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Abstract—Although feature selection for large data has been 

intensively investigated in data mining, machine learning, and 

pattern recognition, the challenges are not just to invent new 

algorithms to handle noisy and uncertain large data in appli-cations, 

but rather to link the multiple relevant feature sources, structured, 

or unstructured, to develop an effective feature reduc-tion method. 

In this paper, we propose a multiple relevant feature 
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I. INTRODUCTION 

ensemble selection (MRFES) algorithm based on multilayer co- N RECENT years, massive amounts of data have become 
evolutionary consensus MapReduce (MCCM). We construct an Iavailable for all kinds of industrial applications, and big effective MCCM model to handle feature ensemble selection 

of large-scale datasets with multiple relevant feature sources, data has emerged as an important research topic and a vis- 
ible  application  domain.  Big  data  analytics  can  definitely and explore the unified consistency aggregation between the 

local solutions and global dominance solutions achieved by the reveal  valuable  knowledge.  Reflecting  the  very  nature  of 
co-evolutionary memeplexes, which participate in the coopera- the data in big data, we often refer to so-called the “5V” 
tive feature ensemble selection process. This model attempts to 

aspect: 1) volume; 2) variety; 3) velocity; 4) veracity; and 
reach a mutual decision agreement among co-evolutionary meme- 

5) value [1]. It is critical to extract knowledge and build mod- plexes, which calls for the need for mechanisms to detect some 
els from big data. But the real challenge comes with the noncooperative  co-evolutionary  behaviors  and  achieve  better 

Nash equilibrium resolutions. Extensive experimental compar- requisition of such knowledge, which is quantitative, defined 
ative studies substantiate the effectiveness of MRFES to solve across  multiple  space-time  scales, and  capable  of predic- 
large-scale dataset problems with the complex noise and multiple 

tion with sufficient accuracy [2]. It poses evident demands 
relevant feature sources on some well-known benchmark datasets. 

on conventional methods currently used in data mining and The algorithm can greatly facilitate the selection of relevant 
machine learning, including transmission, storage, process- feature subsets coming from the original feature space with bet- 

ter accuracy, efficiency, and interpretability. Moreover, we apply ing, and optimization [3], [4]. Furthermore, many big datasets 
MRFES to human cerebral cortex-based classification prediction. increase dynamically in size and contain various elements of 
Such successful applications are expected to significantly scale up 

noise. Many features are likely redundant or irrelevant. These 
classification prediction for large-scale and complex brain data in 

useless features often diminish the learning process associ- 
terms of efficiency and feasibility. 

ated with classification algorithms, decreasing their overall  

 performance. Various real-world big data applications can be 

 formulated as feature selection problems. Hence, to analyze 

 the high-dimensional datasets with huge numbers of features 
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Models and applications of feature selection based on RST 

have been discussed extensively. Although they can select bet-ter 

features that preserve discernibility, they seldom attempt to 

maximize class separability. This can produce some unde-sirable 

feature subsets from multiple relevant feature sources with many 

inconsistent feature boundaries. When the num-ber of features 

involving noise increases dynamically in large datasets, 

traditional methods often must repeatedly imple-ment feature 

selection, resulting in huge computing overhead and memory 

requirements. Moreover, with the ever-increasing speed and 

volume of data, the performance of existing methods rapidly 

deteriorates. Hence, these algorithms cannot perform 

satisfactorily for large-scale complex features in real-world 

applications. In addition, more challenges emerge with large-

scale and streaming data for processing, and practical appli-

cations with the increased complexity and dimensionality of 

search spaces usually presented by large datasets. Therefore, 

classification or prediction tasks involving high-dimensional 

heterogeneous data have become common in analytical engi-

neering data and medical imaging, creating an urgent need for 

more efficient feature selection algorithms to acquire better-

quality solutions and reduce computational complexity.  
The co-evolutionary paradigm is inspired by the reciprocal 

evolutionary change driven by the cooperative or compet-itive 

interaction between species, and it can be broadly classified 

into the categories of cooperative and competitive co-

evolution. In the case of cooperative co-evolutionary behav-

iors, individuals are rewarded when they work well with 

others and are punished when they perform poorly together 

[15]. But competitive co-evolutionary behaviors mean that 

various sub-populations always fight to gain an advantage 

over others to obtain common resources.  
Cooperative co-evolution (CC) employs a divide-and-

conquer strategy to solve large-scale optimization problems 

[16]. CC can decompose a large-scale problem into a number 

of subproblems, each initialized and optimized by the 

traditional evolutionary algorithm [17]. Essentially, each 

memeplex can search a collection of variables, and the fitness 

of a memeplex is an estimate of how well it cooperates with 

other memeplexes to produce good solutions. These 

collaborators are updated at specific intervals. The final 

solution is a chain combination containing the representative 

subsolutions for all subproblems. The performance of CC 

relies heavily on decomposition strategies. For better decom-

position, most decomposition strategies have been developed 

by obtaining the correct interdependency information and 

requiring many fitness identification evaluations [18]–[21]. 

MapReduce is a popular parallel model used to analyze large 

datasets. A number of traditional methods have been 

combined with MapReduce [22]–[24]. MapReduce-based 

feature selection for massive datasets is also gaining more 

attention across different research domains. But existing algo-

rithms often assume that datasets are loaded into the main 

memory of a single machine, which is obviously infeasible for 

large-scale data, especially for multiple relevant feature 

sources.  
To address these multiple challenges, this paper presents a 

multiple relevant feature ensemble selection (MRFES) 

 

algorithm by combining the advantages of the MapReduce 

model and consensus CC. This approach aims not only to 

achieve a better multilayer co-evolutionary consensus 

MapReduce (MCCM) model for feature ensemble selection 

but also to guarantee consistency between local solutions and 

global dominance solutions with the better Nash equilibrium. 

MRFES, validated on both synthetic data and in vivo brain 

images, shows promising results in terms of accuracy, effi-

ciency, and, robustness, and accords better reality than some 

state-of-the-art algorithms. We discuss the main properties of 

MRFES and elaborate on its potential applications. The main 

contributions of this paper are as follows.  
First, we propose an MCCM model for feature selection of 

large-scale datasets with multiple relevant feature sources. 

