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Abstract 12 

The uncertainty analysis and modeling of wind speed, which has an essential 13 

influence onwind power systems, is consistently considered a challenging task. 14 

However, most investigationsthus far were focusedmainly on point forecasts, which in 15 

reality cannot facilitate quantitative characterization of the endogenous uncertainty 16 

involved.An analysis-forecast system that includes an analysis module and a forecast 17 

module and can provide appropriate scenarios for the dispatching and scheduling of a 18 

power system is devised in this study; this system superior to those presented in 19 

previous studies.In order to qualitatively and quantitatively investigate the uncertainty 20 

of wind speed, recurrence analysis techniques are effectively developedfor application 21 

in the analysis module. Furthermore, in order to quantify the uncertainty accurately, a 22 

novel architecture aimed at uncertainty mining is devised for the forecast module, 23 

where a non-parametric model optimized by animproved multi-objective water cycle 24 

algorithm is considered a predictor for producing intervals for each mode component 25 

after feature selection. The results of extensive in-depthexperiments showthat the 26 

devised systemis not only superior to the considered benchmark models, but also has 27 

good potential practical applications in wind power systems. 28 

Key Words: Analysis-forecast system; Chaos technique; Multi-objective optimization 29 

algorithm; Feature selection; Wind speed series 30 

 31 

1 Introduction 32 

In recent years, given its advantages, such as renewability and cleanness, the 33 

comprehensive exploitation and utilization of wind energy has made it extensively 34 

socially and economically effective.More importantly, it is self-evident in a 35 

comparison of wind energy and conventional energy, which is a significant cause of 36 

global warming and atmospheric contamination, that wind power is one of the most 37 

promising energy sources available worldwide.Thus, wind energy is a greatly 38 

preferred energy resource in many parts of the world [1]. For example, wind power 39 

may become the second largest resource for generating electricityin China by 2050 [2]. 40 

However, in practice,theefficient and comprehensivedevelopment of wind power 41 

systemsis considerablyrestricted because ofthe intrinsic randomness and intermittency 42 

of wind speed, which presentsa significant challenge in terms ofelectrical network 43 

operation and management, in particularwind power integration (WPI). Accordingly, 44 

the effective analysis and accurate forecasting of wind speed not only constitutea 45 

challenging task, but arealso an emphatic concern for those who make 46 

decisions-related to wind farms. It is crucial bothto design more appropriate and 47 

efficient wind farms and to further determinethe nonlinear dynamic pattern of wind 48 

speed in order to better manage and minimize the operational risks. 49 

The analysis and investigation of the dynamic characteristics, in particular the 50 



2 
 

predictability, of nonlinear systems are important for forecast modeling. However, 1 

most of thestudies in the literature placed emphasis mainlyon certain basic statistics, 2 

such as the maximum, minimum, average, and standard deviation [3-4]. Further,the 3 

Lyapunov exponent, complexity, skewness, kurtosis, andemergence of wind speed 4 

were investigated in reference[5]. Effective studies on the statistical distribution of 5 

wind speed, which is usually assumed to be a Weibull distribution function, in order to 6 

further determine wind speed patterns were reported in references [6-8]. Evidently, 7 

these statistics do not suffice to reveal the profoundcharacteristics of complex 8 

nonlinear systems, in particular highly volatile wind speed series.The recurrence plot 9 

and recurrence quantification analysis, which is essentially based on chaos theory, as 10 

an effective techniqueforstudying complicated nonlinear systems, were developed in 11 

the field of wind speedforecasting.In the study reported in reference [9], wind speed 12 

series were analyzedusing recurrence plots. However, this analysis waslimited to 13 

recurrence plots, and is still not sufficient toquantitatively investigate the system 14 

behaviors of wind speedseries. In order to further remedy the defect of recurrence 15 

plots that they lackquantitative analyses, arecurrence quantification analysisof 16 

recurrence plots, which can also be used to visualize the trajectories in phase 17 

space,was effectively developedin this study in order to investigatein greater depththe 18 

dynamic characteristics and predictability of wind speed series and the corresponding 19 

mode components. 20 

Accurate modeling of wind speed has important practical significance for wind 21 

energy development and utilization in many forms, such as wind turbines that 22 

convertwind power into kinetic energy and mean flow acoustic enginesthat convert 23 

the mean flow power into acoustic power [10-12]. However, given the complex 24 

dynamic pattern of wind speed, the design of an effective and scientific wind speed 25 

forecast model (WSFM) is consistently attractingconsiderable research attention.In 26 

general, the mainstream studies ofWSFMs can be systematically categorized into 27 

those using physics and statistical approaches [13] and artificial intelligence methods. 28 

Rich physics models involving wind speed forecasts (WSFs) were systematically 29 

introduced in references [14-18]. Technically, these models in general involve 30 

computational fluid dynamics in order to simulate the atmosphere based on different 31 

grid designs[19].In contrast to physics models, the alternative WSFMs are basedon 32 

statistical modeling and machine learning theories, which are convenient 33 

forimplementing the modeling and simulation of wind speed forecasting because of 34 

theiraccessibility and excellent local prediction ability.In earlier research on WSFMs, 35 

the traditional statistical models, which usually consist of an autoregressive model 36 

(AR) [20], autoregressive integrated moving average model (ARIMA) [21-23], 37 

fractional-ARIMA [24], or autoregressive conditional heteroskedasticity model 38 

(ARIMA-ARCH) [25], played a widespread role in the WSF field. In recent years, 39 

forecast models based on machine learning theories, in particular artificial neural 40 

networks (ANNs), have becomepopularin the WSF field. In general,they are trained 41 

using the historical information of wind speedin order to establish nonlinear mapping 42 

between theinput set and target set. Theoretically, the self-learning and self-organizing 43 

capabilities of ANNs are excellent and therefore, considerable effort has been invested 44 

by many researchers in ANNs for use in WSF [26-28]. However, the effectiveness and 45 

efficiency of hybrid models in generalmakes them superior tosingle neural network 46 

modelsin terms ofachieving accurateWSFs. As a consequence, many studies onhybrid 47 

forecast models have been reportedevery year. Most of thesemodels usually focused 48 

attention ondata preprocessing [29-32] and model parameter optimization using 49 

heuristic algorithms, such as theparticle swarm optimization (PSO) [33-34], 50 



3 
 

andgenetic algorithms (GAs) [33, 35-37]. 1 

In addition to wind speed forecasting, reliable wind power forecasting plays an 2 

important role in the scheduling and operation of wind farm power systems. Many 3 

scholars have invested effort in the study of accurate wind power forecasting using 4 

models-based machine learning theory. In [38], an adaptive network-based fuzzy 5 

inference system, which incorporated a wavelet and a PSO algorithm, was developed 6 

to achieve short-term wind power forecasting. A hybrid forecasting model, combining 7 

a support vector machine (SVM) and a Markov model, was proposed in [39] to 8 

achieve wind power forecasting. In [40], a random forests model was proposed, aimed 9 

at performing one hour ahead wind power forecasting. ANNs with self-learning and 10 

generalization capabilities have been widely applied in the field of wind power 11 

forecasting. In [41], a bidirectional mechanism using an extreme learning machine 12 

(ELM), a well-known ANN model, was established for wind power forecasting. In 13 

order to achieve accurate wind power forecasting, an effective forecasting framework, 14 

including a local linear fuzzy neural network (LLFNN) optimized by a seeker 15 

optimization algorithm, discrete wavelet transform, and singular spectrum analysis, 16 

was proposed in [42]. In [43], a forecasting model based on chaotic time series was 17 

presented for wind power forecasting, where phase space reconstruction and a 18 

Bernstein neural network were combined. Additionally, effort was invested in wind 19 

power forecasting using a radial basis function neural network (RBFNN) [44] and 20 

wavelet neural network (WNN) [45] with the aim of achieving accurate wind power 21 

forecasting results. 22 

Most of the aforementioned studies were focused mainly on point forecasts, 23 

which cannot easily quantify uncertain information in the process of wind speed 24 

forecasting. However, the study of the interval prediction of wind speed or wind 25 

power has not received sufficient attention, despite its significance to the risk 26 

management, power dispatching and WPI of wind farms. In practical power grid 27 

management, uncertainty analysis and mining is beneficial for ameliorating the 28 

adverse effects ofthe stochastic volatility of wind speed and for effectively 29 

providingmore comprehensive reference information to operational risk decision 30 

makers.Forthis reason, uncertainty modelingis becoming a prevailing research 31 

direction of many scholars in this field of the study.However, the study of uncertainty 32 

modeling is still in its infancy.Currently, there are only a few studies on uncertainty 33 

quantification, and the mainstream research direction relies largely on statistic 34 

methods, including quantile regression [46-48], bootstrap methods[49], and kernel 35 

density estimation [50]. Additionally, an interval prediction method using 36 

nonparametric theory, lower upper bound estimation (LUBE),based on ANNswas 37 

proposed to construct prediction intervals [51]. 38 

A comprehensive evaluation of the forecasting models for wind speed and wind 39 

power mentioned above was conducted in this study; the results are summarized in 40 

Table 1. In point forecasting models, the application of physics models is significantly 41 

restricted because of the complex meteorological conditions, model initialization, and 42 

heavy computation cost, despite their excellent long-term forecasting capabilities. The 43 

computation efficiency of conventional statistical models, including AR, ARIMA, and 44 

so forth, is high. However, their linear form restricts their ability to model accurately 45 

nonlinear time series, such as wind speed and wind energy time series. A key problem 46 

related to ANNs is that they are easily trapped in local optimization, although they 47 

have excellent capabilities for modeling nonlinear time series. Furthermore, in the 48 

field of interval prediction, research is focused on quantile regression because of its 49 

particular advantages, shown in Table 1. However, the main drawback of quantile 50 
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regression methods is that it is necessary to acquire a particular training dataset to 1 

establish a forecast model when using the method to develop prediction intervals. 2 

