general, it is not a normal subgroup and may depend on the measure.
We close by formulating some conjectures relating A� to the amenable radical.

This work is part of PhD work of the second author [13]; more details and
applications can be found therein. Other relevant work that motivates the present
paper includes [3, 7–10, 12, 14].

Research supported by Australian Research Council grant FT110100178.

Brought to you by | Western Sydney University Library
Authenticated | murrayelder@gmail.com author's copy

Download Date | 1/21/19 5:15 AM



2 M. Elder and C. Rogers

2 Preliminaries

In this article, ZC denotes the positive integers. Recall that a probability measure
� on a groupG is symmetric if �.x/ D �.x�1/ for all x 2 G. The support of � is
the set ¹x 2 G j �.x/ > 0º, which we denote by supp.�/. The convolution � � �
of two measures �; � on a discrete group is

� � �.y/ D
X
x2G

�.x/�.x�1y/:

The distribution of a n-step random walk induced by � is the n-fold convolution
power of �, which we denote by ��n. The period of a measure � is

gcd¹n 2 ZC j �
�n.e/ > 0º:

The measure � is said to be aperiodic if it has period 1. Note that for a symmetric
measure, the period can only take the values 1 or 2.

A function �WG ! R on a finitely generated group G is an `2-function, or
� 2 `2.G/, if

P
g2G j�.g/j

2 is finite. The corresponding inner product is

h�; �i2 D
X
g2G

�.g/�.g/;

and the norm is k�k2 D
p
h�; �i, as usual. The action of the groupG on `2.G/ de-

fined by g � �.x/ D �.g�1x/ for all x 2 G is called the left regular representation
of the group.

Observe that

��2n.g/ D
X
x2G

��n.x/��n.x�1g/

D

X
x2G

��n.x/��n.g�1x/

D

X
x2G

��n.x/.g � ��n.x//

D h��n; g � ��ni; (2.1)

and so ��2n.e/ D h��n; ��ni D k��nk22.
The notion of amenability has many characterizations. Here we use the follow-

ing:

Theorem 2.1 ([5, 11]). G is amenable if and only if there is a sequence fn of
probability measures on G such that kg � fn � fnk2 ! 0 for every g 2 G.
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On a theorem of Avez 3

3 Defining A�

Definition 3.1. Let G be a finitely generated group, and let � be a symmetric,
aperiodic probability measure on G whose support generates G. We define

AG;� D

²
g 2 G

ˇ̌̌
lim
n!1

��n.g/

��n.e/
D 1

³
:

When it is understood which group is being used, the set will be referred to as A�.

The definition is clearly motivated by Avez’ result: when G is amenable, we
have A� D G. A similar construction based on Theorem 2.1 would be the set of
all g 2 G for which kg � fn � fnk2 tends to 0 with respect to some fixed sequence
fn of probability measures on G. An obvious choice for such a sequence would
be �n D

��n

k��nk2
. It turns out that this construction coincides with A�.

Proposition 3.2. LetG be a finitely generated group and � a symmetric, aperiodic
probability measure on G whose support generates G. Then

A� D ¹g 2 G j kg � �n � �nk2 ! 0º:

Proof. By equation (2.1), we have

��2n.g/

��2n.e/
D
h��n; g � ��ni

k��nk22
D h�n; g � �ni:

Observe that

kg � �n � �nk
2
2 D

X
x2G

.g � �n � �n/
2.x/

D

X
x2G

.g � �n/
2.x/ � 2

X
x2G

.g � �n/.x/�n.x/C
X
x2G

.�n/
2.x/

D kg � �nk
2
2 � 2hg � �n; �ni C k�nk

2
2

D 2 � 2hg � �n; �ni

since �n; g � �n are unit vectors. Thus kg � �n � �nk2 approaches 0 if and only if
hg � �n; �ni D

��2n.g/

��2n.e/
approaches 1.

Corollary 3.3. G is amenable if and only if G D A�.