This model attempts to achieve mutual agreement among a 

group of co-evolutionary decisions, which implies the need 

for mechanisms to facilitate the detection of noncooperative 

co-evolutionary MapReduce behaviors and achieve the Nash 

equilibrium resolution. We believe this is the first model 

whose co-evolutionary consensus strategy accounts for dif-

ferent MapReduce structure organizations for nonseparable 

multiple relevant feature sources.  
Second, we adopt a unified consistency dominance strategy 

to achieve the adaptive balance between the local solutions 

and global dominance solutions of co-evolutionary 

memeplexes, which further guarantees the choice of the 

optimal feature subsets, including strongly multiple relevant 

and nonredun-dant features. Moreover, the ensemble feature 

set based on MapReduce can be accelerated so that the entire 

dominance solution of feature selection can be achieved 

accurately and efficiently.  
Third, unlike some previous work, we apply MRFES to the 

human cerebral cortex-based classification, where can be 

better adapted to derive from the cortical folding surfaces and 

better achieve a consistency term adaptive to the temporal 

similari-ties of different cortical cortexes. These results 

further confirm that MRFES can consistently provide highly 

accurate segmen-tations to find the complex cerebral cortex 

features with the highest likelihood and can provide 

satisfactory classification prediction.  
This paper is organized as follows. Some related work is 

reviewed and existing challenges are analyzed in Section II. 

An MCCM model for feature ensemble selection is presented 

in detail in Section III. Section IV describes the primary steps 

and underlying processing of MRFES. Extensive experimen-

tal evaluations of MRFES are provided in Section V. The 

application performance of MRFES is evaluated in human 

cerebral cortex-based classification in Section VI. Some dis-

cussion on MRFES is presented in Section VII. The con-

clusions are drawn and further research is suggested in 

Section VIII. 
 
 

II. RELATED STUDIES AND CHALLENGES 
 

Recent years have seen significant advances of RST in 

science and engineering, and numerous feature selection algo-

rithms have been proposed. In the classical RST model, 

classification quality, information entropy, positive regions, 
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and lower approximation bounds under each decision class 

vary consistently and monotonically during feature selection. 

For example, Yao and Zhao [25] proposed a discernibility-

matrix-based feature selection method with a simplified 

matrix to reduce the computational cost. Chen et al. [26] pre-

sented a sample pair selection procedure to efficiently com-

plete feature reduction. Li et al. [13] developed a decision-

theoretic RST model based on neighborhoods to analyze 

positive regions-related feature selection. Chen et al. [27] 

explored an integrated classification mechanism for simul-

taneous extraction of fuzzy rules and selection of useful 

features. Zhang and Yang [28] proposed a feature selection 

and approximate reasoning framework by α-dominance-based 

quantitative RST for large-scale set-valued information tables. 

Particle swarm optimization (PSO) as an efficient 

optimization strategy has been applied to feature selection. 

Shen et al. [29] combined the basic concepts of attribute 

reduction in rough sets and PSO, and developed a reduction 

algorithm based on PSO. Zhang et al. [30] proposed a method 

to find optimal feature subsets through barebones PSO with a 

reinforced mem-ory strategy. Zhang et al. [31] presented 

multiobjective PSO for cost-based feature selection problems 

to generate a Pareto front of nondominated solutions. Fong et 

al. [32] designed a novel lightweight feature selection 

particularly for mining streaming data by using accelerated 

PSO. Tran et al. [33] proposed a potential PSO for 

discretization-based feature selection by a new representation 

to reduce the search space of the problem. Shuffled frog 

leaping algorithm as a fast and robust algorithm with the 

efficient global co-search capability also has been applied to 

feature selection. Ding et al. [34] put forward an efficient and 

self-adaptive feature selection algo-rithm by combining 

quantum elitist frogs and cloud model operators.  
Recent work to improve feature selection algorithms includes 

the following. Wang et al. [35] introduced a variable-precision 

fuzzy neighborhood rough set model for feature subset selection 

that can tolerate noise in data. This model can decrease the 

possibility that a sample is classified into the wrong category and 

can select out the relatively small numbers of features. So, it 

obtains higher classification performance. In this model, 

however, the optimal solutions of two impor-tant parameters for 

each dataset cannot be automatically set, and they must be set by 

users in advance. Jiang et al. [36] proposed a relative decision 

entropy-based feature selection approach. Unlike existing 

information entropy models in rough sets, relative decision 

entropy is defined using two basic con-cepts in rough sets: 1) 

roughness and 2) degree of dependency. The experimental results 

show that it is efficient for fea-ture selection. In particular, it can 

achieve good scalability for large datasets. But this approach still 

cannot deal with continuous features without discretization. 

Zhang et al. [37] extended the idea of the firefly algorithm by 

introducing binary variables and proposed a return-cost-based 

binary firefly algorithm for feature selection, employing 

strategies such as return-cost attractiveness, Pareto dominance-

based selection, and binary movement with the adaptive jump. 

The experimen-tal results showed effectiveness at solving feature 

selection problems. Ding et al. [38] proposed a rough feature 

selection 

 

algorithm by the layered co-evolutionary strategy with neigh-

borhood radius hierarchy. The experimental results substanti-

ate it can achieve better effectiveness and accuracy of feature 

selection.  
Although these algorithms are dominant in feature 

selection, most do not perform well in large-scale datasets 

because of noise and complex dimensionality of big data. 

When massive new objects are generated, this wastes 

computing time and space by using existing feature selection 

algorithms. Moreover, the processing time to carry out the 

structuralized reasoning of feature selection will grow 

tremendously with increasing numbers of features.  
To deal with dynamically increasing large datasets, there has 

been historically little research on finding features using 

MapReduce based on RST. Several researchers have proposed 

some feature selection algorithms based on the MapReduce 

technique to address this problem. Zhang et al. [39] adopted the 

parallel algorithm to compute equivalence classes and deci-sion 

classes based on MapReduce and to update rough set 

approximations. Zhang et al. [40] also introduced parallel large-

scale RST methods for feature selection and imple-mented them 

on some representative MapReduce systems. Qian et al. [41] 

exploited the <key, value> pair framework based on MapReduce 

to accelerate the traditional feature selec-tion process. A common 

feature of these algorithms is the use of the framework structure 

of a <key, value> pair to accelerate computation of equivalence 

classes and attribute significance. However, many real-world data 

from applications with large-large, noisy, and uncertain datasets 

link the multiple relevant feature sources. When multiple relevant 

features are generated at the same time in a database, the 

previously noted algorithms may be inefficient because they must 

be executed repeatedly to handle ever-increasing numbers of 

features. By dynamically adjusting the framework structure of 

<key, value>, the com-plexity of feature selection in big data is 

alleviated to some extent. So, the paradigm of MapReduce has 

great potential to facilitate the implementation process of 

dynamical large datasets with multiple relevant feature sources. 