Additionally, in quantile regression each quantile needs to be modeled, which 3 

increases not only the computational burden but also the probability of results being 4 

discarded in the resampling process [52].The bootstrap method is a statistical method 5 

that uses data resampling with replacementto estimate the robust properties of 6 

almostany statistics, such as standard errors, some parameters of confidence intervals, 7 

and the coefficients of correlation and regression [53]. Bootstrap methods can avoid 8 

the possible drawbacks of the quantile regressionmethod. However, they are only 9 

veryeffective when addressing small sample sizes and thustheirapplication isrestricted 10 

when addressing a large-scale sample set. Kernel density estimation, which can 11 

construct prediction intervals rapidly, is based on point forecast results alongwith an 12 

assumed statistical, usually Gaussian, distribution of historical errors.However, the 13 

presumed error distribution does not matchthe actual error distribution. Accordingly, 14 

merely using Gaussian distribution to configure the error distribution is far 15 

fromsufficient. Considering the aforementioned analysis, the hypothetical error 16 

distribution using Gaussian distribution may unavoidably produce the biasand risks 17 

when developing prediction intervals.As compared withtraditional interval prediction 18 

models based on parameter statistics, theLUBE method avoids the restrictive 19 

distribution assumption and heavy computation burden when constructing prediction 20 

intervals. However, the objective function construction of the LUBE method is 21 

complex and cannot be optimized by using traditional mathematical methods. In this 22 

study, an improved multi-objective optimization algorithm was employed to optimize 23 

the key parameters of the LUBE method, which is an additional contribution of this 24 

study.Existing progress inWSFM using LUBE was achieved mainly with the aid of 25 

ANNs. However, ANNs are sensitive to complex training parameters and likely to 26 

become trapped inlocal optima. Accordingly, a robust multi-input multi-output least 27 

squares SVM (MIMOLSSVM) based on machine learning theory, which requires 28 

fewer parameters that need to be tuned than NNs, was developed in this study. 29 

Table 1. Evaluation of forecasting models including point and interval prediction. 30 

Category Model Merit Demerit 

Point prediction 

Physics models 

Good space-time continuum; high 
temporal and spatial resolution; 
clear physics process; long-term 
forecasting. 

Complex modeling process; heavy 
computational burden; poor local 
predictability; large forecasting 
error resulting from complex 
meteorological conditions and 
model initialization. 

Statistical models (AR, 
ARIMA, ARIMA-GRCH, 
fractional-ARIMA.) 

High computation efficiency; less 
model parameters to be tuned; good 
predictive performance for linear 
data. 

Poor prediction accuracy for 
nonlinear data; applicable only to 
stable data; assume that the 
interference sequence is white 
noise. 

Artificial neural network 
(such as WNN, RBFNN, 
ELM, and so forth.) 

Able to approximate any nonlinear 
relationship theoretically; good 
generalization capability; excellent 
self-learning capability. 

Complex computational process; 
sensitive to the size of training 
samples; easily fall into the local 
optimum. 

Interval prediction 

Quantileregression 

Able to handle heterogeneity 
problem; not sensitive to outliers; 
considers the entire distribution; 
able to capture the tail 
characteristics of the distribution.

Requires a specific set of training 
samples; heavy computational 
burden; the probability of results 
being discarded in the process of 
repetitive computing. 

Bootstrap methods 
Avoid possible discards in quantile 
regression; very effective when 
dealing with small samples. 

Poor performance when handling 
large samples; heavy computational 
burden. 

Kernel density estimation 
Easily constructs prediction 
interval. 

Strict assumptions on distribution. 
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LUBE 

Avoids the assumptions about 
distribution of studied data; high 
computational efficiency; easily 
adjustable model coefficients. 

Complex objective function; the 
objective function cannot be 
optimized by the traditional 
mathematical method. 

Most of the literature concerning wind speed forecasting underlines mainly data 1 

preprocessing and model optimization. The investigation of feature selection as 2 

applied in wind speed forecasting has received little attention. Feature selection, 3 

which can remove certain irrelevant features and enhance the capability of the 4 

forecasting model to learn the nonlinear relationship in time series, is an effective 5 

technique for selecting appropriate model input when performing forecasts. In 6 

previous studies in the literature, the input forms of the model usually depended on 7 

subjective experience and repeated experiments, which reduces to a certain degree the 8 

efficiency of constructing prediction intervals. The development of a feature selection 9 

technique for interval prediction models of wind speed is an important contribution of 10 

this study. Furthermore, more effort should be invested in developing feature selection 11 

for wind speed and power forecasting to improve its accuracy and efficiency further. 12 

In consideration ofthe significance of nonlinear analysis and forecast modeling, a 13 

novel analysis-forecast system, combiningananalysis module and aforecast module, is 14 

proposed in thispaper. For theanalysis module, recurrence analysis techniques based 15 

on chaos theory, including recurrence plot and recurrence quantification analysis, 16 

were effectively developed to study the dynamic behaviors and predictability of the 17 

nonlinear system based on wind speed series. For the forecast module, a novel 18 

framework of uncertainty mining was devised, which systematically combines LUBE 19 

theory, MIMOLSSVM, complete ensemble empirical mode decomposition with 20 

adaptive noise (CEEMDAN) based on mode decomposition theory, afeature selection 21 

technique using phase space reconstruction,and an improved multi-objective water 22 

cycle algorithm (IMOWCA). However, MIMOLSSVM is also sensitive to the 23 

inherent parameters, namely regularization parameter and squared kernel bandwidth 24 

parameter.IMOWCA, aimed to optimize the key parameters of the forecast module in 25 

order to strengthen the effectiveness and robustness of MIMOLSSVM, is presented 26 

for the first time in this paper. In fact, feature selection can enhance the operational 27 

efficiency by reducing the training time and improve the model generalization by 28 

avoiding over-fitting. However, in previous studiesof interval prediction, the feature 29 

selection technique usually was not taken into account in the development of 30 

uncertainty modeling. In this study, a classical and effective feature selection 31 

technique based on chaos theory, the C-Cmethod,was developed for implementing 32 

feature selection and thus obtaining the optimal input forms forMIMOLSSVM. More 33 

importantly, in order to effectively model the nonlinear system based on wind speed 34 

series, the raw wind speed series is decomposed intointrinsic mode functions (IMFs) 35 

by using theCEEMDAN method. Furthermore, in order to reduce the computation 36 

complexity, the generated IMFs are mergedin accordance with the 37 

correspondingcomplexity degree, and then, the proposed model implements 38 

uncertainty modeling for each reconstituted IMF. Finally, the prediction intervals 39 

generated by each IMF are mergedto obtain the final interval prediction results. The 40 

devised analysis-forecast system is calledModes-IMOWCA-CC-MIMOLSSVM, 41 

accordingly. 42 

In contrast to aparametric model, the devised forecast module based on LUBE 43 

makes no assumption concerning distribution shape, and thus, uncertainty 44 

modelingismore convenient and effective. As compared to NNs, the forecast module 45 

based on MIMOLSSVM needs fewermodel parameters and avoids the over-fitting 46 

problem, usually obtaining satisfactory forecast results. Phase space reconstruction 47 
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based on chaos theory, which is superior to the previous feature selection methods, 1 

was developed in this studyto adaptively determine the optimal inputfeature. 2 

The main contributions of the devised analysis-forecast system can be 3 

summarized as follows. 4 

(1) A novel analysis-forecast system of wind speed is proposed in this 5 

paper,aimed at improving the effectiveness of constructing effective prediction 6 

intervals to improve the management and scheduling of wind power systems. 7 

(2) The notion of mode components wasoriginally developed in this study with 8 

the aim of effectively performing uncertainty analysis and mining for the nonlinear 9 

system based on wind speed series, which is proved to be an effective and robust 10 

method. 11 

(3)Importantly, the particularadvantage of the devised forecast module is its 12 

simplicity, since it avoids the assumption on distribution shape, as compared to 13 

conventional parametric statistical models. Thissignificantly reduces the complexity 14 

of uncertainty modeling and strengthens the robustness and efficiency of the system. 15 

(4)The feature selection technique based on delayed embedding 16 

theorywasdeveloped in this study to determine the optimal input features when 17 

developing the prediction intervals, which is an important contribution of this study. 18 

(5)Together with phase space reconstruction, the inherent trajectories of 19 

anonlinear system based on wind speed series aredeterminedusing recurrence plots 20 

and recurrence quantification analysis,which can effectively reveal the predictability 21 

of wind speed series. 22 

(6)IMOWCA is proposed in this paper to optimize the key parameters of the 23 

forecast module in this system. The experimental results manifest that IMOWCA 24 

outperforms its primitive in the process of constructing prediction intervals. 25 

(7)Effective sensitivity testing, which further elucidates the robustness, 26 

effectiveness, and efficiency of the devised analysis-forecast system, is described in 27 

this paper, and extensive discussions are presented. 28 

The remainder of this paper is organized as follows. Section 2 introduces the 29 

preliminaries of the proposed analysis-forecast system. In Section 3, the overall 30 

framework of the system is introduced. Implementations of the analysis module and 31 

forecast module to verify the effectiveness of the proposed system are described in 32 