Proof. This follows immediately from Theorem 2.1 and Proposition 3.2.

The following observation will be useful.

Lemma 3.4. Let � be a symmetric, aperiodic probability measure on G whose
support generates G. For any fixed k 2 ZC, we have A� D A��k .
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4 M. Elder and C. Rogers

4 Algebraic properties of A�

We now show that more than being some peculiar collection of elements, the sets
A� have algebraic structure. Throughout this section, we consider G a finitely
generated group and � a symmetric, aperiodic probability measure on G whose
support generates G, and �n D

��n

k��nk2
.

Theorem 4.1. A� is a subgroup.

Proof. Let g; h 2 G. We have

kgh � �n � �nk2 D kg � .h � �n � �n/C g � �n � �nk2

� kg � .h � �n � �n/k2 C kg � �n � �nk2

D kh � �n � �nk2 C kg � �n � �nk2

since the `2-norm is invariant under translation. Since g; h 2 A� the right-hand
side limits to 0, so gh 2 A�. Clearly, e 2 A� and A� is closed under inverses
since � is symmetric.

In [13], a slightly stronger statement is given, which gives some structural in-
formation about the cosets of A�.

Theorem 4.2. A� is amenable.

The idea of our proof is to give a sequence of probability measures on A� that
are almost invariant under the action ofA�. Proposition 3.2 says that we have such
a sequence in `2.G/, which we modify to obtain a sequence in `2.A�/.

Proof. Choose a set I D ¹s1; s2; : : : º of right coset representatives for A�, which
is countable since G is finitely generated. For n 2 ZC; s 2 I , define �n;sWG ! R
by

�n;s.x/ D

´
�n.x/ if x 2 A�s;
0 otherwise:

Then
�n D

X
s2I

�n;s:

Since A� is a subgroup, translation by k�1 2 A� on the left preserves the right
cosets. Hence

k � �n D
X
s2I

k � �n;s:

Brought to you by | Western Sydney University Library
Authenticated | murrayelder@gmail.com author's copy

Download Date | 1/21/19 5:15 AM



On a theorem of Avez 5

We will now construct a sequence of unit vectors in `2.A�/ that are almost in-
variant. For n2ZC, s 2 I , define n;sWA� ! R by n;s.h/D �n;s.hs/D �n.hs/,
where h 2 A�. Then  n;s 2 `2.A�/ since

P
h2A�

 n;s.h/ D
P
h2A�

�n.hs/ is
finite. We also have that the norm of  n;s in `2.A�/ is equal to the norm of �n;s
in `2.G/. We denote this norm by an;s . Note

P
s2I .an;s/

2 D k�nk
2
2 D 1.

Putting all this together, we have

kk � �n � �nk
2
2 D




X
s2I

k � �n;s �
X
s2I

�n;s




2
2

D




X
s2I

.k � �n;s � �n;s/



2
2

D

X
x2G

X
s2I

Œ.k � �n;s � �n;s/.x/�
2

D

X
s2I

X
x2G

Œ.k � �n;s � �n;s/.x/�
2

D

X
s2I

X
y2A�

Œ.k � �n;s � �n;s/.ys/�
2

(since �n;s is zero outside the s-coset)

D

X
s2I

.an;s/
2
X
y2A�

��
k �
�n;s

an;s
�
�n;s

an;s

�
.ys/

�2
:

Now if, for all s 2 I , we haveX
y2A�

��
k �
�n;s

an;s
�
�n;s

an;s

�
.ys/

�2
� �;

then the above equation becomes

kk � �n � �nk
2
2 � �

X
s2I

.an;s/
2
D �:

Therefore, kk � �n � �nk22 < � implies there exists s such thatX
y2A�

��
k �
�n;s

an;s
�
�n;s

an;s

�
.ys/

�2
< �:

Since kk � �n � �nk22 limits to zero for every k 2 A�, there exists a sequence sn
for which X

y2A�

��
k �
�n;sn
an;sn

�
�n;sn
an;sn

�
.ys/

�2
! 0 for every k 2 A�:
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6 M. Elder and C. Rogers

Rewriting in terms of corresponding functions in `2.A�/,

X
y2A�

��
k �
 n;sn
an;sn

�
 n;sn
an;sn

�
.y/

�2
D





k �  n;snan;sn
�
 n;sn
an;sn





2
2

! 0;

so  n;sn
an;sn

supplies a sequence of almost invariant unit vectors in `2.A�/, and A�
is amenable.