 

As discussed, the complex big data is widely seen as an 

essential problem in the design of complex systems. Feature 

selection plays a visible role in such technologies as data 

mining, machine learning, and knowledge reasoning with 

uncertainty. As a matter of fact, the divide-and-conquer strat-

egy has long been used in large-scale retrieval and learning, 

just like the framework of CC and MapReduce. No general 

theoretical framework or computational model, however, has 

been designed. Although much effort has been dedicated to 

feature selection to solve large-scale problems in the face of 

uncertainties, the noted algorithms suffer from the following 

limitations and challenges.  
1) Approximation and granulation are two important issues 

when applying feature selection algorithms to real-world 

large-scale datasets. The previous studies have focused 

almost exclusively on how to define some efficient rough 

approximation operators, but limited work has been 

devoted to the problem of extracting multiple relevant 

feature relations from large-scale datasets. Most fea-ture 

section models have not systematically discussed 
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Fig. 1. Processing framework of MCCM model. 

 

 

how to deal with similarity relations of multiple relevant 

features from large datasets.  
2) A few efforts have been made to define, characterize, 

and assess feature selection with MapReduce, but this 

has not been studied in depth. For example, how does 

one deal with multiple relevant feature variables in 

different practical attribute sets? How do we achieve 

better feature selection for large-scale complex 

attributes in chang-ing and interconnected real-world 

applications? How do we address the limitations of 

existing MapReduce struc-tures and interactions through 

dynamic adaptation with a reorganization model?  
3) In fact, it seems that similarity relations of multiple 

relevant features are not easily computed in real-world 

applications. Nevertheless, the way to extract reliable 

relations from multiple relevant features directly affects 

the performance of models, and no general approach has 

been designed or even has been discussed. Therefore, it 

is important to develop a systematic and effective 

approach combined with CC and MapReduce to deter-

mine similarity relations from multiple relevant feature  
variables in large datasets.  

Although some progress has been made in feature selection, 

many challenges remain to be addressed in feature selection 

models and algorithms for multiple relevant feature variables 

in large datasets. We introduce an MCCM model, and pro-

pose an MRFES algorithm for MRFES. We demonstrate the 

comparative merits of MRFES using some benchmark 

datasets and real-world applications in the prediction of 

human cerebral cortex-based classification. 

 

III. MULTILAYER CO-EVOLUTIONARY CONSENSUS 

MAPREDUCE MODEL 
 

This section presents an MCCM model for feature ensemble 

selection is, which can deal with large-scale datasets coming 

from multiple relevant feature sources. This model is unique in its 

way of reaching mutual agreement among different co-

evolutionary memeplexes, as well as dealing with eli-tists with 

unified consistency aggregation for Nash dominance (UCAND) 

solutions. This implies the need for mechanisms to 

 

 

facilitate the detection of some noncooperative co-

evolutionary behaviors during co-evolutionary consensus 

MapReduce. In this selection, the main phases of MCCM 

description are composed of two parts. The MCCM 

framework is described in Section III-A. The UCAND 

solutions is implemented in Section III-B.  
We implemented the co-evolutionary consensus schedul-

ing of a large dataset processing architecture on MapReduce, 

which includes three main operations, as shown in Fig. 1. 
 

 

A. MCCM Model 
 

1) Master operation is responsible for the parallel dataset 

list allocation and scheduling of multiple relevant fea-

tures from different clients. The module “combine mas-

sive dataset list” is run in Master operation to process 

multiple relevant features by one Map task.  
2) Map/Reduce operation. After collecting subdataset lists 

from Master operation, the Map operation can deal with 

multiple relevant features by assigning the relevant  
results to Reduce by Master. The results display in the 

form of < keyi, valuei > pairs, which will be aggregated 
by the Reduce operation.  

3) Adaptive interface operation provides the unified 

interface for subdataset lists from different kinds of 

multiple relevant features. The final results will be  
stored in Cloud Cache. Its identification and partition 

process for nonseparable multiple relevant features are 

described in Fig. 2.  
The main steps of MCCM are shown in Algorithm 1. 

 

 

B. Unified Consistency Aggregation for Nash Dominance 

Solutions 
 

A theoretical framework and practical algorithm is needed for 

big data the analysis based on granular computing, and it is of 

interest to construct an analytical model based on evolution-ary 

game theory. In fact, the Nash equilibrium theory has been used 

for the theoretical model in multigranular representation and 

learning, just like the MapReduce framework. 
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Fig. 2. Identification process for nonseparable multiple relevant features.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Process to visualize UCAND solutions. 

 
This section adopts a unified consistency dominance strat-egy 

to achieve the adaptive Nash equilibrium between the local 

solutions and global dominance solutions, as shown in Fig. 3, 

which will further guarantee the choice of the optimal feature 

subsets including strongly multiple relevant and nonredundant 

features. To focus our attention on feature selection dynam-ics, 

we design the unified consistency aggregation strategy for Nash 

dominance solutions to eliminate confounding fac-tors, providing 

an elegant framework within which one can balance the 

behaviors of various co-evolutionary MapReduce operators. 

Here, the strength of the Nash equilibrium rests on such vital 

assumptions about the rational agents with the com-plete 

knowledge of their domains. For clarity, this polymorphic Nash 

equilibrium involves three Nash-dominated domains, in which 

the Nash equilibrium will be evaluated by the fit-ness 

equilibrium. So, the entire dominance solution of feature 

selection can be better achieved. The UCAND solutions are 

constructed through a sequence of steps.  
This unified consistency aggregation can adjust Nash dom-

inance solutions by a complementary diversity-preservation 

mechanism between local solutions and global dominance 

solutions of co-evolutionary memeplexes. This approach is used 

to exploit the deep similarity between pairs of feature decision 

classes in the same neighborhood radius vector. In the global 

exploration, the evolution of isolated feature decision 

 

classes tends to select more diverse features by using differ-

ent ensemble weight vectors. In local exploitation, a diverse 

feature class is driven by the necessity to select different sit-

uations posed by the other feature decision classes. This will 

further guarantee the selection of the optimal feature subsets, 

including strongly multiple relevant and nonredundant fea-

tures. Hence, the ensemble feature sets based on MapReduce 

can be accelerated to select out, and the entire dominance 

solution of feature selection can be achieved. 
 