Section 4. Further discussions about the system are presented in Section 5. Finally, the 33 

conclusion of this paper is put forth in Section 6. 34 

2 Methodology 35 

In this section, a modes decomposition method and recurrence analysis 36 

techniques are introduced. Furthermore, the detailed theory of feature selection using 37 

the C-C method is described. Finally, MIMOLSSVM and its optimization using 38 

IMOWCA are introduced. 39 

2.1 Modes Decomposition andRecurrence Analysis 40 

Nonlinear systems, in particular wind speed series, have complex system 41 

characteristics, such as high volatility, randomness and intermittency, and thus, it is 42 

difficult to accurately model the uncertaintyof wind speed series. Therefore, mode (or 43 

frequency domain) decomposition for wind speed series,which can largely reduce 44 

their complexity, must be implemented. In this section, a novelmode decomposition 45 

method, namely CEEMDAN, isbriefly introduced. Additionally, considering the 46 

complexity of wind speed series, an effective frequency-time analysis modulebased 47 

on recurrence plots and recurrence quantification analysisis used to analyze and study 48 

the dynamic characteristics of wind speed series. 49 

In order to effectively investigate and model the frequency components of wind 50 
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speed, CEEMDAN, a powerful mode decomposition method, isapplied in the devised 1 

forecast module. CEEMDAN, an advanced extension of the complementary ensemble 2 

empirical mode decomposition (CEEMD) method proposed by Jia-rongYeh et al. in 3 

[54], was first presented in [55]. As compared to the previously proposed empirical 4 

mode decomposition (EMD) [56], ensemble empirical mode decomposition (EEMD) 5 

[57], and complementary ensemble empirical mode decomposition (CEEMD) 6 

methods, the distinct merits of CEEMDAN are as follows. (1) The noise coefficient 7 

vector is extended to adjust the added noise level in the process of decomposition. (2) 8 

The generated IMFs are completely reconstructed without a noise component. (3) The 9 

method is more efficientthan EEMD and CEEMD. Further details concerning 10 

CEEMDAN can be found in reference [55]. 11 

The nonlinear systems, in particularwind speed series,show significant 12 

uncertainties, unexpected randomness, and complicated nonlinear specialties, and thus, 13 

uncertainty modeling is a challenging task. Therefore, explorations of the systematic 14 

features of nonlinear systems are always constantly in progress worldwide. 15 

Recurrence is a fundamental property of adynamical system, which can be exploited 16 

to characterize the system’s behavior in phase space [58]. In general, therecurrence 17 

phenomenon occursin nonlinear systems, especially chaos systems, which provides an 18 

effective path for investigating the dynamic properties based on phase space 19 

constructedby the C-Cmethod.Thus, therecurrence plot was first proposed by Eckman 20 

et al. [59] in order to effectively address the problem. The recurrence plot can be 21 

implemented via the following matrix Ri,j, which can betranslated into arecurrence 22 

plot. 23 

, ( ), , 1, 2, ,i j i jx x i j N   R
r r

L (1) 24 

where ix


denotes a point in phase space, andand  represent the threshold and 25 

Heaviside function, respectively. It is worth mentioning that the threshold is in 26 

generaldetermined as 0.4-0.5 times the standard deviation of the studied wind speed 27 

data. 28 

Table 2 [58] showsidentification methods of recurrence plotsand their different 29 

interpretations.In Fig. 1, an illustrative examplebased on theLorentz system in order 30 

not only to visualize the recurrence plot, but also toanalyze its characteristicsis shown. 31 

Inthis example, the embedding dimension and delay time of Lorentz series 32 

( , 1, 2, 3000iX i  ，L ) can be obtained by the C-Cmethodmentioned below. According 33 

to the obtained embedding dimension and delay time, the Lorentz attractor can be 34 

retrieved, as shown in Fig. 1.In this figure, the recurrence plot is clearly displayed 35 

with athreshold value 0.3 for the recurrence matrix, from which the conclusion can be 36 

drawnthat the analyzed system is chaotic according to the sixth identification method 37 

in Table 2. 38 

Table 2. Identification approaches forrecurrence plots. 39 

Observation Interpretation 

Homogeneity Stationary process. 

Fading to the upper left and lower right corners Nonstationarity; some states are rare or escape 
the normal; transitions may have occurred. 

Tapebreak occurs Nonstationarity; states are rare or far from the 
normal. 

Periodic or quasi-periodic patterns Periodical process; long diagonal lines with 
different distances between each other reveal a 
quasi-periodic process. 
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Single isolated points Heavy fluctuation in the process; the 
appearance of single isolated points 
impliesrandomness in the process. 

Diagonal lines Deterministic process; the evaluation of states 
is analogical at differenttimes; the process is 
chaotic if diagonal lines occur alongside single 
isolated points. 

Vertical and horizontal lines/clusters Weak volatility in the process; laminar states 
have occurred. 

 1 
Fig. 1. Illustrative example of recurrence plot. 2 

In this study, recurrence plots,togetherwith CEEMDAN,were used to unveil the 3 

intricate dynamic traits of anonlinear system and visualize the trajectories existing in 4 

actual phase space. Theoretically and technically, the times when the trajectory 5 

encounters approximately the same region in phase space can be effectively identified 6 

by the recurrence plot.  7 

Nevertheless, merely using the recurrence plot to identify the dynamic pattern of 8 

anonlinear system is notsufficientbecause ofthe absence of aqualitative 9 

analysis.Forthis reason, arecurrence quantification analysis including metrics was 10 

proposed in [60-62] in order to analyze a nonlinear system from the qualitative 11 

perspective, which usually involves certainstatistical standards, including recurrence 12 

rate (RR), determinism (DET), entropy (ENTR), andaverage diagonal line length 13 

(L).The definitions of these four metrics are described as follows. 14 

(1)Recurrence rate (RR): RR is a metric that calculates the proportion of 15 

recurrence points corresponding to the recurrence plot, which can be utilized to 16 

uncover the system dynamics in phase space.  17 

2
, 1

1
( ) ( ),

N

i j
i j

RR x x i j
N

 


    r r
 (2) 18 

At least 5 meters in length 19 

(2)Determinism (DET): DET is the ratio of recurrence points that form diagonal 20 

structures of length at least lmintoall recurrence points. Theoretically, the phenomenon 21 

ofno or very short diagonals occurs if the processesareuncorrelated or 22 

weaklycorrelated and the behavior is stochastic or chaotic, whereas adeterministic 23 

process produces longerdiagonals with fewersingleisolated recurrence points. 24 
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Accordingly, DET provides an insight for investigating the determinism andthe 1 

predictingcapabilityof a system. 2 

1

( )

( )
min

N

l l

N

l

lP l
DET

lP l









(3) 3 

whereP(l) is the histogram of diagonal lines of length lwith the threshold. 4 

(3)Average diagonal line length (L): L is the average distance betweentwo 5 

segments of the trajectory, which can be interpreted as the mean prediction time. 6 

( )

( )
min

min

N

l l

N

l l

lP l
L

P l









(4) 7 

(4)Entropy (ENTR): ENTR refers to the Shannon entropy of the probability p(l)= 8 

P(l)/Nl to find a diagonal line of exactly length l inthe recurrence plot, which reflects 9 

the complexity of the recurrence plot with respect to the diagonal lines. 10 

( ) ( )
min

N

l l

ENTR p l p l


  In (5) 11 

2.2 Feature Selection 12 

The effective modeling of complex nonlinear systemshas always been a hot topic 13 

in the academic community of nonlinear or complex systems. Detection of the 14 

immanent mechanism and dynamics is of great significance for modelinganonlinear 15 

system, and this led to the birth of phase space reconstruction. Feature selection 16 

through a classical phase space reconstruction technique, namely, theC-C method 17 

based on chaos theory, which was proposed by Kim H S[63], was developed in this 18 

study. In the process of phase space reconstruction, accuratedetermination of the 19 

optimal delay time (τ) and embedding dimension (m) is of crucial significancefor 20 

retrieving the attractor in high-dimensional phase space. Further details ofphase space 21 

reconstruction based on the C-C method are providedin the following. 22 

Consider a time series {xj| j=1, 2,…,j}. The phase space can be accurately 23 

reconstructed in accordance with the aforementioned parameters τ and m, 24 

respectively: 25 

[ ( ), ( ), , ( ( 1) )]X x i x i x i mi      (6) 26 

It is noteworthythat thephase space reconstruction technique provides a new 27 

perspective for analyzing the nonlinear system. However, improper, or even 28 

inaccurate, determinations ofτand mwill lead to significantly negative influenceson the 29 

effectiveness of theforecast model, such as anunsatisfactory forecast accuracy and 30 

potential management risk. The process of phase space reconstruction based on the 31 

C-C method comprises the following five steps.More information ofthe C-Cmethod 32 

can be found in reference [63]. 33 

(1)Determine the suitable length of the time series and then calculate its standard 34 

deviation; 35 

(2)Calculate the metrics ( )meanS t and ( )meanS t . 36 

5 4

2 1

1
( ) ( , , )

16mean j
m j

S t S m r 
 

  (7) 37 

5

2

1
( ) ( , )

4mean
m

S t S m t


   (8) 38 

whererj=jδ/2, j=1,2,…,4. 39 

(3)Determine the optimal delay time when S(t)mean first reaches zero or first 40 
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reaches the minimum value. 1 

(4)Coupling the metrics S(t)mean and ∆S(t)mean, the statistic Scor(t) can be 2 

obtained when Scor(t) reaches the global minimum, which can be calculated 3 

according to: 4 

( ) ( ) | ( ) |mean meanScor t S t S t   (9) 5 

(5) The optimal time window ϖ can be determined when Scor(t) reaches the 6 

global minimum value. Furthermore, the m can be obtained via the Eq. (10). 7 

( 1)m   (10) 8 

2.3Multi-input Multi-output Least Squares Support Vector Machine 9 

In this section, a classical machine learning model MIMOLSSVM, which is 10 

applied to perform the interval prediction, is introduced.In addition, the 11 

proposedIMOWCA to further optimize the performance of MIMOLSSVMis 12 

described. 13 

The MIMOLSSVM model, based on the principle of structural risk minimization 14 

[64-66], is a powerful tool for implementing interval prediction via the multi-output 15 

pattern. However, the application of MIMOLSSVM to uncertainty modeling is rarely 16 

implemented, despite the fact thatit has excellent nonlinear system modeling 17 

capabilities, in particular for uncertainty mining. 18 

Consider the training dataset asT=xi,yi
n, wherexi belongs to �p, yi belongs to �d, 19 

andxi and yirepresent the input and output dataset of the training set, respectively. 20 

