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Abstract 

A 2D composite ultrasonic transducer with two resonance modes is proposed by using 

a central coupling metal block, a piezoceramic stack and four outer metal cylinders. 

With the introduction of the dual-mode equivalent mechanical coupling coefficient 

and the 2D longitudinal force transform coefficient, a novel equivalent circuit model 

is developed for the design and analysis of the 2D coupled vibration of the transducer. 

After verifying the proposed equivalent circuit model with the FE method and the 

corresponding experiments, the vibration characteristics of the proposed transducer 

are investigated by using the equivalent circuit mode, the FE methods, and the 

experiments. The results demonstrate that the proposed transducer has the advantage 

of generating 2D ultrasonic radiation with two different fundamental resonance modes, 

which is useful in some new ultrasonic applications such as ultrasonic emulsification, 

ultrasonic defoaming and ultrasonic sonochemistry where multi-frequency and 

multidimensional sound radiation is needed. 

 

1. Introduction 

One dimensional (1D) longitudinal sandwich piezoelectric transducers are widely 

used for power ultrasonic and underwater SONAR applications thanks to their 

advantages of high power sound emission, simple structure and high mechanical 

strength [1-4]. However, in some applications such as large power ultrasonic cleaning, 

ultrasonic processing, ultrasonic defoaming and ultrasonic motor, transducers with 
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larger ultrasonic power, larger radiating surface, multidimensional sound radiation or 

multi-frequency are needed and novel design theories of these transducers need to be 

established. 

Some measures have been taken to improve the commonly used 1D longitudinal 

sandwich piezoelectric transducers [5-9]. However, these traditional 1D longitudinal 

sandwich piezoelectric transducers have some fundamental limitations. First, the 1D 

longitudinal vibrational theory is used in the design and calculation, which means that 

the lateral dimension of the sandwich transducer should be less than a quarter 

wavelength. Consequently, the output power and sound radiation surface of the 

transducer are limited. Second, the sound radiation for the traditional longitudinal 

sandwich piezoelectric transducer is one dimensional and this limits the process range 

of ultrasonic radiation from some ultrasonic applications where large liquid 

processing volume is needed [10-13].  

Meanwhile, 1D longitudinal vibration of the traditional sandwich piezoelectric 

transducers limits the directions of ultrasonic radiation in some ultrasonic applications 

where multiple directional sound radiations are needed simultaneously [14-17]. In 

order to achieve higher electro-acoustic conversion efficiency, the sandwich 

piezoelectric transducer usually works at a fixed-frequency (commonly the 

fundamental frequency). However, in the field of ultrasonic chemistry, biomedical 

ultrasound and ultrasonic waste water treatment, multi-frequency ultrasound has been 

reported as a promising method to enhance cavitation activities and reduce the 

cavitation threshold [18-21]. 

In order to overcome the weakness of the traditional longitudinal sandwich 

piezoelectric transducers mentioned above, a novel 2D dual-mode composite 

ultrasonic transducer excited by a single piezoceramic stack is proposed. Based on the 

2D coupled vibration theory and the electromechanical analogy principle, the 

dual-mode equivalent mechanical coupling coefficient and the 2D longitudinal force 

transform coefficient are introduced first, and then a novel equivalent circuit model is 

developed to analyze the 2D coupled vibrations of the transducer. The vibrational 

characteristics of the transducer are investigated by using the analytical and numerical 
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methods, and the experimental measurement. The objective of the research is to 

provide theoretical and experimental references for the engineering applications of the 

multi-frequency and multidimensional sound radiation transducers.  

 

2. Analyses of the proposed transducer 

The proposed 2D dual-mode composite ultrasonic transducer consists of a central 

coupling metal block, a piezoceramic stack and four outer metal cylinders, which 

constitute the transducer with a structure of a half-wave sandwich piezoelectric 

vibrator in its y direction and a half-wave metal vibrator in its x direction. Both 

half-wave vibrators are coupled orthogonally with each other at the oscillation node of 

their longitudinal vibrations as shown in Figure 1. After optimizing the dimensions for 

each component of the transducer, two different longitudinal orthogonal resonance 

modes at certain frequencies can be realized. One is the anti-phase resonance mode 

generated by the half-wave sandwich piezoelectric vibrator that extends along its axial 

direction and the half-wave metal vibrator that shortens along its axial direction at the 

same time, and vice versa. The other is the in-phase resonance mode which extends or 

shortens along their axial directions at the same time.  