IV. PROPOSED MRFES ALGORITHM 
 

To fully explore the property of an MCCM model for 

extracting multiple relevant feature relations from large 

datasets, we propose the MRFES algorithm based on MCCM 

and UCAND, to serve as a guide to conduct feature selec-tion 

based on MapReduce. This algorithm can detect different 

elitists’ noncooperative behaviors for feature selection and 

achieve Nash dominance solutions. The adaptive consensus 

scheme of MRFES allows for easy automation of human-

moderator tasks, thus removing inherent subjective bias, and 

reaches a mutual decision agreement among co-evolutionary 

memeplexes based on MapReduce. It can achieve Nash 

dominance between local solutions and global dominance 

solutions by the co-evolutionary MapReduce. The main steps 

of MRFES are shown in Algorithm 3. 
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Algorithm 1: MCCM   

1) Construct the parallel operation < keyi, valuei  > for Map/Reduce of  Pi1 = [C11, C21, C31, . . . Ci1]
t
,        

memeplexi as t 

. (7)                      

− 
           

P
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i = 
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f
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(iii)  Normalize the adjacent matrix set of elitists P as eigenvectors        

 

             

, 
     

         f
ELITIST 

         

                       with the empirical covariance matrix Covi corresponding to the 

 and                                   largest eigenvalues λ = [λ1, λ2, . . . , λn]
t 

(where λj ≥ λj + 1) as 
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i=1 (valuej − μ) × (keyj − μ) 

  

                r          

Covi = 

  

 
where

  
f
Elitisti is the   local best  fitness of  elitists  in  memeplexi,   

n 

 n − 1         
 

f
ELITIST is the global    best fitness  of all memeplexes,  f

ELITIST 
= 

             i        
 Min

{
f
Elitist1 

,
 
f
Elitist2 

, . . . ,
 
f
ElitistN }

.
 
f
j is the fitness of the j 

th     

= 
 

λj × valuej × keyj 
       

(8)    elitist, and    

j=1 
 ,      

 r is the number of co-evolutionary elitists in memeplexi.                          

2)  Design the parallel operation matrix of memeplexes as      
where μ is the mean number of Child feature lists, valuej and           

kv11 · · · 
 

kv1n 
        

                   keyj are two parallel operations of Map/Reduce of memeplexj, 
          .  . .   .      ,      and λ  is the j th eigenvalue of eigenvectors.       
    KV = .      .  .   

 

     (3)          

    .        .         

6) 
j                      

           

kvn1 · · · 
 

kvnn 
   

n×n 

    Construct the values of the eigenvectors to follow the principle of 
                    the multivariate Gaussian distribution with zero mean, and the elitist 
    key                                conversion matrix is defined as                
 

where kvij = 
i 

. 
 

 valuej                                                   

3) Compute the collective preference and proximity  matrices for  
ECM = diag(λ1, λ2, . . . , λn), 

     
(9)  elitists, and list  the    adjacent    matrix set of  elitists  as  P =       

                                

 {P1, P2, . . . , Pi, . . . , Pn}, where                      where  diag(  )  represents  a  diagonal  matrix  with  the  independent 
            m       

× valuei 
          diagonal elements (λ1, λ2, . . . , λn).               

       P i 
= 

  j=1 
w

j ,       (4) 7) Determine the number of components to keep ECM on a basis of η, 
         

m 
       

                          

and the proportion of total variance can be preserved in this model                   i=1 
w

j              

 where wj  is the j
th

  elitist’s importance weight to be updated before  (η = 0.92) as            p        
 initiating.                                           

 

 

 

    

                                               

j=1 

     

4) A proximity matrix PE between each elitist’s preference relation and  

covi = min(covi ), subject to : 

   λj   

≥ η, 

 

(10) 
         

 

the adjacent matrix P is defined as 
                         

                    σ 2     

         pei11 · · ·  pei1n         2             tot        
    

PE 
= 

  .   .  
. 

  .      
, 

   
(5) 

 where σtot is the total variance, defined as           
      .       

. 
 .                                

        .        .                   
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n1 

· · · 
 

pei
nn                  
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              n 
× 

n           σ  λ .            (11) 
 tot = j  

where the feature relation value pe
lk

i is obtained for each 

pair of elitists (Elitistl, Elitistk) as 
 

             

pe lk 

= 

P 

i × 

valuel 

× 

valuek (6) 

i 

 

 

  

 

.   

  keyl  keyk   
Feature relation values are used to identify the furthest 
preferences from the collective opinion, which should 
be modified by some elitists.  

5) Conduct the identification process for nonseparable 
multiple relevant features among co-evolutionary 
memeplexes according to the following steps: 

(i)  Select the Parent feature list, and Pi1, Pi2, . . . , Pin 
are served by 

the route guidance of Memeplexi.  
(ii) Group all multiple relevant features into 

different memeplexes by the incremental 
Dimension, and construct Cartesian 

coordinates of the {P(i−1)1, Pi1, P(i+1)1} in 
the form of three-dimensional subvectors in 
the Child feature list as 

P(i−1)1 = [C11, C21, C31, . . . 

C(i−1)1]
t 

 

j=1 
 

8) Pairs of alternatives (Elitisti, Elitistj) whose consensus degrees cai and cpj are not sufficiently 

high are identified as 
 

CC = {(Elitisti, Elitistj)|cai < σtot
2

 ∧  cpj < σtot
2

 }. (12) 

9)  The average proximity Pin of an elitist group is calculated as  
  n p

1 
 

P
in 

= 
i=1 i . (13) 

 n      
10) Achieve the elitist group matrix of nonseparable multiple relevant features as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

EG = 

P
i1 In 

, (14) I
n 

P
in  

w
h

e

r
e

 

I

n
 

is a n-dimensional identity matrix. 