Additionally, �pdenotes the input space with the dimension of p; the dimension p is 21 

optimally and dynamically determined according to the obtained embedding 22 

dimension via theaforementioned C-C method, and�dis selected as the value of 2 23 

considering the prediction interval with the upper and lower bound in this study. 24 

Technically, the classical LSSVM can be formulated as: 25 

( )Ty w x b  (11) 26 

wherew and b denote the weights and the bias, respectively, and ϕ signifies the 27 

function mapping stemming from the nonlinear relationship between input and output 28 

sets.More details of LSSVM can be found in reference [67]. 29 

The classical LSSVM model has anexcellentability to model the nonlinear series 30 

with the pattern of single-output. However, the LSSVM model with single output does 31 

not evidently meet the requirement that interval prediction be implemented, leading to 32 

inferior forecast results, even if two or more single LSSVM models are combinedinto 33 

a multi-output LSSVM, because this overlooksthecombined fitting bias generated by 34 

multiple LSSVM models. Accordingly, MIMOLSSVM wasdevelopedin this studyto 35 

perform the interval prediction. The detailed theory of MIMOLSSVM can be found in 36 

reference [68]. 37 

2.4 Introduction to the Improved Multi-objective Water Cycle Algorithm 38 

In this section, the flow of the original water cycle algorithm (WCA) is 39 

introduced. Furthermore, the improved multi-objective watercycle algorithm 40 

(IMOWCA), aimed at optimizing the devised forecastmodule, is proposed. It is 41 

described as follows. 42 

2.4.1 Water Cycle Algorithm 43 

Inspired by the actual water cycle process, the single-objective WCA, which is 44 

extensively applied in many fields, such as electrical power system [69-70] and traffic 45 

light scheduling [71], was proposed by Eskandaret al. [72].The calculation process 46 

ofthe WCAisas follows. The initial population of size Npopcan be obtainedrandomly.It 47 

isdivided into two sections in accordance with the fitness values. The first section 48 

consists of Nsr raindrops, which have a better fitness thanthe second section. The best 49 
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raindrop and some rivers are grouped in the first section. The second section is 1 

composed ofmany raindrops, which are calledthe streams in this algorithm.The size of 2 

thestreams, which are allocatedto theaforementioned first section, can be calculated 3 

according to Eq. (12), where Costn represents the fitness value of the n-th raindrop. 4 

1

( ) , 1, 2, ,
sr

n
n pop sr srN

kk

NS N N n N


      
  

round 
Cost

Cost
(12) 5 

Further, the algorithm consists of the following steps. 6 

Step 1:The iterative process of the new positions of streams and rivers ( 1i
Stream
X


,7 

1i
River
X


) can be expressed as Eqs. (13)-(15), which describe how the streams and rivers 8 

move toward sea while updating their positions. It isnoteworthy that the optimum 9 

determination of C is 2, which was proposed in [69];rand is a value that obeys the 10 

uniform random distribution in the range [0, 1]. 11 
1 ( )i i i i

Stream Stream River StreamC     X X rand X X
r r r r

(13) 12 

1 ( )i i i i
Stream Stream Sea StreamC     X X rand X X

r r r r
(14) 13 

1 ( )i i i i
River River Sea RiverC     X X rand X X

r r r r
(15) 14 

Step 2:The positions of each river and stream are automatically exchangedwhen 15 

the fitness of thestream is better than that ofthe rivers. Similarly, the position of thesea 16 

is replaced with its assigned stream or river when their fitness value is greater than 17 

that of the sea. 18 

Step 3:The behavior of evaporation and precipitation istriggered on condition 19 

that the evaporation condition, as shown in Eq. (16), is satisfied. Consequently, the 20 

position of streams is initialized, leading to the new positionsof streamsaccording to 21 

Eq. (17). Furthermore, the optimal position of astream is considered to be the river 22 

that flows toward the sea. Analogically, the new position of the stream can be 23 

calculated according to the stream that flows to the seaif the evaporation condition is 24 

satisfied, shown in Eq. (18). The noteworthy point is that the operation of evaporation 25 

can reduce the probability that the algorithm falls prematurely into local optima. 26 

, { , }i i i
Sea maxd Stream River   X X

r r
(16) 27 

( )i
New Stream    X LB rand UB LB

r
(17) 28 

i i
New stream Sea   X X Randn

r r
(18) 29 

wheredmaxis set as 10-6, andRandn is a random vector that obeys uniform distribution 30 

with the range [-1,1]. Additionally, LB and UB represent the lower and upper bounds 31 

of variables. Finally, μ was set as 0.1 inthe study[69]. 32 

Step 4:The tolerance in the evaporation condition, namely dmax, adaptively 33 

decreases in the process of iteration, which isshown in 34 

1
i

i i max
max max

d
d d

max_iteration
   (19) 35 

Step 5:The algorithm isfinalizedif the end condition (such as maximum iteration 36 

numbers) is satisfied;Otherwise, it returns toStep 1. 37 

2.4.2 Improved Multi-objective Water Cycle Algorithm 38 

The innovation of the IMOWCA proposed in this paper is that the adaptive and 39 
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nonlinear inertia weight (ω), which has an excellent capability to balance the global 1 

and local search capability in the process of algorithm iterations, as shown in Eq. 2 

(20),is introduced into the original MOWCAfor the first time. Technically, when ω is 3 

large, the IMOWCA has an excellent global exploration capability, while its local 4 

exploitation ability is poor; conversely, the IMOWCA has noteworthysuperiority in 5 

terms of local exploitation, while its global exploration ability is poor. Accordingly, 6 

determining the appropriate ω can balance the capability of global exploration and 7 

local exploitation in IMOWCA, which can significantly promote the convergence rate 8 

and effectiveness of MOWCA. The improved iteration formulations on the new 9 

position of streams and rivers in IMOWCA can be formulated as inEq. (21). 10 

Additionally, as well as the detailed calculation process of the MOWCA, the reports 11 

in [69, 73-74]provide largeamounts of information about this algorithm. 12 
3( ) ( 3.5 ( / ))

1, 2, ,
j end start end j max_iteration

j max_iteration

         




exp


(20) 13 

1
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i i i i
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i i i i
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




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      
      
      

X X rand X X

X X rand X X
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r r r r
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(21) 14 

The complexity of IMOWCA isas follows. The complexity of IMOWCA is 15 
2( )popO N  in the worst scenario. The detailed computation processes are as shown in 16 

Table 3, where M denotes the number of objective functions and Npop represents the 17 

population size in IMOWCA. 18 

Table 3. Complexity analysis of improved multi-objective water cycle algorithm. 19 

Algorithm Procedures Complexity 
Determination of the sea 2( )popO N  [75] 

Move streams and rivers ( )popO N  [75] 

Replace rivers and sea by better streams and 
rivers, respectively 

( )popO N  [75] 

Check the evaporation condition ( )popO N  [75] 

Non-dominated sorting 2( (3 ) )popO M N  [76] 

Crowding distance assignment ( (3 ) log(3 ))pop popO M N N [76] 

Rank-crowd sorting procedure ( (3 ) log(3 ))pop popO M N N  [76] 

In order to compare the proposed IMOWCA with other multiobjective 20 

optimization algorithms, a literature reviewon the subject of the complexity 21 

measurement of multi-objective optimization algorithms was conducted. The 22 

complexity of the considered multi-objective optimization algorithms is as follows. 23 

The complexity of NSGA-II [76], SPEA2 [77] and PAES [78] is 2( )popO MN and the 24 

complexity of NSGA [79] and SPEA [80] is 3( )popO MN . Obviously, the IMOWCA 25 

has a lower complexity than these algorithms, which indicates that its computational 26 

efficiency is high as compared to that of these benchmark algorithms. 27 

Importantly, the IMOWCA was developed in this study to dynamically optimize 28 

the parameter configuration in the forecast module, with the aim ofimproving the 29 

efficiency and effectiveness of the devised forecast module. 30 

2.4.3Testing of Improved Multi-objective Water Cycle Algorithm 31 
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In order to validate the effectiveness and efficiency of IMOWCA ascompared to 1 

MOWCA, the four testing problemsdescribedin Appendixwere performed on the 2 

platform of MATLAB R2015b on MicrosoftWindows 7 with 3.30 GHz Intel Core 3 

i5-4590 HQ 64-bit and 8 GB of RAM. The algorithm parameters of IMOWCA and 4 

MOWCA are displayed in Table 4. Additionally, in order to obtain robust and 5 

effective simulation results, each algorithm was repeatedly simulated 20 times, and 6 

then, the final resultswere obtained by averagingthe obtained results.Generational 7 

distance (GD) [81-82] and spacing (SP) [83-84] were applied to quantitatively 8 

evaluate the performance of the two algorithms. The GD, proposed in [81], is used to 9 

measure the distance between thetrue Pareto front and obtained Pareto front. 10 

Accordingly, the smaller the value of GD ， the better the performance of 11 

themulti-objective algorithm. The SP is usually applied to evaluate the distributivity 12 

of solutions in aPareto set.All non-dominant solutions are equidistant (or even) ifthe 13 

SP is equal to 0. In Table 5, the final simulation results are displayed, from which it 14 

can be concluded that IMOWCA is significantly superior to the original MOWCA on 15 

balance. The efficiency of IMOWCA is slightly superior to that of original MOWCA 16 

in the problems of ZDT1, ZDT3, andKursawe,according to the computation 17 

timesshownin Table 5. In order to further illustrate the comparativeperformance 18 

ofIMOWCA and MOWCA, the corresponding Pareto fronts obtained by IMOWCA 19 

and MOWCA arevisualized in Fig. 2, in which it can be observed that the Pareto front 20 

obtained by IMOWCA is closer to the true Pareto front than that obtained 21 

byMOWCA. 22 

Table 4.Parameter settings of the improved multi-objective water cycle 23 

algorithm andthe multi-objective water cycle algorithm. 24 

Parameter Configuration  IMOWCA MOWCA 
Population size  200 200 
Size of archive  100 100 

Maximum iteration  200 200 
Number of streams  196 196 

Number of rivers and seas  4 4 
Evaporation condition constant  1×10-2 1×10-6 

Initial value of inertia weight start   0.9 - 

Terminal value of inertia weight end   
0.4 - 

 25 

Table 5. Assessment results of improved multi-objective water cycle algorithm and 26 

the multi-objective water cycle algorithm. 27 
Problem  Algorithm CPU time 

(s) 
GD  SP 

 Best Average Median Worst Std.  Best Average Median Worst Std. 