 

Figure 1. The 2D dual-mode composite ultrasonic transducer excited by a single 

piezoceramic stack (a) diagram (b) a photo.  
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2.1. Equivalent circuit of the central coupling metal block in coupled vibration 

As shown in figure 1(a), the length, width and height of the central coupling metal 

block are lx, ly and lz respectively, where lx = ly = lz = l, l3 and l4 are the length of the 

left and right metal cylinders of the transducer in x direction, l1 and l2 are the length of 

the up and down outer metal cylinders in the y direction, the piezoceramic stack is 

composed of two couples of piezoelectric rings with radius r and thickness t, and the 

total length of the piezoelectric stack is l0 = nt with n = 4 in this design. 

   For the anti-phase vibration and in-phase vibration of the transducer, when its 

shearing strain and torsion are ignored, i.e. only its extensional vibration is considered, 

the following equations between the stress and strain in the central coupling metal 

block of the transducer can be obtained [22,23]. 

1
[ ( )]x x y z

E
                             (1) 

1
[ ( )]y y x z

E
                             (2) 

1
[ ( )]z z x y

E
                             (3) 

where εx, εy, εz and σx, σy, σz are the strains and stresses, E and ν are the Young’s 

modulus and the Poisson ratio of the steel which is used to make the metal block. 

   This system has two resonance frequencies depending on the vibration phase of 

the half-wave single-excited sandwich piezoelectric vibrator (in the y direction) and 

the half-wave metal rod (in the x direction). Whether in the in-phase or the anti-phase 

mode, when the dimension of the 2D dual-mode composite ultrasonic transducer in 

the z direction is less than a quarter of the longitudinal wavelength, the strain in z 

direction is little and can be ignored [22]. So, εz = 0, and equation (3) can be rewritten 

as  

( )z x y                             (4) 
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For the vibrations in the x and y directions of the transducer, to describe their 

interrelation with each other, the following dual-mode equivalent mechanical 

coupling coefficient is defined as 

' x

y

n



                               (5) 

When lx = ly, the central coupling mental block of the transducer has a symmetrical 

structure in the x and y directions. In the anti-phase mode, σx = σy due to the 

symmetry of the structure and the anti-symmetry of the vibration mode in the x and y 

directions, so n' = σx/σy = 1. Similarly, in the in-phase mode, σx = σy duo to the 

symmetry of both the structure and the vibration mode in the x and y directions, so n' 

= σx/σy = 1. 

Define Ex = σx/εx and Ey = σy/εy as the equivalent elastic constants in the x and y 

directions, respectively, and the equivalent elastic constants in the anti-phase mode 

and in-phase mode can be rewritten as  

1
x y

E
E E E


  


                      (6) 
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In order to establish the equivalent circuit for the coupled vibration of the center 

coupling metal block in the x and y directions, it is assumed that these two directional 

coupled vibrations consist of 1D longitudinal vibrations of two slender blocks, which 

coupled orthogonally with each other at the oscillation node of their longitudinal 

vibration. Based on this assumption and the electromechanical analogy principle, the 

1D longitudinal vibration of the slender block in the x direction is represented by two 

T-type networks connected in parallel. Similarly, the 1D longitudinal vibration of the 

slender block in the y direction is represented by two T-type networks connected in 

parallel. These two parts from the x and y directions are coupled at the oscillation 

node of their longitudinal vibrations with the relationship of each other by a 2D 

longitudinal force transform coefficient N, as shown in Figure 2. N is defined as 
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where Fx and Fy are the longitudinal forces in the x and y directions, respectively, Sx 

xS  and Sy are the cross-sectional areas in the x direction and y direction of the central 

coupling metal block (Sx = Sy= S = l2). Z1m = jZ01tan(k'l/4) and Z2m = Z01/(jsin(k'l/2)) are 

the mechanical impedance parameters, while Z01 = ρC'S, k' = ω/C', k' is the coupled 

wavenumber, ρ is the density, C' is the coupled sound speed with C' = (E−/ρ)-1/2 in the 

anti-phase mode and C' = (E+/ρ)-1/2 in the in-phase mode, respectively.  

 

 

Figure 2. The equivalent circuit for the central coupling metal block in coupled 

vibration. 