That A� is an amenable subgroup does not preclude it being trivial for all non-
amenable G, nor does it guarantee that A� reflects any of the underlying structure
of G. The next result shows that in many cases, A� is an interesting non-trivial
subgroup.

Recall that the elliptic radical of a finitely generated group G is the largest nor-
mal, locally finite subgroup of G (see, for example, [4]). It is the group generated
by all finite normal subgroups of G and is contained in the amenable radical, the
largest amenable normal subgroup. We now prove a result which implies that the
elliptic radical is contained in A�.

Theorem 4.3. A� contains every finite normal subgroup of G. In particular, the
elliptic radical is contained in A�.

Proof. Let F be a finite normal subgroup of G. Since the support of � gener-
atesG, F is finite and � is aperiodic, we have ��jF j.f / is non-zero for all f 2 F .
Setting � D ��jF j, we have F � supp.�/, and A� D A� by Lemma 3.4.

Let S D supp.�/. Then each walk .g0 D e; g1; : : : / induced by � corresponds
uniquely to a sequence ..h0; f0/; .h1; f1/; : : : /, where h0D f0D e, hi 2 hS n F i,
fi 2F and giDhifi defined by the following process: if gnDgn�1x, x2supp.�/,
then

.hn; fn/ D

´
.hn�1; fn�1x/; x 2 F;

.hn�1x; x
�1fn�1x/; x 2 S n F:

Define the measure �W hS n F i ! R by

�.x/ D

´
�.F /; x D e;

�.x/; x 2 S n F:

Then ��n is the distribution of the first coordinate after n steps.
The process on the second coordinate is a Markov chain on the state space F ,

where each move corresponds either to a right multiplication by x 2 F or to a con-
jugation by some element of x 2 S n F , each with probability �.x/. Let �n denote
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On a theorem of Avez 7

the distribution of the second coordinate after n steps. We will prove that �n ap-
proaches the uniform distribution of F using standard Markov chain theory (see
for example [6] for further information).

Let Pr.f ! g/ be the probability of moving from state f to g in one step of
the Markov chain. If the step from f to g is a conjugation by x (i.e., g D x�1f x),
then f D xgx�1, so Pr.f ! g/ D Pr.g! f / since � is symmetric. Otherwise,
the step is induced by right multiplication, and clearly Pr.f ! g/ D Pr.g! f /

(since g D f x only if f D gx�1). It follows that the Markov chain satisfies the
detailed balance condition for the uniform measure � D 1

jF j
, i.e.,

�.f /Pr.f ! g/ D �.g/Pr.g! f /;

and so � is a stationary distribution on F , that is,

�.f / D
X
y2F

�.y/Pr.y ! f /:

Since e 2 supp.�/, the Markov process on F is aperiodic, and since F is finite,
the process is irreducible. Then, by the fundamental theorem of Markov chains
(see, for example, [6, Theorem 3.12]), �n converges to the unique stationary dis-
tribution � .

Now consider an n-step walk of the walk motivated by �, which ends at some
f 2 F . We have

��n.f / D
X
g2F

��n.g/:�n.g
�1f /

since to end at f , we must have first coordinate g and second coordinate g�1f 2F .
Then

lim
n!1

��n.f /

��n.e/
D lim
n!1

P
g2F �

�n.g/�n.g
�1f /P

g2F �
�n.g/�n.g�1/

D lim
n!1

P
g2F �

�n.g/�.g�1f /P
g2F �

�n.g/�.g�1/
D 1

since � is the uniform distribution on F , and so F � A� D A�.