ZDT1 
 IMOWCA 29.7280 0.0015 0.0039 0.0030 0.0124 0.0026  0.0619 0.0796 0.0801 0.0933 0.0081 
 MOWCA 29.8663 0.0013 0.0094 0.0030  0.0896 0.0189  0.0151 0.0740 0.0769 0.0979 0.0169 

ZDT3 
 IMOWCA 29.4013 0.0049 0.0064 0.0062 0.0085 0.0014  0.1705 0.2066 0.2034 0.2808 0.0447 
 MOWCA 30.6576 0.0053 0.0167 0.0135 0.0641 0.0138  0.0651 0.1712 0.1756 0.2585 0.0540 

Kursawe 
 IMOWCA 30.9350 0.0953 0.1146 0.1220 0.1265 0.0169  1.1172 1.2180 1.2587 1.2783 0.0879 
 MOWCA 34.8924 0.1359 0.1661 0.1536 0.1981 0.0291  0.8565 1.7162 1.5509 2.4648 0.6533 

Viennet3 
 IMOWCA 31.8706 0.0038 0.0057 0.0048 0.0082 0.0021  2.2716 2.5119 2.5766 2.7831 0.2106 
 MOWCA 30.6787 0.0046 0.0129 0.0114 0.0313 0.0064  2.0812 2.4289 2.4157 2.9181 0.2048 

Bold characters: the best results among all the algorithms. 28 
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 1 
Fig. 2. Obtained Pareto fronts of improved multi-objective water cycle algorithm and 2 

the multi-objective water cycle algorithm. 3 

3 System Development 4 

In this section, the overall frame structure of the devised analysis-forecast system 5 

is systematicallydescribed, as well as the three popular metrics used for evaluating the 6 

performance of uncertainty modeling. 7 

3.1System Design 8 

As shown in Fig. 3, the overall framework of the devised analysis-forecast 9 

system is composed of the followingsteps. 10 

(1)In order to reduce the complexity generated bythe raw wind speed series, an 11 

effectivefrequency-time analysis based on the CEEMDAN method wasdevelopedto 12 

decompose the wind speed series into mode components.  13 

(2)To analyze and explore the nonlinear dynamical mechanism of wind speed 14 

series and the corresponding IMFs, recurrence analysis techniques based on chaos 15 

theorywere developed to perform the qualitative and quantitative investigation for 16 

wind speed series.  17 

(3)To ensurethe efficiency of the devised system, the IMFs generated fromthe 18 

original wind speed series are effectively merged according to the 19 

correspondingcomplexity degree. 20 

(4)The C-C method based on chaostheory was developed to determine the 21 

optimal input forms of the forecast module according to the obtained delay time and 22 

embedding dimension, which improves the efficiency of the reconstruction of the 23 

model input. 24 

(5)Furthermore, the input and output forms of the forecastmodule can be 25 

expressed as Eqs. (22) and (23), where α denotes the interval width coefficient, 26 

andparametersτ and m represent thedelay time and embedding dimension, 27 

respectively. 28 
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(6)More importantly, the IMOWCA proposed in this study was effectively 3 

developed to optimize the key parameters of MIMOLSSVM in the devised forecast 4 

module. 5 

(7)Finally, the final prediction intervals can be obtained via merging the 6 

forecasting results generated by each IMF. 7 

 8 
Fig. 3.Overall framework of the devised analysis-forecast system. 9 

3.2 System Evaluation 10 

In order to quantitativelyassess the effectiveness of the devised forecast module, 11 

the metrics coverage probability (CP) and average width (AW) were appliedin the 12 

evaluation module. Moreover, the accumulated width deviation (AWD)metric was also 13 

usedto assess the reliability of theforecast module. 14 

The accuracy of prediction intervals can be obtained by the CPmetric, which 15 

reflects the probability that the actual observed value zi falls within the constructed 16 

prediction interval.CP can be calculated by 17 
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whereci signifies a Booleanvalue andLi and Ui denote the lower and upper bound of 2 

theconstructed prediction interval, respectively. Parameter n represents the number of 3 

prediction intervals. 4 

Given the appropriateCP, the smaller the AW value, the better isthe system 5 

performance is.The metric AW can be calculatedby 6 

1

1
( )

n

i i
i

AW
n 

  U L (25) 7 

AWD can be calculated by measuring the relative deviation degree, which can be 8 

obtained by thecumulative sum of AWDi. The calculation formula of AWDisexpressed 9 

as Eqs. (26) and(27), where α denotes the interval width coefficient and Ii represents 10 

the i-th prediction interval. 11 
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Importantly, it is worth mentioning that the metrics CP and AW were determined 14 

as the objective functions of IMOWCA in thisstudy. 15 

4 Numerical Simulations and Results Analysis 16 

In this section, the sites included in this study and the dataare described. 17 

Furthermore, certainstatistical metrics are used to express the basic characteristics 18 

ofwind speed series. In this study, recurrence analysis techniques were effectively 19 

developed to study the dynamic characteristics in phase space and uncover the 20 

rhythmicity of the nonlinear dynamics system based on wind speedseries. Finally, 21 

uncertainty modeling, which was effectively performed based on wind speed series 22 

from two wind farms, is described. 23 

4.1Study Sites and Data Source 24 

In this section, wind speed series from two wind farms, namely, thePenglai site 25 

(37.48°N, 120.45°E) and Chengde site (40.97°N, 117.93°E)in China, were selected as 26 

the experimental data to verify the devised analysis-forecastsystem. As shown in 27 

Table 6, five statistical indexes Min, Max, Std. (standard deviation), complexity and 28 

maximum Lyapunov exponent (MLYE) based on thewolf method [85], were used to 29 

perform the descriptive statistical analysis of the dataused in this study. Theoretically, 30 

the studied nonlinear system can be assumed to be achaotic dynamic system if the 31 

maximum Lyapunov exponent is greater than zero.In particular, it is noteworthy that 32 

the MLYEs of the datain Table 6 are all greater than zero, which indicates that the 33 

wind speed series in this studyare essentiallychaotic time series. The basic 34 

information of the sites and the raw wind speed data, includingthe trainingand testing 35 

sets, are displayed in Fig. 4. 36 

 37 

 38 

 39 
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Table 6. Statistical descriptions of the data. 1 

Sites  Data  Number Min 
(m/s) 

Max 
(m/s) 

Std. 
(m/s) 

Complexity MLYE 

Penglai site 1 
 All samples  3000 0.8 20.3 3.1379 0.3933 0.2432 
 Training set  2600 0.9 20.3 3.1994 0.3988 0.2555 
 Testing set  400 0.8 13.1 2.6134 0.4340 0.1525 

Penglai site 2 

 All samples  3000 0.9 18.5 3.6152 0.3953 0.1592 
 Training set  2600 0.9 18.5 3.6791 0.4012 0.1534 
 Testing set  400 1.1 17.1 2.6444 0.5666 0.0417 

Chengde site 1 

 All samples  3000 0.2 20.6 3.3785 0.5104 0.1818 
 Training set  2600 0.2 20.5 3.2912 0.4961 0.1564 
 Testing set  400 1.6 20.6 3.4708 0.6751 0.1972 

 2 

 3 
Fig. 4. Sites and data. 4 

4.2 Implementing Uncertainty Analysis and Modeling 5 

In this section, we describe howuncertainty modeling is effectively performed 6 

based on the nonlinear system of wind speed from two wind farms in China. 7 

Frequency domain decomposition based on theCEEMDAN technique is effectively 8 

applied to wind speed series.Then, the use of feature selection based on the C-C 9 

method to dynamically select the most qualified input forms is described.In 10 

addition,the development of the recurrence analysis techniques to explore the dynamic 11 

properties of wind speed series is presented. Finally, the effective simulation of the 12 

devised system to test its robustness and effectiveness is described. 13 

4.2.1Frequency Domain Decomposition 14 

Because ofthe complex non-linearity of wind speed series, frequency domain 15 

decomposition for wind speed series is vital. CEEMDAN was developed in this 16 

studyto implementour method.It is noteworthy that no single theory can be used to 17 

effectively determine the number of IMFs far. In this study, the determination of the 18 

number of IMFs depended mainly on empirical study. Thedetailed parameters of 19 

CEEMDAN were as follows: the number of IMFs was 12; the standard deviation of 20 

the added Gaussian white noise was 0.2; the number of realizations was 500; and the 21 

maximum number of sifting iterations allowed was 5000. In order to reduce the 22 
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modeling complexity and enhance the efficiency of the devised system, the IMFs 1 

(IMF1–IMF12) generated by the CEEMDAN method were merged as shown in Fig. 2 

5,according to the corresponding complexity of each IMF, obtaining reconstructed 3 

IMFs (IMF1–IMF7).The complexity degree and MLYE of these reconstructed IMFs 4 

are displayed in Table 7. In Particular, it can be confirmedsubstantially that these 5 

reconstructed IMFs are chaotic time series according to the MLYE in Table 7, which 6 

are all greater than 0. 7 

Table 7.Complexity degree and of maximum Lyapunov exponent each intrinsic mode 8 

function. 9 

Sites  Indexes  IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 

Penglai site 1 
 Complexity  0.9455 0.7865 0.5794 0.4037 0.2573 0.1381 0.0397 
 MLYE  0.4457 0.0149 0.0573 0.0167 0.0079 0.0122 0.0054 