 

2.2. Equivalent circuit of the outer metal cylinders 

Whether the 2D dual-mode composite ultrasonic transducer vibrates in the anti-phase 

resonance mode or in the in-phase resonance mode, the four outer metal cylinders of 

the transducer vibrate in 1D longitudinal vibration. For a 1D longitudinal vibrational 

metal cylinder, its equivalent circuit is modeled using a T-network [24], as shown in 

Figure 3.  
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Figure 3. The equivalent circuit of the outer metal cylinder. 

 

In the figure, Z,1 = jZ,0tan(kl/2) and Z,2 = Z,0/jsin(kl) are the series and parallel 

impedances of T-network. The subscript  = 1,2,3,4 corresponds to different outer 

metal cylinder (as shown in Figure 1), where Z,0 = ρcS, ρ, c and S are the 

density, velocity and cross-sectional area of the different outer metal cylinder. When 

the proposed transducer vibrates freely, the external loads of the four outer metal 

cylinders are ignored. Therefore, the equivalent circuit for each outer metal cylinder 

of the transducer in Figure 3 can be simplified as shown in Figure 4, where Z = Z,1+ 

Z,1Z,2/(Z,1+Z,2). 

 

 

Figure 4. The simplified equivalent circuit for the outer metal cylinder. 

 

2.3. Equivalent circuit of the piezoceramic stack 

For a piezoceramic stack, it is usually modeled using the Mason’s equivalent circuit 

[7,24,25]. As shown in Figure 5, the parameters of the equivalent circuit for the 

piezoceramic stack are: C0 = n2ε
T 

33S0(1-k
2 

33)/l0, N1 = nS0d33/(l0S
E 

33), Z1P = jZ0Ptan(kpl0/2), 

Z2P = Z0P/jsin(kpl0). 
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Figure 5. The equivalent circuit for a piezoceramic stack. 

 

2.4. Equivalent circuit of the whole transducer 

Based on the electromechanical analogy principle, using the continuous boundary 

conditions of the longitudinal force and velocity at the interface of each component of 

the transducer shown in Figure 1(a), the integral equivalent circuit of the transducer 

can be obtained from Figures 2, 4 and 5, which is shown in Figure 6, where Z1, Z2, Z3 

and Z4 correspond to the different Z ( = 1,2,3,4), and Z= Z,1+ Z,1Z,2/ (Z,1+Z,2) 

shown in Figure 4. 

 

 

Figure 6. The equivalent circuit for the 2D dual-mode composite ultrasonic 

transducer. 

 

   Based on Figure 6, using the transmission line impedance transfer formula, the 

input electro-mechanical impedance of the transducer can be obtained as  
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where Zm is the input mechanical impedance of the transducer, which can be 

expressed as 
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The resonance frequency equation for the transducer can be obtained by setting 

Im( ) 0emZ 
                       

  (17) 

It is clear that the resonance frequency equation for the transducer depends not 

only on the material parameters and geometrical dimensions, but also on the 

resonance modes of the transducer. When the vibration mode (n' = −1 or n' = 1), the 

material parameters and geometrical dimensions of the transducer are given, the 

resonance frequency can be calculated from the resonance frequency equation. 

Furthermore, the theoretical relationship between the input mechanical reactance Xem 

= Im(Zem) and the frequency f can also be obtained.  
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3. Vibration characteristics of the transducer 

   In order to verify the proposed equivalent circuit model and to understand the 

vibrational characteristics of the proposed transducer, a prototype transducer was 

designed, which is shown in Figure 1(b). The geometrical dimensions of the 

transducer shown in Figure 1(a) are: the length, width and height of the central 

coupling metal block lx = ly = lz = 45.0 mm, the length of the up and down outer metal 

cylinders in the y direction l1 = 38.3 mm, l2 = 19.3 mm, length of the left and right 

metal cylinders of the transducer in x direction l3 = l4 = 38.3 mm, the length of the 

piezoelectric stack l0 = 20 mm, and the radius of the piezoelectric stack and the metal 

cylinders r = 22.5 mm. The material properties for each part of the transducer are as 

follows. The material properties for central coupling metal block (stainless steel) are: 

density  = 7910 kg/m3, Young’s modulus E = 1.961011 N/m2，Poisson ratio σ = 0.30. 