Theorem 4.3 is notable for two reasons. Firstly, it shows that, whenever a finitely
generated group contains a finite normal subgroup, A� is non-trivial. Secondly,
this result is independent of �.
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8 M. Elder and C. Rogers

5 Examples

Recall that non-abelian free groups have no non-trivial amenable normal sub-
groups. That is, the amenable radical is trivial.

Lemma 5.1. Let Fd be the free group of rank d � 2 with free basis generators
including a; b, and let � be a symmetric, aperiodic measure whose support gener-
ates Fd satisfying �.e/ > 0 and �.a/ D �.b/ > 0. Then AFd ;� is trivial.

Proof. Let u 2 ¹a˙1; b˙1ºC. If u 2 A�, then by interchanging a˙1 with b˙1, we
obtain a word v that also lies in A� by symmetry of the measure with respect to
the generators a; b. If u; v are not powers of the same element, in which case they
generate a free group of rank 2, and since A� is an amenable subgroup, it must be
trivial. Otherwise, if u; v generate a cyclic group, choose instead to replace a˙1

by b�1.

Lemma 5.2. Suppose G;H are finitely generated groups with symmetric, aperi-
odic probability measures � and  respectively whose supports generate G and
H respectively. Recall that the product measure � on G �H is defined by

�.x; y/ D �.x/ .y/:

Then
AG�H;� D AG;� � AH; :

Proof. To prove this, we first note that ��n.x; y/ D ��n.x/ �n.y/. This may be
shown inductively. It is true for n D 1 by definition, and

��n.x; y/ D ��n.x/ �n.y/

implies

�nC1.x; y/ D
X

.g;h/2G�H

��n.g; h/�.g�1x; h�1y/

D

X
g2G

X
h2H

Œ��n.g/ �n.h/�Œ�.g�1x/ .h�1y/�

D

X
g2G

X
h2H

Œ��n.g/�.g�1x/�Œ �n.h/ .h�1y/�

D

X
g2G

��n.g/�.g�1x/
X
h2H

 �n.h/ .h�1y/

D �nC1.x/ nC1.y/:
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On a theorem of Avez 9

Thus

lim
n!1

��n.g; h/

��n.eG ; eH /
D lim
n!1

��n.g/ �n.h/

��n.eG/ �n.eH /

D lim
n!1

��n.g/

��n.eG/
lim
n!1

 �n.h/

 �n.eH /

from which the result follows.

Example 5.3. Let Fd be the free group of rank d � 2 with free basis genera-
tors including a; b, and let � be a symmetric, aperiodic measure whose support
generates Fd satisfying �.e/ > 0 and �.a/ D �.b/ > 0. Let H be an amenable
group with good measure  , and let � be the product measure on Fd �H . Then
AFd�H;� D H , which is exactly the amenable radical of Fd �H .

In light of these examples and the fact that A� contains the elliptic radical, one
might ask whether A� is in fact always the amenable radical. If so, this would
imply for one thing that the set A� is invariant under choice of measure. It turns
out that this is not the case – in the next section, we give an example where the
amenable radical is trivial but A� is not. Moreover, we show that A� depends on
the choice of measure.

6 Dependence on the measure

Proposition 6.1. Let G be a finitely generated group with a finite subgroup F .
Then there exists a symmetric, aperiodic probability measure � on G whose sup-
port generates G such that F � A� .

Proof. Take  D �F � � � �F , where �F is the uniform measure on F . Then

�.x/ D
1

jF j2

X
f1;f22F

�.f1xf2/;

which is symmetric, �.e/ � 1
jF j2

�.e/ > 0 and supp.�/ � supp.�/. For f 2 F ,
x 2 G, we also have �.f x/ D �.x/, so

 �n.f / D
X
g2G

 .g/ �n�1.g�1f /

D

X
x2G

 .f �1g/ �n�1.g�1f /

D  �n.e/;

so F � A .
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10 M. Elder and C. Rogers

Corollary 6.2. There exists a finitely generated groupG and symmetric, aperiodic
probability measures �; � onG whose support generatesG so that AG;� ¤ AG;� .