V. EXPERIMENTAL STUDIES 
 

We performed the following experiments to show the effi-

ciency and robustness of MRFES. The experimental system 

was a four-node cluster connected with gigabit Ethernet. Each 

node was a dual-way x86 server equipped with two Intel Xeon 

E5-2630 V2 CPU (2.6 GHz, 6 cores, 12 threads, 15 MB 

cache), and one NVIDIA Tesla C2050. One server was used 

as both master and worker, and the other servers were used as 

workers. Linux (Redhat 6.4) and Hadoop (ver-sion 

0.20.203.0) were used in the evaluation. The software used in 

all experiments was Microsoft Visual Studio 2015, 

and the programming language was C# 5.0. To decrease the 

randomness in different methods, all values of evalu-ation 

measures were averages of five independent tenfold cross-

validation experiments. 

 

A. Evaluation of Feature Selection Comparison on Different 

Datasets 
 

We conducted this experiment to evaluate the fea-ture 

selection and classification efficiency of MRFES, compared 

with the feature selection algorithms as FCBF [42], PCFS 

[43], MRF [44], and NSPSOFS [45], on two groups 
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Algorithm 2: UCAND   
1) Classify whole memeplexes into different clusters, where the cluster 

centers Ci in the current round are computed from the adjacent matrix  
set of elitists P.  

2) Connect each elitist with two neighbors in one cluster group and  
establish the ring topology. Then randomly choose a cluster center Ci 
corresponding to other Cj, to construct the new topology relationship 

of long-distance links with probability η.  
3) Given any pair of cluster points (di, dj) in the same neighborhood 

radius vector and an arbitrary point dk  in their contrary group, the 

weight metric between Ci and Cj is   
 

1 if (di is dk nearest neighbors of dj 
 

  

Wij =  or dj is dk nearest neighbors of di), (15) 
0   otherwise.  

ρi  = 
N W

ij is the weight of cluster point di, where N is the j=1 
ensemble size of cluster weights. 

4) Construct the i
th

 ensemble weight vector EWi(i = 1, 2, . . . , ND), and the i
th

 co-

evolutionary decision class DCj(j = 1, 2, . . . , ND), where ND is the number of 

feature decision classes. So, the feature decision class can be viewed as a matrix 

of weight metric distributions {Wij}, which indicates the classification prediction 

from the ensemble weight vector EWi for co-evolutionary decision class DCj.  

5) Divide the Nash dominance domain into three equal-area triangles 
3

, 
in which the arrow indicates the direction for sorting cluster points in 
each triangle. Then perform the pairwise comparison of ensemble 

weight vectors EWi(i = 1, 2, . . . , ND) in the same Nash dominance 
triangle. So, the elimination and merging of feature decision classes 
can be carried out as follows:  

(i)  If the elimination criterion is met, feature decision classes are 

eliminated, one by one, and distributed between the other ND − 1 

decision classes with a new starting cluster point Ci. 

(ii) After ND is decremented by 1, the algorithm continues with steps 3 and 4 if ND 

> 1.  
6) Let Ui(ρ), Uj(ρ) be the payoff to any cluster points Ci, Cj in the neighborhood 

radius vector. The co-evolutionary MapReduce strategy profile ρ
∗

 = (ρ1
∗

 , 

ρ2
∗

 , . . . , ρn
∗

 ) is a Nash equilibrium for the game as follows: 

 
 
 
 
 

 
Fig. 4. Classification accuracy of MRFES against traditional FS algorithm on 
the second group of datasets with SVM classifier.  

Ui(ρ ∗  , ρ 

∗  

) 
≥ 

Ui(ρi, ρ 

∗
 

), 
∀  

ρi, ρj ∈  
EWi, 

Fig. 5.   Classification accuracy of MRFES against traditional FS algorithm  i  j  j   

     ∀ i, j ∈  {1, 2, . . . , ND}. (16)   on the second group of datasets with C4.5 classifier.  
7) At the Nash equilibrium point of Nash dominance solutions, no deci-

sion class can benefit by unilaterally deviating from the current Nash 

dominance triangle 
3

, as shown in Fig. 3. Regarding the basins of 
attraction by using different numbers of decision classes with very 

high proportions, three Nash dominance triangles 
3

 converge to the 
Nash equilibrium point (x, y).  

8) Construct the highest average prediction degree of co-evolutionary 
feature decision classes with Nash equilibrium point (x, y) as  

PD ND . (17) 
|EWi| 

 =    
    

i=1 
DC

i  
 
 
 
 
 
of datasets [46]. We randomly divided the datasets into ten 

subsets (we used eight as training sets and the remaining as 

testing sets). We adopted the typical SVM and C4.5 as the 

classifiers, which followed their recommended parameter val-

ues in this experiment [47]. They have been identified as 2 of 

the 10 top algorithms of machine-learning and have been used 

widely in classification problems. The implementation param-

eters of MRFES were determined experimentally to better 

deal with the complex datasets linking the multiple relevant 

feature sources. We computed the average classification val-

ues using two classifiers based on a derived feature selection 

set. Meanwhile, we implemented 30 independent runs in each 

 

dataset and compared the noted algorithms with the best 

results across MRFES.  
Figs. 4 and 5 show the classification accuracy with respect to 

MRFES and traditional FS algorithms with SVM and C4.5 

classifiers, respectively. It can be observed that MRFES 

surpassed all four compared algorithms on two classifiers. For the 

SVM classifier, except for the LiverM and Dexter datasets, 

MRFES always obtained the best result. MRFES worked 

especially well with the SVM classifier for the Pancreatic, 

Colorectal, and LiverACO datasets, and FCBF and PCFS per-

formed worst. Such datasets contain high uncertainty with 

multiple relevant features, and many objects are in bound-ary 

regions, which prevent the compared FS algorithms from finding 

the minimal feasible feature subset because they cannot consider 

the degree of overlap between the desired tar-get feature sets. But 

MRFES can deal with the uncertainty with multiple relevant 

features more efficiently, as it uses the MCCM model. Thus, the 

most irrelevant and redundant features can be eliminated by 

MRFES to improve the clas-sification accuracy compared with 

traditional FS algorithms. A similar situation can be also 

observed with the C4.5 classi-fier. Classification of Australian 

datasets suffered from a high error rate because of their high 

dimensionality and small sam-ple size characteristics with 

multiple relevant feature sets, 
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Algorithm 3: MRFES  
 

1) Initialize the search space, elitists of different memeplexes for feature 
selection. Each memeplex aims to optimize a respective feature subset.  