The material properties for four outer metal cylinders (7075 aluminum) are: density 

 = 2790 kg/m3, Young’s modulus E = 7.151010 N/m2, Poisson ratio σ = 0.30, and 

the material properties for piezoceramic stack (PZT-4) are listed as Table 1. 

 

Table 1. The material parameters of PZT-4 used for the transducer. 

 Constant Units Value 

Elastic compliance constants SE 

11 m2·N−1 12.3×10−12 

Elastic compliance constants SE 

12 m2·N−1 −4.05×10−12 

Elastic compliance constants SE 

13 m2·N−1 −5.31×10−12 

Elastic compliance constants SE 

33 m2·N−1 15.5×10−12 

Piezoelectric strain constants d31 C·N−1 −123×10−12 

Piezoelectric strain constants d33 C·N−1 496×10−12 

Dielectric constant εT 

33 F·m−1 11.5×10−9 

Electro-mechanical coupling coefficient k33  0.70 

Density p kg·m−3 7500 

 

3.1. The input electromechanical impedance-frequency response 
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The frequency resonance characteristics can be obtained by using the equivalent 

circuit method (ECM), the FEM and experiment. First, from equation (9), the input 

electro-mechanical reactance spectrum of the transducer was calculated by the ECM, 

which are illustrated in Figure 7, where the first resonance peak (red dash curve) 

corresponds to the anti-phase resonance peak and the second resonance peak (green 

dash curve) corresponding to the in-phase resonance peak. Then, the input 

electro-mechanical reactance spectrum was simulated by the Harmonic Analysis from 

the FE software ANSYS, as is shown in black curve in Figure 7, where the first 

resonance peak corresponds to the anti-phase resonance peak and the second 

resonance peak corresponding to the in-phase resonance peak.  

The input electro-mechanical reactance spectrum was also measured by using a 

PV70 Impedance Analyzer, as is shown in blue shot dot curve in Figure 7. It can be 

seen that two resonance peaks exist in the measured frequency range, which 

correspond to the anti-phase resonance mode and the in-phase resonance mode, 

respectively. The resonance frequencies for the anti-phase resonance mode obtained 

by the ECM, FEM and the experiment are 24071 Hz, 23452 Hz, and 23290 Hz, 

respectively, while the resonance frequencies for the in-phase resonance mode 

obtained by the three methods are 27933 Hz, 27716 Hz, 27635 Hz, respectively. It is 

clear that the anti-phase and in-phase resonance frequencies measured by the 

experiments are in consistent with that obtained by the ECM and FE methods. 
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Figure 7. Input electro-mechanical reactance spectrum of the transducer in the 

anti-phase and in-phase modes calculated by the ECM, FEM and experiment, 

respectively. 

 

3.2. Investigation of the anti-phase and in-phase resonance modes 

The modal analysis results obtained with the FE software ANSYS are illustrated 

in Figure 8, where Figure 8(a) shows that the vibration phases in the x and y 

directions (horizontal and vertical directions) are opposite, which is the anti-phase 

resonance mode, while Figure 8(b) shows that the vibration phases in the x and y 

directions are consistent, which is the in-phase resonance mode. The simulated 

vibration frequency in the anti-phase mode is f = 23452 Hz and that in the in-phase 

mode is f = 27716 Hz. Figure 9 shows the longitudinal vibrational displacement 

distributions along the axis of the half-wave sandwich piezoelectric vibrator in the x 

direction of the transducer and that of the half-wave metal vibrator in the y direction, 

respectively, where it is clear that whether it operates in the anti-phase mode or the 

in-phase mode, the transducer is composited by two half-wave oscillators, and both 

are coupled orthogonally together at the oscillation node of their longitudinal 

vibrations.  
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Figure 8. Modal shape of the transducer (a) in the anti-phase mode at 23452 Hz and 

(b) in the in-phase mode at 27716 Hz. 

 

 

Figure 9. Longitudinal vibrational displacement distributions for the transducer along 

its x and y directions (a) in the anti-phase mode and (b) in the in-phase mode. 

 

The vibration characteristics of the prototype transducer in the anti-phase and 

in-phase modes were measured by using a Polytec PSV-400 Scanning Vibrometer. 

Whether the proposed transducer vibrates in the anti-phase resonance mode or in the 

in-phase resonance mode, the vibration in its output surfaces from the x and y 

directions should be similar as a piston. In the experiment, when the transducer was 

excited by a 10 V sinusoidal sweep signal provided by the Vibrometer, the laser 
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sensor scanned on the output surfaces of the transducer. Then, the longitudinal 

displacement field of the transducer can be obtained.  