Penglai site 2 
 Complexity  0.9350 0.7593 0.5878 0.4225 0.2677 0.1130  0.0523 
 MLYE  0.2874 0.0054 0.0102 0.0227 0.0347 0.0029 0.0066 

Chengde site1 
 Complexity  0.9141 0.7698 0.5962 0.4267 0.2740 0.1422 0.0439 
 MLYE  0.1167 0.0051 0.0068 0.0460 0.0050 0.0092 0.0147 

 10 

 11 

Fig. 5. Results of reconstructed intrinsic mode functions based on Penglai Site 1. 12 

4.2.2 Feature Selectionbased on Phase Space Reconstruction 13 

The determination of the suitable input forms forthe devised system plays a vital 14 

role in the process of uncertainty modeling. Inversely, inappositeinput forms will exert 15 

a significantlynegative impact on the forecast accuracy and effectiveness. Accordingly, 16 

the C-Cmethodbased on chaos theory was developed to dynamically determine the 17 

optimal input forms. Technically, the merits of the feature selection based on the C-C 18 

method are as follows: (1) model simplification [86]; (2) model 19 

efficiencyenhancement; (3) avoidance of the curse of dimensionality; and(4)model 20 

generalization enhancementby reducing over-fitting [87]. The C-Cmethodparameters 21 

of the wind speed seriesand corresponding IMFs are presented in Table 8. In order to 22 

effectively exhibit the attractor and its trajectories of wind speed series, the attractor 23 

of each IMF based on wind speed data from Penglaisite 1 was retrieved, according to 24 

the corresponding delay time obtained byusing theC-C method, as shown in Fig. 6. It 25 

can be seen in this figurethat the attractor is clearer and more unfolded from IMF1 to 26 

IMF7.The aforementioned analysis indicates that the predictability of IMF increases 27 

from IMF1 to IMF7. 28 

 29 

 30 

 31 
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Table 8.Parameters m, τ, and ϖ generated by the C-C method. 1 

Indexes Penglai site 1 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 
m 3 5 17 6 10 8 4 5 
τ  37 10 2 4 8 16 31 33 
ϖ  69 44 32 20 72 115 101 121 

Indexes  Penglai site2 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 
m 4 7 26 12 8 4 7 8 
τ  33 7 2 4 8 16 25 18 
ϖ  93 45 50 45 55 53 141 121 

Indexes  Chengde site1 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 
m 5 9 48 19 6 10 5 7 
τ  30 5 2 4 8 15 31 21 
ϖ  117 40 93 71 36 133 122 128 

 2 

 3 
Fig. 6. Attractor of each intrinsic mode function based on Penglai site 1. 4 

4.2.3Uncertainty Analysis 5 

The investigation and analysis of the dynamic characteristics and predictability 6 

in advance has animportant significance for uncertainty modeling. In order to 7 

qualitatively perform the analysis for the wind speed series, the original wind speed 8 

series and the corresponding IMF were transformed into recurrence plots according to 9 

the corresponding delay time and embedding dimension. Furthermore, the recurrence 10 

quantification analysis including certain metrics was used to quantitatively analyze 11 

and study the dynamic characteristics of the complex nonlinear system based on wind 12 

speed data. 13 
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In order to effectively reconstruct the phase space, it is crucial to acquire the 1 

optimal delay time and embedding dimension. According to the delay times and 2 

embedding dimensions in Table 8, the original wind speed series and the 3 

corresponding IMFs could be transformed into recurrence plots, which are visualized 4 

in Fig. 7. Fig. 7(A), (B), and (C) show the data from Penglai site 1, Penglai site 2, and 5 

Chengde site 1, respectively.  6 

Fig. 7 indicates the following: 7 

(1)Inthe recurrence plot of Penglai site 1 shown in Fig. 7(A), there are some 8 

short navy-blue diagonal lines, which simultaneously occur beside some single 9 

isolated points. The figure also further indicates that the wind speed series is chaotic. 10 

Additionally, the red bands signify that there is nonstationarity (or a drastic change). 11 

In Fig. 7–(A), a roughly homogeneous phenomenon appearsin therecurrence plots of 12 

IMF1–IMF4, which shows that a large number of single isolated points occur in these 13 

figures. The appearance of plentiful single isolated points and frequent red bands 14 

significantly illustrates that the series IMF1–IMF4 is extremely unstable, exposing the 15 

randomness and high volatility of wind speed series. The recurrence plots from IMF5 16 

and IMF6 start to show some diagonal lines, which illustrates that the evolution of 17 

states in phase space is comparableat different times. There are some longer diagonal 18 

lines in the recurrence plots of IMF6 andIMF7, which indicates that the level of 19 

predictability is increasing gradually. 20 

(2)It can be seen in the texture of therecurrence plot based on Penglaisite 2 inFig. 21 

7–(B) that a homogeneous structure sometimes similarly occurs in the navy-blue 22 

squared block, which signifies that the stationary process is embedded into the 23 

nonlinear system based on wind speed series. Additionally, vertical recurrence points 24 

occur within the blocks, which indicates that it is achaos system among laminar zones. 25 

Similarly, there is anapproximately homogeneous texture among the recurrence plots 26 

of IMF1–IMF3, displaying manynavy-blue points with a uniform form, which further 27 

illustrates thatthe original wind speed data contain intrinsic random components. 28 

However, the navy-blue diagonal lines first appearin the recurrence plot of IMF4. 29 

Furthermore, there are longer diagonal lines in IMF6 andIMF7, in particularin IMF7. 30 

Additionally, some red clusters with vertical and horizontal textureappear, where 31 

anabrupt transition or change occurs. 32 

(3)In Fig. 7–(C), the wind speed series and the corresponding IMFs from 33 

Chengde site 1 were converted into recurrence plots according to the corresponding 34 

delay time and embedding dimension. In the recurrence plot based on the wind speed 35 

series from Chengde site 1, there are very few navy-blue diagonal lines, which 36 

indicates there is strong indeterminacy and randomness in thewind speed data of this 37 

site. The indeterminacy and randomness makes uncertainty modeling challenging. As 38 

similar to Fig. 7–(A) and (B), IMF1–IMF3 also exhibit asimilar texture with 39 

manynavy-blue points, which means that these frequency domains have strong 40 

randomness components. Moreover, there are some periodic recurrent structures (the 41 

longer diagonal lines, checkerboard structures) in the recurrence plots of IMF4–IMF7, 42 

which indicates that the predictability of frequency domains is increasing gradually.  43 

However, it is not sufficientto rely merely on subjective observation to 44 

investigate recurrence plots. Accordingly, in this study, evaluation metrics of 45 

therecurrence plots were usedto quantitatively evaluatethem. 46 

Recurrence quantification analysis is an effective technique to investigate the 47 

phenomena of transitions, mutation, and periodicity inthe system dynamics in time 48 

series. Table 9shows some quantitative results of the aforementioned recurrence plots, 49 

which indicate the following. 50 
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(1)Ahigher RR, DET,andL represent higher predictability. As compared to the 1 

wind speed data from Penglai sites 1–2, the predictability of the data fromtheChengde 2 

farm is lower according to the metrics consideredin this study. Additionally, the ENTR 3 

of wind speed data from Penglai site 2 is higher than fromPenglai site 1 and Chengde 4 

site 1, which illustrates that the complexity of the recurrence plot based on the data 5 

from Penglai site 2 is higher than that for other sites. 6 

(2)In all cases, in addition to the high frequency domains, namely, IMF1–IMF3, 7 

the four metrics increase from IMF4–IMF7, which significantly illustrates that 8 

IMF4–IMF7 generated by CEEMDAN are the main frequency domains of the studied 9 

wind speed series. However, merely modeling the main frequency does not sufficeto 10 

quantify the uncertainty. Accordingly, in this study, each IMF, including thehigh 11 

frequency domain and main frequency domain,was effectively modeled to further 12 

mine the uncertainty in wind speed series. 13 

Remark: Given the evaluation metrics in Table 9, the wind speed series from 14 

Chengde site 1 has lower predictability because itsRR, DET, and Lare lower than 15 

those of Penglai sites 1–2. Accordingly, toeffectively perform uncertainty mining for 16 

Chengde site 1 is a challenging task. 17 
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 1 
Fig. 7. Frequency-evolving recurrence plots of wind speed series. 2 

Table 9.Results of recurrence quantification analysis based on mode components. 3 

Indexes  Penglaisite 1 
 Original data IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 

Threshold  1.41208  0.13248  0.11221 0.14394 0.20842 0.29988  0.71159  0.97515  
RR  0.23898  0.00000  0.00000 0.00000 0.00000 0.00049  0.01493  0.13431  

DET  0.93958  0.00000  0.00000 0.00000 0.00000 0.99853  0.99971  1.00000  
ENTR  2.10174  0.00000  0.00000 0.00000 0.00000 2.81186  3.79254  5.84611  

L  8.10338  - - - - 23.36782  30.00095  192.73229 

  Penglai site 2 
Threshold  1.62684  0.16769  0.14856 0.17938 0.24270 0.32118  0.97036  0.98592  
RR  0.22655  0.00000  0.00000 0.00000 0.00001 0.00242  0.02594  0.08798  
DET  0.94656  0.00000  0.00000 0.00000 0.88462 0.94140  0.99995  0.99999  
ENTR  2.15867  0.00000  0.00000 0.00000 1.01865 1.61122  4.63665  5.49362  
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L  8.94314  - - - 2.87500 5.31190  58.46863  134.47020 