2) To deal with noncooperating elitists based on elitists’ importance 

weights, each elitist of memeplex Elitisti ∈  E has an associated impor-

tance weight wi ∈  [0, 1], which is initially set to 1, wi = 1, ∀ i ∈  {1, 2, 

. . . , n}, and the memeplex matrix MM are described as 
  1 1 

· · · 
1     

   x1 x2 
x
ND   fitness(Elitist1)  

  2 2 
· · · 

2  fitness(Elitist )  

MM = 
 x1 x2 

x
ND  2  (18)     .  . . 

 ..   .   

   .. 

· · · 

.  .  

 

  .. . 

 

 

   n n n fitness(Elititn)  
     

   x1 x2 · · · 
x

ND     

 

weights associated with each pair of elitists (Elitisti, Elitistj),   
we set their weight parameter in the elitist group as λ = sm

lk
ij 

which can used to limit the number of rounds conducted in the 
cases that consensus cannot be achieved. So, the total average 
weight can be expressed as 

 
     

cm
lk 

Total 
=

 
λ

 
× 

cm
lk 

max + (1 − λ) × cm
lk 

min.   (23) 

(iii) Define the consensus degree EMi of the i
th

 elitist memeplex as 
 

   
! 

cm
lk 

i Total 

k=1,k =i |SM|  
3) Compute the similarity degree of each pair of elitists 

(Elitisti, Elitistj), (i <  j)  in the elitist group Exgi  according to the 

their assessments (p
lk

, p
lk

) by computing the similarity function  
ij        

       

     

 

  

lk  lk lk  

(19) 

   

smij  = 1 −  (pi − pj ) . 
4) Construct the similarity matrix SM of each pair of elitists as follows: 

EMi = . (24)  
i 

 
9) Achieve the degree level of preference relationship coordination in the 

i
th

 elitist memeplex as 

Emp 

i = 

EMi − |SM| 
. (25) 

2
i 

   
  

smij
11 

· · · smij
1n 

 

  10) Choose  attribute  subsets  (Sub_attribute)i,  and  use  Algorithm  2 

     (UCAND) to select out feature subsets. For the remaining features of 

SM 
  . .

 . 
 .   

. (20) 
C(C ∅ ), repeat from steps 7 to 10 until the desired feature subset 

= 
 . 

. 
.    = 

 .  .     can be selected out. 

   smij
n1 

· · · smij
nn 

n 
× 

n 11) Construct the vector of feature selection set {FS1, FS2, . . ., FSi, . . ., 

5)  Given P ⊆  C and U/D = {D1, D2, . . . , Dr }, 
  FSn} in elitist memeplexes {Emp1, Emp2, . . ., Empi, . . ., Empn} as 

where U is a finite follows: 
nonempty set of objects, C is a condition attribute set, D is a decision                 

FS1n 
  

                     FS11   FS1i          
attribute set, and C   D  =∅ , the positive region of D with respect to   FS 

21 
  FS 

2i 
     FS 

2n 
 

the condition attribute subset P is defined as                   
          

 
         .   .       FSn = .   (26) 

                   
FS

1 
=

    .   
FS

i =    .       .   

   POSP(D) = r PDk. (21)     , . . . ,      , . . . ,     .  
      .   .        .    

                                        
                                   

          k=1         
FS

n1   FSni        FSnn   

6)  Define the degree of dependency for feature selection γP(D) as 12) Assign the corresponding weights   i for the i
th 

vector of feature 
         

|POSP(D)| 
    

   γ 
P 

(D) 
= 

 . (22)  selection by                     
                          

        
| 
U |               lk            

                                  

                                          

7)  Calculate the upper 
   

(D) and lower γ 
 

(D) related to each feature 
      

pe 
  

− Pi . 
      

(27) γ         
 

        
                    

  

Ai 
          

Ai 
        

i = 
 

| 
PE 

i | 
 

       

                            

Ai ∈  C, and then use Algorithm 1 (MCCM) to select out the most                   

relevant feature subset with the highest upper relevance value 
 

Ai (D). 
     

γ 13) Optimize the vector of feature selection by the functions as  
8)  Conduct  memeplex-role  to  group according  to  the  interdependen-                        

cies of feature subsets. Many feature sets are decomposed into the     
FS"1 = 1 × FS1, FS"2 = 

 
2 × FS2, . . . , 

   
same subsets because of complex interdependencies. By this regroup-         

ing strategy, the reasonable decomposition of nonseparable multiple     FS"i = i × FSi, . . . , FS"n =  n × FSn.   (28) 
relevant  features  will  benefit the discovery of  complex  features’ 

14)  Achieve the overall vector of feature selection sets as 
    

interdependencies.                       

                                         

(i)  Compute the maximum value of the average weight cm
lk

ij in the 

i
th

  elitist memeplex as (cm
lk

)max, and its minimum value as  
(cm

lk
)min. 

(ii)  Because the similarity degree sm
lk

ij  is computed by aggregat-
ing similarity matrices SM, taking into account the importance  

n 

FS = ( i × FSi). (29)  
i=1 

 
where FSi is the i

th
 vector of the feature selection set and i is the assigned 

corresponding weight of FSi. 

 
 

 

whereas, the C4.5 classifier built on the obtained feature sub-

sets by MRFES were combined into a stronger classifier that 

was applied to classify Australian datasets well. Hence, the 

superiority of MRFES was demonstrated on these large and 

complex datasets with multiple relevant feature sources.  
In general, we can observe that the classification systems 

employing MRFES as a feature selection method have quite 

often led to superior classification accuracy. In the few cases 

in which MRFES was not the best, it still outperformed most 

algorithms, which is in agreement with our analysis. 