Figure 10(a) shows the longitudinal displacement field of the output surface in the 

x direction of the transducer vibrated in the anti-phase resonance mode, while Figure 

10(b) shows that in the y direction. Figure10(c) shows the longitudinal displacement 

field of the output surface in the x direction of the transducer vibrated in the in-phase 

resonance mode, and Figure 10(d) shows that in the y direction. In both modes, the 

vibration of the output surfaces in both x and y directions for the transducer vibrates 

like a piston; however, the longitudinal displacement fields in the y direction are more 

uniform than that in the x direction. This is because that the both modes are excited by 

the piezoceramic stack in its y direction, which produced little bending deformation in 

the longitudinal vibration of the x direction. This phenomenon is also evident from the 

FE simulated results in Figure 8. 

 

 

Figure 10. The longitudinal displacement fields of the output surface of the 

transducer measured by a PSV-400 Scanning Vibrometer (a) in the x direction in the 

anti-phase mode (b) in the y direction in the anti-phase mode (c) in the x direction in 

the in-phase mode (d) in the y direction in the in-phase mode. 
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3.3. Experimental test on the performance of the 2D ultrasound radiation 

The performance of the 2D ultrasound radiation of the transducer are tested nearing 

the anti-phase and in-phase resonance frequencies, respectively. In the experiment, an 

AG 1020 Amplifier of T&C power conversion, Inc. is used to amplify the output 

power of the function generator. The transducer is excited to radiate ultrasound into 

the oil-water mixture. By adjusting the frequency of the function generator, the input 

power and the matching resistor of the AG 1020 Amplifier, the transducer can be 

tuned to the two desired resonance modes, the anti-phase resonance mode (at 22.16 

kHz) and the in-phase resonance mode (at 27.90 kHz), and emulsification under the 

conditions of ultrasonic irradiation from the x direction and the y direction of the 

transducer occurs in these two modes.  

Figure 11 shows the photographs of the oil-water mixture before and after 

ultrasonic emulsification. It can be seen clearly that the obvious ultrasonic 

emulsification of oil-water mixture under the conditions of ultrasonic irradiation from 

the x direction and the y direction of the transducer occurs. Therefore, the transducer 

can radiate 2D intense ultrasound in the anti-phase and in-phase modes. This is 

different from the case of the traditional 1D longitudinal transducer where ultrasonic 

irradiation is produced mainly in the longitudinal direction.  
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Figure 11. Photographs of the oil-water mixture before and after ultrasonic 

emulsification, (a) ultrasonic irradiation from the x direction in anti-phase mode, (b) 

ultrasonic irradiation from the y direction in anti-phase mode, (c) ultrasonic 

irradiation from the x direction in in-phase mode, (d) ultrasonic irradiation from the y 

direction in in-phase mode. 

 

In summary, the proposed transducer has two longitudinal coupled vibration 

modes for exciting two-dimensional ultrasonic vibration. It is useful in some new 

ultrasonic applications where multi-frequency or multi-dimensional ultrasound 

radiation are needed. The experimental results are in reasonable agreement with the 

analytical and simulated results. The differences between the results might be due to 

the following factors. First, the standard material parameters for the proposed 

transducer were used in the theoretical calculation, which might be different from the 

real material parameters. Second, in the theoretical analysis, the mechanical and 

dielectric losses in the transducer were ignored. However, there are losses in the 

prototype transducer used in the experiments, which is difficult to be determined 
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accurately. Finally, the prestress is ignored in the theoretical analysis and numerical 

simulations, but the prototype transducer is prestressed by the stress bolt. 

 

4. Summary 

   In this paper, a 2D dual-mode composite ultrasonic transducer is proposed. A 

novel equivalent circuit model has been developed to analyze the 2D coupled 

vibrations of the transducer in the two different resonance modes. The vibration 

characteristics of the transducer have been investigated by using the equivalent circuit 

model, the FE methods, and the experiments. The results demonstrate that the 

transducer has the advantages of two fundamental resonance modes and 2D ultrasonic 

radiations. It is expected to be used in some ultrasonic applications where the 

multi-frequency and multidimensional sound radiation are needed, such as ultrasonic 

emulsification, ultrasonic defoaming and ultrasonic sonochemistry. 
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