  Chengde site 1 
Threshold  1.52034  0.24034  0.18110 0.18628 0.22991 0.35677  0.72102  1.08644  
RR  0.08488  0.00000  0.00000 0.00000 0.00000 0.00290  0.00594  0.11729  
DET  0.79644  0.00000  0.00000 0.00000 0.75000 0.94747  0.99992  0.99999  
ENTR  1.26356  0.00000  0.00000 0.00000 0.64111 1.58960  3.71065  5.33671  
L  4.08779  - - - 2.25000 5.41086  66.42700  118.27968 

 1 

4.2.4 Uncertainty Mining 2 

In this section, three cases based on wind speed series from two different wind 3 

farms in China are used to validate the effectiveness and robustness of the devised 4 

forecast module aimed at quantifying uncertainties. Three benchmark models, 5 

Modes-MOWCA-CC-MIMOLSSVM, IMOWCA-CC-MIMOLSSVM, and 6 

IMOWCA-MIMOLSSVM, were usedin this study in order to reveal the superiority of 7 

the devised system. Importantly, the crucial parameters of the forecast module were 8 

dynamically tuned by IMOWCA in order to ensure the robustness and accuracy of the 9 

system. The detailedparameter settings of IMOWCA are displayed in Table 10. 10 

Additionally, three statistical metrics, namely,CP, AW, and AWD, were applied to 11 

further evaluate the accuracy and appropriateness of the devised forecast module. 12 

Table 10. Parameter settings of improved multi-objective water cycle algorithm. 13 

Parameter Configuration  Default Value 
Dimension of the problem  4 

Population size  50 
Range of population  [e-5, 1000] 

Size of archive  50 
Initial value of inertia weight  0.9 

Terminal value of inertia weight  0.45 
Number of streams  46 

Maximumiteration number  5 
Evaporation condition constant  10-6 

Number of objectives  2 

The quantitative simulation results of interval prediction are shown as in Tables 14 

11–12, which consist of the simulations based on Penglaisite 1, Penglai site 2, and 15 

Chengde site 1, respectively. All the numerical simulations were conducted on the 16 

platform of MATLAB R2015b on MicrosoftWindows 7 with 3.30 GHz Intel Core 17 

i5-4590HQ 64-bit and 8 GB of RAM. All thecases in this study were effectively 18 

implemented based on interval width coefficients 0.1 and 0.2. To consider the 19 

randomness in the process of thesimulations, the obtained resultsshown in Tables 20 

11–12 were determined via averaging the results of10 experiments. Technically, the 21 

assessment of interval prediction is usually related to CP and AW. However, there is a 22 

contradictory relationship between CP and AW. Clearly, CPincreases when AW 23 

increases, which reduces the informativeness of prediction intervals and increases risk. 24 

Accordingly, AWD was introduced to effectivelyevaluate the accuracy of prediction 25 

intervals. Additionally, in order to illustrate the detailed prediction intervals of all the 26 

cases, Figs. 8–10 exhibit the performance of the devised forecast module and the 27 

benchmark modelsthat were considered, respectively. 28 

In order to further investigate the experimentalresults, Tables 11–12and Figs. 29 

8–10reveal the following. 30 

(1)Acomparison of Modes-IMOWCA-CC-MIMOLSSVM and 31 
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Modes-MOWCA-CC-MIMOLSSVM reveals that,in all cases, the devised forecast 1 

module is notablysuperior to all thebenchmark models in generalaccording to CP, 2 

AW,and AWD, which signifies that IMOWCA has abetter capability to optimizethe 3 

devised system thanthe original MOWCA.For example, the average CP value of the 4 

proposed Modes-IMOWCA-CC-MIMOLSSVM model reflects a 5.92% and 1.75% 5 

improvement when the interval width coefficient is 0.1 and 0.2, respectively,as 6 

compared to the benchmark model Modes-MOWCA-CC-MIMOLSSVM. 7 

Furthermore, the average AWD value of the proposed model reflects a 0.0310 and 8 

0.0081 improvementas compared to the benchmark model when the interval width 9 

coefficient is 0.1 and 0.2, respectively. 10 

(2)The proposal that mode components should be used to interval prediction in 11 

the devised system is a significant contribution of this study, since this is the first 12 

timemode components have beenapplied to the interval prediction of wind speed. As 13 

compared to the benchmark model IMOWCA-CC-MIMOLSSVM, which does not 14 

consider mode components, the comprehensive performance of the devised forecast 15 

module is superior to that ofthe other benchmark models, which illustrates the 16 

effectiveness and accuracy of the system.In summary, the experimental results in 17 

Tables 11–12 shows thatthe average CP value of the proposed forecast system reflects 18 

a20.28% and 8.40% improvementas compared to the benchmark model 19 

IMOWCA-CC-MIMOLSSVM when the interval width coefficient is 0.1 and 0.2, 20 

respectively. Furthermore, the average AWD value of the proposed forecast module 21 

reflects a 0.1120 and 0.0153 improvementas compared to the benchmark model when 22 

the interval coefficient is 0.1 and 0.2, respectively. 23 

(3)The C-Cmethodis an excellent meansof performing the feature selection in 24 

theforecastmodule, which can enhance the robustness and accuracy of the devised 25 

forecast module. As seen in Tables 11–12, the average CP value of the proposed 26 

forecast module reflects a 21.24% and 9.97% improvementas compared to the 27 

benchmark model IMOWCA-MIMOLSSVM when the interval width coefficient is 28 

0.1 and 0.2, respectively. Furthermore, the average AWD value of the proposed 29 

forecast module also reflects a 0.1350 improvementwhen theinterval width coefficient 30 

is 0.1, and a 0.0294 improvementwhen the interval width coefficient is 0.2 as 31 

compared to the benchmark model. Accordingly, the effectiveapplication of theC-C 32 

methodto interval prediction of wind speed can be considered a contribution of this 33 

study. 34 

(4)The performance and effectiveness of the system in the experiments based on 35 

Chengde site 1 are inferior to those based on the Penglai sites according to the 36 

metricsshown in Tables 11–12, which precisely verifies the remark in the section 37 

onuncertainty analysis.Consequently, it is necessary to perform uncertainty analysis of 38 

wind speed series, which can provide more information about their predictability, 39 

before the interval prediction of wind speed. 40 

(5)Figs. 8–10 show that the prediction intervals yielded by the proposed forecast 41 

module are more accurate than those of the benchmark models, because the prediction 42 

intervals can cover true wind speed observations with a higher probability. 43 

Additionally, the constructed prediction intervals are smoother than those of the 44 

benchmark models, indicating that the robustness of the proposed prediction module 45 

is more stable. 46 

(6)The results of the devised forecast module shows the same superiority when 47 

the experiments were conducted based on data from different wind farms, which 48 

further verifies the robustness and effectivenessof the devised system. 49 

Remark: The results of the experiments based on the data fromdifferent wind 50 
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farms significantly testifytothe advantages of the proposed forecast moduleon balance 1 

ascompared to the benchmark models considered in this study. 2 

Table 11.Testing results of system performance based on Penglai sites. 3 

Sites  Modes-IMOWCA-CC-MIMOLSSVM  Modes-MOWCA-CC-MIMOLSSVM 

Site 1 

 α AW CP AWD  AW CP AWD 
 0.1 1.4066 94.01% 0.0193 1.4064 82.40% 0.054 
 0.2 2.8001 96.25% 0.0314 2.8230 98.88% 0.0041 
 IMOWCA-CC-MIMOLSSVM  IMOWCA-MIMOLSSVM 
 α AW CP AWD  AW CP AWD 
 0.1 1.3379 71.08% 0.1361 1.3281 72.34% 0.1066 
 0.2 2.6675 92% 0.0210 2.6428 92.13% 0.0341 

Site 2 

 Modes-IMOWCA-CC-MIMOLSSVM  Modes-MOWCA-CC-MIMOLSSVM 
 α AW CP AWD  AW CP AWD 
 0.1 0.9422 81.53% 0.1202 1.1181 80.32% 0.1753 
 0.2 2.1944 99.50% 0.0013 2.1845 99.20% 0.0014 
 IMOWCA-CC-MIMOLSSVM  IMOWCA-MIMOLSSVM 
 α AW CP AWD  AW CP AWD 
 0.1 1.0904 69% 0.1372 1.1824 66.24% 0.1949 
 0.2 2.1770 89.67% 0.0206 2.3530 86.55% 0.0372 

 4 

Table 12.Testing results of system performance based on Chengde site 1. 5 

Site  Modes-IMOWCA-CC-MIMOLSSVM  Modes-MOWCA-CC-MIMOLSSVM 

Site 1 

 α AW CP AWD  AW CP AWD 
 0.1 1.9488 78.79% 0.0656 1.9652 73.86% 0.0689 
 0.2 3.9557 93.56% 0.0229 3.9481 85.98% 0.0744 
 IMOWCA-CC-MIMOLSSVM  IMOWCA-MIMOLSSVM 
 α AW CP AWD  AW CP AWD 
 0.1 1.9122 53.41% 0.2677 1.7203 52.03% 0.3085 
 0.2 3.8426 82.44% 0.0599 3.4371 80.71% 0.0726 

 6 

 7 
Fig. 8. Visualization of prediction intervals based on Penglai site 1. 8 

 9 
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 1 
Fig. 9. Visualization of prediction intervals based on Penglai site 2. 2 