Specifically, MRF was almost always inferior to MRFES, and 

this is not surprising because that MRFES can accurately 

 
 

 

capture uncertainties associated with the multiple relevant fea-

tures, and can eliminate most irrelevant feature sets present in 

original datasets. MRFES excels in terms of classifica-tion 

efficiency and accuracy, along with much smaller feature 

subsets.  
To conclude, as shown in Figs. 4 and 5, the proposed 

MRFES algorithm can achieve close to the best feature 

values. This finding shows that better classification perfor-

mance can be reached by adopting the MCCM model for 

feature ensemble selection of large-scale datasets, and reach-

ing a mutual agreement among the decision group of co-

evolutionary memeplexes. Hence, MRFES can achieve the 
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Fig. 6.   Tradeoff comparison between stability and accuracy using SVM Fig. 7.  Comparison of classification accuracy variation at varying noise levels 

classifier. on Pima Indians Diabetes with SVM classifier.  
 
 
highest classification accuracy in most the cases, irrespective 

of datasets and classifiers being used.  
To further evaluate the tradeoff between classification accu-

racy and stability of the feature selection algorithm, the 

stability-accuracy tradeoff (SAT) is defined as  
# 

2 · stability · accuracy 
SAT = (30)  

stability + accuracy 
 
where the stability can be computed as in [48], while accu-

racy is evaluated using the classification results based on the 

selected features. SAT results for the SVM classifier are dis-

played in Fig. 6. It can be observed that MRFES can provide 

the better tradeoff between classification accuracy and 

stability, compared with the traditional FS algorithms. 

 

B. Robustness Evaluation of MRFES on Two Classifiers 
 

Despite its appealing performance in the accuracy-oriented 

classification system, varying noise levels will affect the per-

formance of MRFES. Here, we employed two benchmark 

datasets coming from the UCI repository, such as Pima Indians 

Diabetes and Breast Cancer Wisconsin, to test the robust-ness 

performance of MRFES with the SVM classifier and C4.5 

classifier, respectively. To obtain noisy classes, we ran-domly 

drew k% objects from two datasets and their decision labels were 

replaced by arbitrary candidates, where k = 4, 8, 12, 16, 20, and 

24. These k objects were considered as the noisy ones and they 

were put back into the two datasets. With these k noise levels, the 

variation of classification accuracy is reported in Figs. 7 and 8 for 

the SVM and C4.5 classifiers, respectively. Note that the x-axis 

represents the noise level and the y-axis represents the 

classification accuracy variation by MRFES and some traditional 

FS algorithms. By look-ing at the curves in Figs. 7 and 8, it can 

be concluded that with increasing noise, the classification 

accuracy variation of MRFES became smaller than that of the 

traditional algorithms. It displayed a general downward trend in 

stability. We also see that the classification accuracy of the 

traditional algorithms decreased faster than that of MRFES. This 

indicates that the different levels of noise will degrade the 

classification perfor-mance. As can be seen in Figs. 7 and 8, 

however, the value 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Comparison of classification accuracy variation at varying noise levels 
on Breast Cancer Wisconsin with C4.5 classifier.  
 
 
variation of MRFES is small in most cases. More important, its 

variation curves tend to achieve stability with increasing noise.  
This is because that MRFES adopts UCAND solutions to 

achieve an adaptive balance between the local solutions and 

global dominance solutions, and it further guarantees the 

choice of an optimal feature subset, including strongly multi-

ple relevant and nonredundant features. This allows accurate 

computation for the approximation space and reaches a 

mutual agreement among a group of co-evolutionary decisions 

for feature ensemble selection of large-scale datasets.  
Hence, this test demonstrates that MRFES can select most 

compact feature subsets in a stable manner, with performance 

comparable to its supervised counterparts. This algorithm is 

more robust to noise than traditional algorithms. Hence, 

MRFES should be considered a powerful algorithm to deal 

with the uncertainty of large-scale datasets with varying noisy 

levels. 

 

VI. APPLICATION IN HUMAN CEREBRAL CORTEX-BASED  
C LASSIFICATION 

 
Health care is an important area with significant appli-

cations for big data, and successful applications of feature 
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Fig. 9. Segmented longitudinal cortical surface by MRFES and compared 
algorithms. (a) Infant subject 1 with additional 8% Gaussian noise. (b) Infant 
subject 2 with additional 10% Gaussian noise. 

 

 

selection algorithms are expected to dramatically scale up 

their efficiency and feasibility for large and complex big data. 

The human cerebral cortex is a very thin and highly folded 

sheet of gray matter, which is a typical kind of large-scale 

dataset with multiple relevant feature sources. Accurate and 

consistent classification of cortical surfaces from longitudi-nal 

human brain magnetic resonance images (MRIs) is highly 

important to the forecasting, diagnosis, and treatment of brain 

diseases [49]. Although several efforts have been made 

toward their classification, application of the existing methods 

to clas-sify cortical surfaces may produce longitudinally 

inconsistent cortical surfaces because of the inconsistency of 

skull stripping and the evolution of surface tessellation [50]–

[52]. Because longitudinal cortical changes in a short time 

usually are sub-tle, especially for infants at birth months, this 

requires much more accurate and consistent cortical surface 

classification and representation. This section investigates the 

proposed MRFES algorithm on consistent classification of 

deep buried sulci and gyri in some longitudinal images, which 

is important for the prediction of brains disease.  
Fig. 9 shows the longitudinal surface-labeling boundaries of 

aligned longitudinal spherical surfaces for two typical infant 

subjects with longitudinal inner (blue curves), cen-tral (orange 

curves), and outer (light blue curves), where red arrows 

indicate selected cortical thinning regions. To demonstrate the 

consistency of longitudinal surface labeling results of cerebral 

cortex, we deliberately made the cortex thicker in two subjects 

to account for cortical evolution. As can be seen, MRFES 

achieved the more consistent labeling boundaries than two 

popular and well-established methods, namely BET [53] and 

GCUT [54]. We computed the aver-age value of the 

symmetric boundary distance of labeling regions between 

each pair of aligned longitudinal surfaces. The average 

boundary distances are 0.60±0.15 mm (MRFES), 0.71±0.03 

mm (BET), and 0.69±0.25 mm (GCUT), respec-tively. 