Proof. Consider the free product G D ha j a2 D 1i � hb j b3 D 1i. By Proposi-
tion 6.1, there are measures �; � so that a 2 A� and b 2 A� . If A� D A� , then
A� D ha; bi D G, which is a contradiction since G is not amenable. Other exam-
ples are readily constructed from free products of finite groups.

The same example also gives the following:

Corollary 6.3. There exists a finitely generated group G and a symmetric, aperi-
odic probability measure � on G whose support generates G so that A� is not
equal to the amenable radical.

Proof. Since C2 � C3 contains finite subgroups, we may use the arguments from
Proposition 6.1 to construct a measure � for which A� is non-trivial. However,
C2 � C3 has a trivial amenable radical. This follows from the fact that it is C �-
simple [1], or by considering the action of the group on a tree. If N is a normal
amenable subgroup of a group acting on a tree, then by normality and the Tits
alternative, it fixes all vertices inG=A (or G=B), or all edges, or aG-orbit of ends.
Since the G-action on the space of ends is minimal, this implies in all three cases
that N is trivial.

In particular, A� is not always normal.

7 Connection to the amenable radical

In all cases considered, A� always contains the amenable radical. If this were true
for all measures �, the next results would give a way to directly link the amenable
radical with random walk distributions.

Lemma 7.1. Let G be a finitely generated group, and let � be a symmetric, ape-
riodic probability measure on G whose support generates G. Define a measure
�g WG ! R by�g.x/ D �.g�1xg/ for each x 2 G. Then�g is a symmetric, ape-
riodic probability measure onG whose support generatesG, andA�g D gA�g

�1.

Proof. We have

�g.x
�1/ D �.g�1x�1g/ D �.g�1xg/ D �g.x/;

�g.e/ D �.e/ > 0 and supp.�g/ D g�1 supp.�/g D G.
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On a theorem of Avez 11

For y 2 G,

�g
�2.y/ D

X
x2G

�g.x/�g.x
�1y/

D

X
x2G

�.g�1xg/�.g�1x�1yg/

D

X
h2G

�.g�1h/�.h�1yg/

D ��2.g�1yg/:

Using an inductive argument, it is clear that

�g
�n.y/ D ��n.g�1yg/:

Now

x 2 A�g ” lim
n!1

�g
�n.x/

�g�n.e/
D 1

” lim
n!1

��n.g�1xg/

��n.e/
D 1

” g�1xg 2 A�

” x 2 gA�g
�1:

Proposition 7.2. Let G be a finitely generated group. If x 2 G does not belong
to the amenable radical, then for any symmetric, aperiodic probability measure �
on G whose support generates G, there exists g 2 G such that x … A�g .

Proof. Suppose for contradiction that x 2 G belongs to A� for every symmetric,
aperiodic probability measure � on G whose support generates G. Then for some
fixed �, by the previous lemma, we have x 2 A�g D gA�g

�1 for all g 2 G. Thus

x 2
\
g2G

gA�g
�1;

which is a normal amenable subgroup; hence x belongs to the amenable radical.

Corollary 7.3. Let AG denote the amenable radical ofG, and let MG be the set of
all symmetric, aperiodic probability measures on G whose support generates G.
If AG � A� for every � 2MG , then AG D

T
�A�2MG

.

We close by formulating two conjectures.
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12 M. Elder and C. Rogers

Conjecture 7.4. LetG be a finitely generated group. Then for any symmetric, ape-
riodic probability measure � on G whose support generates G, the subgroup A�
contains the amenable radical.

Even more desirable would be the following:

Conjecture 7.5. Let G be a finitely generated group. Then there exists some �
such that A� is the amenable radical.

Acknowledgments. The authors wish to thank Alain Valette, Sasha Fish, Vadim
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