 3 

 4 
Fig. 10.Visualization of prediction intervals based on Chengdesite 1. 5 

5 Further Discussion 6 

In this section,the sensitivity analysis concerning iterations of IMOWCA is 7 

discussed based on different iteration numbers. Then, the practical significance and 8 

the applications of the proposed analysis-forecast system are also discussed. Finally, 9 

future research directions of interval prediction are suggested. 10 

5.1Sensitivity Analysis on Iterations 11 

The iterations of amulti-objective optimization algorithm significantly affect the 12 

effectiveness and robustness of uncertainty modeling. An excessive number of 13 

iterations may yield over-fitting or fall into local optimum. Accordingly, the algorithm 14 

iterations of IMOWCA are discussed based on the wind speed series from Penglai site 15 
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1. The simulation results are displayed in Table 13, from which the following 1 

conclusions can bedrawn. 2 

(1)With anincrease in the number of iterations, the metric AWshows a trend of 3 

fluctuations in different iterations, tending first to increase and then to decrease.The 4 

metric CPdisplays a roughlydecreasing tendency, which also reveals that the accuracy 5 

and effectiveness of the devised model is declining. The metric AWDshowsatendency 6 

to increase with an increase initerations, which indicates that the average number 7 

offorecasting errors is increasing. 8 

(2)In fact, thedifferent scenarios of uncertainty modeling rely largely onthe 9 

practical decision-making process. However, considering the performance and 10 

computational burden of the devised system, five can be considered a relatively 11 

optimal number of iterations on balance. 12 

Table 13. Sensitivity analysis of different iterations based on improved 13 

multi-objective water cycle algorithm. 14 

α  Iteration  AW CP AWD 

 0.1 

  5  1.4066 94.01% 0.0193 
  10  1.4144  86.89% 0.1125  
  30  1.4052  88.39% 0.0185  
  60  1.4289  49.44% 2.6442  
  100 1.4295  19.85% 5.2260  
  150 1.3802  46.44% 0.8631  
  200 1.3678  72.28% 0.6253  

0.2 

  5  2.8001  96.25% 0.0314  
  10  2.8279  96.15% 0.0031  
  30  2.7265  71.91% 0.2891  
  60  2.7211  73.03% 3.2407  
  100 2.8226  44.94% 0.5238  
  150 2.7060  64.79% 0.2250  
  200 2.7357  72.28% 0.6268  

5.2Practical Significance and Implications of the Proposed System 15 

The results of forecasting wind speed, especially of point forecasting, will 16 

inevitably produce some bias because of the high randomness of wind speed, which 17 

will have a negative influence on the robust scheduling and management of wind 18 

power systems in a wind farm. However, effective interval prediction is conducive to 19 

mitigating this negative influence. The amount of wind power generated is directly 20 

dependent on the wind speed; the formula for the conversion of wind speed to wind 21 

power is provided in [88]. In general, effective and comprehensive wind speed 22 

forecasting, which plays a major role in maintaining the stability of the wind power 23 

system further [52] and improving the efficiency of wind power generation, is 24 

urgently needed. Currently, most wind farms focus mainly on point forecasting. 25 

However, the investigation and application of interval prediction for wind speed has 26 

not received major attention.  27 

As a complement to the current wind power system, the proposed wind speed 28 

analysis-forecast system, aimed at providing effective prediction intervals, has great 29 

potential to be integrated into the data platform in a wind farm to allow better 30 

operation and scheduling of the wind power systems.  31 

Additionally, accurate wind speed forecasting is needed in an effective 32 

assessment of wind power, because wind energy is directly proportional to the cube of 33 

wind speed and the assessment of potential wind capacity depends ultimately on 34 

robust wind speed forecasting [89]. 35 
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Although the proposed analysis-forecast system shows a good performance in 1 

the uncertainty modeling of wind speed, there remain aspects of this system that need 2 

further improvement, which can be summarized as follows. 3 

(1) The proposed analysis-forecast system is focused mainly on short-term 4 

interval prediction of wind speed. More effort can be invested in long-term interval 5 

prediction of wind speed to further improve the efficiency of operation and scheduling 6 

in a wind power system. 7 

(2) In the preprocessing module of the analysis-forecast system, CEEMDAN was 8 

developed to refine the wind speed series. However, thus far no perfect theory exists 9 

that can help effectively determine the number of IMFs when using CEEMDAN. In 10 

the system, the number of IMFs in CEEMDAN was determined by empirical studies. 11 

Accordingly, the effective determination of the appropriate number of IMFs when 12 

developing wind speed forecasting should be investigated in future studies. 13 

5.3 Future Scope 14 

In this study, a comprehensive analysis-forecast system including uncertainty 15 

analysis and mining of wind speed was developed. In order to effectively quantify the 16 

uncertainty existing in a nonlinear system based on wind speed, the development of 17 

new orientations aimed at uncertainty analysis and mining is verynecessary. More 18 

extensive explorations and investigations in the field should be conducted. 19 

Someresearch directions that should be considered are as follows. 20 

(1)Technically, the physical models based on numerical weather prediction have 21 

an advantage in long-term forecasting. Accordingly, combining the physics models 22 

and statistical models to perform uncertainty modeling is a not only worthwhile, but 23 

also promising direction. 24 

(2)The evaluation metrics of interval prediction should be further investigated in 25 

extensive research studies in order to allow a more effective evaluation of the interval 26 

prediction models. 27 

(3)In recent years, dynamic multi-objective optimization algorithms have been 28 

receiving considerableattention inextensive studiesbecause of theirexcellent capability 29 

for solvingdynamic optimization problems. The uncertainty modeling of wind speedin 30 

practice usually involves adynamic and complex environment. Accordingly, the 31 

application of dynamic multi-objective optimization algorithms to the field of wind 32 

speed or wind power forecasting appears to be a promising research direction.  33 

(4)Deep learning models, as an emerging technology, have been applied to many 34 

fields recently. However, the development and application of deep learning techniques 35 

to perform uncertainty modeling has rarely received attention, and thus, constitutes a 36 

promising research direction. 37 

6Conclusions 38 

With the exhaustion of traditional energy, wind energy is consistently being 39 

evaluated worldwide as a promising alternative because of its sustainability and 40 

cleanness.However, thefurther development of wind energy is significantly restricted 41 

because ofits inherent intermittency and randomness, which possibly put the operation 42 

and scheduling of wind farms at risk. In order to more effectively analyze and mine 43 

the uncertainty of wind speed, recurrence analysis based on chaos 44 

techniqueswasdeveloped in this studyto reveal the inherent dynamic characteristics of 45 

wind speed, which is vital for exploring the predictability and modelingofthe 46 

uncertainty of wind speed. Furthermore, an effective forecast module integrating 47 

mode components, chaos techniques, and IMOWCAwas successfully devised. 48 

Importantly, mode components (or frequency domains) were developed for the first 49 

time to perform uncertainty modeling, which was proved to be significantly 50 
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moreeffective and robust thanthe benchmark models consideredin this study. 1 

Furthermore, MOWCA was further developed by introducing the adaptive inertia 2 

weight, leading to a novel multi-objective algorithm, namely, IMOWCA. The results 3 

ofnumerical experiments to test the algorithm clearly illustrate that IMOWCA is a 4 

significant improvementonthe original MOWCA on balance.Finally, extensive 5 

experiments usingquantitative metrics revealedthe significant effectiveness and 6 

superiority of the system in this study. Additionally, given the excellent performance 7 

of the devised system, it can also be applied in practicein the fields of load forecasting, 8 

wind power forecasting, and stock forecasting, and so forth. 9 
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Nomenclature 
WPI wind power integration τ delay time 
WSFM wind speed forecast model m embedding dimension 
WSF wind speed forecast ϖ time window 

AR autoregressive model  a norm 

ARIMA 
autoregressive integrated moving average 
model diag diagonal matrix 

ARCH 
autoregressive conditional 
heteroskedasticitymodel LB the lower bound of variables 

ANNs artificial neural networks UB the upper bound of variables 

PSO particle swarm optimization max_iteration the maximum iteration number 
GA genetic algorithm ω adaptive inertia weight 
LUBE lower upper bound estimation GD generational distance 
ELM extreme learning machine SP spacing 
LLFNN local linear fuzzy neural network CP coverage probability 
RBFNN radial basis function neural network AW average width 
WNN wavelet neural network AWD accumulated width deviation 

MIMO-LSSVM 
multi-input multi-output least squares 
support vector machine 

Li 
lower bound of i-th prediction 
interval 

WCA water cycle algorithm Ui 
upper bound of i-th prediction 
interval 

IMOWCA 
Improved multi-objective water cycle 
algorithm 

ci a Boolean value 

EMD empirical mode decomposition   predefined threshold in recurrence 
analysis 

EEMD ensemble empirical mode decomposition P(l) 
the probability to find a diagonal 
line of length l inthe recurrence plot. 

CEEMD 
complete ensemble empirical mode 
decomposition 

( ) / ( )    the nonlinear mapping 

CEEMDAN 
complete ensemble empirical mode 
decomposition with adaptive noise α interval width coefficient 

IMFs intrinsic mode functions Ii the i-th prediction interval 

MIMO-LSSVM 
multi-input multi-output least squares 
support vector machine rand 

a uniformly distributed random 
number in [0,1] 

WCA water cycle algorithm Nsr the number of streams 
RR recurrence rate Npop the number of raindrops 
DET determinism dmax a small number close to zero 
ENTR entropy ( ) Heavisible function 
L average diagonal line length Costn the fitness value of the n-thraindrop 

i
RiverX


 the position of River T training dataset 
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i
SeaX


 
The position of sea MLYE maximum lyapunov exponent 

RR recurrence rate dmax the tolerance in IMOWCA 
DET determinism Std. standard deviation 
ENTR entropy ( )meanS t a statistic shown in Eq. (7) 

i
StreamX



  The position of stream ( )meanS t  a statistic shown in Eq. (8) 

Randn 
an uniformly distributed random numbers 
in [1,1] 

( )Scor t  a statistic shown in Eq. (9) 

C a constant in Eqs. (13-15) & (21) �p input space with the dimension of p 

zi actual observed value of wind speed MLYE maximum lyapunov exponent 

 1 

 2 
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Appendix 

Multi-objective test functions used in this paper. 
Table A. Testing problems. 
Problem  Dimension  Range  Expression  Continuity Convexity 

ZDT1  30  [0, 1] 

 
1 1

2 1

30

2

1
1

( )
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9
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