MRFES significantly outperformed the other two meth-ods 

and achieved a much lower boundary distance. It can be 

 

seen that MRFES can be adapted to derive from the cortical 

folding surfaces, and can improve the reliability in cases in 

which the same cortical surfaces are used to train the classi-

fier. Although the edges of different organizations of the 

infant cortical surface are fuzzy, and some nonbrain regions 

may be easily mistaken for value brain regions, MRFES can 

substan-tially improve the accuracy and robustness of cortical 

surface classification, with keeping the consistent details of 

complex human cerebral regions.  
To further verify the effectiveness of MRFES, we evaluated 

the performance of MRFES against BET [53] and GCUT [54] 

for hemispheric vertex position asymmetries, selecting ten 

cerebral cortexes of healthy infants, each with serial MRIs 

acquired at 4∼8 birth months. Fig. 10(a) and (d) describes the 

average cortical surfaces of left hemispheres, and Fig. 10(b) 

and (e) describes the average cortical surfaces of mirror-

flipped right hemispheres. Fig. 10(c) and (f) shows the 

significant clusters (nonwhite colors) of vertex position asym-

metries. On the lateral surfaces in Fig. 10(a) and (b), MRFES 

can consistently identify the temporal lobe and inferior 

parietal cortex as regions with significant asymmetries. It has 

consis-tently larger sizes of significant clusters than those 

obtained BET and GCUT.  
Prominent asymmetries also are consistently obtained 

around the supramarginal gyrus. On the medial surface in Fig. 

10(d) and (e), by using MRFES, both the parieto-occipital 

sulcus and medial orbital frontal cortexes are consis-tently 

identified with significant asymmetries. BET and GCUT, 

however, do not always find prominent asymmetries around 

the cerebral cortexes.  
From Fig. 10, it can be seen that MRFES significantly 

improves GCUT. BSE has about the same performance as 

GCUT, but it is not better than MRFES. MRFES can maintain 

good recognition performance of hemispheric vertex position 

asymmetries of cerebral cortex.  
The performances of GCUT and BSE become increas-ingly 

unsatisfactory, however, when the magnitude of the 

deformation field increases from the left hemisphere surface 

to the mirror-flipped right hemisphere surface. This causes the 

evolved curves to be trapped between the ground-truth curves 

and constraint curves. This improvement by MRFES is mainly 

because that the better initial segmentation is con-ducive to 

more accurate alignment between left hemispheres and 

mirror-flipped right hemispheres, and this allows for more 

accurate segmentation guidance for hemispheric vertex 

position asymmetries.  
To quantitatively evaluate the consistency of classifica-tion 

accuracy of MRFES on the publicly available datasets, we 

compared MRFES with more popular, publicly available 

methods—namely BET [53], GCUT [54], LPG-PCA [55], 

AFCM [56], and LongSeg [57], for brain classification accu-

racy within neonate, infant, and child groups. We compared 

the automated classification regions with manual classifica-

tion regions by using the voxel-based Dice similarity coeffi-

cient (DSC), defined as S(X, Y) = [(2|X Y|)/(|X| + |Y |)]. This is 

the most spread performance metric encountered in the 

segmentation study. Fig. 11 displays the average DSC values 

of three age-groups using MRFES. Their average values are 
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Fig. 10. Reconstructed hemispheric vertex position asymmetries of cerebral cortex. (a)–(c) Lateral surfaces. (d)–(f) Medial view surfaces.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11. Average DSC of MRFES on three age-groups.  
 
 
 
0.925 for neonate-group, 0.939 for infant-group, and 0.960 for 

child-group, respectively. The DSC of the child group is 

higher than those of other two groups.  
This finding may be a result of the fact that not only that 

can child brains release some useful signals to identify the 

nonbrain tissues in larger external brain spaces, but also that 

MRFES was originally developed for adults, and thus per-

formed better on child-group brains. So, according to the 

MCCM model, MRFES can find the brain tissue’s contour 

with the highest likelihood  
Fig. 12(a) and (b) shows the false-positive rate (FPR) and 

false-negative rate (FNR) for MRFES and five popular algo-

rithms on 100 neonatal group subjects. The boundaries of 

neonatal MRIs may be quite fuzzy in some locations, espe-

cially central cortical regions, which show the low contrast 

and dynamic intensity changes in the early development of the 

neonatal brain. As indicated in Fig. 12, BET performs slightly 

better than LPG-PCA because it combines morpho-logical 

operation with edge detection to locate the brain boundaries. 

Both figures show well-removed nonbrain tissues, as 

indicated by the lower FPR in Fig. 12(a), and show rel-atively 

large incorrectly removed brain, as seen in the high FNR in 

Fig. 12(b). This result mainly is due to the fact that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12. Boxplot comparisons of (a) FPR and (b) FNR for MRFES and five 
popular algorithms.  

 

they sometimes fail to burn some bridges so that chunks of 

skull cannot completely disconnect from brain boundaries. So, 

both tend to over-segment brain boundaries. Similar to BET, 

GCUT shows no significant difference in accuracy, but lower 

FPR and higher FNR, which causes the lowest average accu-

racy. AFCM shows better potential performance than GCUT 

by such measures as accuracy, FPR, and FNR, but it usu-ally 

retains a large amount of nonbrain tissue in final results, 

which leads to the lowest average accuracy. LongSeg indeed 
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TABLE I 

QUANTITY COMPARISON OF DIFFERENT ALGORITHMS ABOUT DSC, FPR, AND FNR  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

eliminates most of false positives, but MRFES achieves the 

deformable surface of brain boundaries significantly and out-

performs five popular methods in accuracy, generally with 

balanced FPR and FNR. In addition, the five popular meth-

ods also produce a number of outliers, especially AFCM and 

LongSeg, as indicated in Fig. 12, in which the cerebellum is 

over-segmented. But MRFES displays few outliers, and it 

produces robust results in the publicly available testing 

datasets.  
In the following, we quantitatively calculated the average 

DSC, FPR, and FNR by MRFES and five popular methods, 

with results are summarized in Table I, and the best result in 

each column is marked in bold. According to experimen-tal 

results, MRFES typically shows the highest quantity and 

outperforms five popular methods in all three age-groups by 

achieving an average DSC of 0.936 in neonatal group, 0.945 

in infant group, and 0.953 in child group. For infant groups, 

MRFES fails to obtain the optimal FNR, but its performance 

is close to the best achieved by GCUT. However, GCUT has 

the lowest FNR in infant age groups at the cost of the high-est 

FPR. The results show that MRFES provides significantly 

improved performance measures in the neonate, infant, and 

child groups. Hence, MRFES can guarantee the classifica-tion 

of different tissues to be a plausible brain shape, for the better 

classification precision and robustness. These results provide 

encouraging evidence, indicating that MRFES can find more 

profitable longitudinal dynamic cortical surfaces for the 

neonate, infant, and child groups.  
As shown previously, both qualitative and quantitative 

eval-uation results demonstrate that MRFES can combine an 

MCCM model and UCAND solutions, to reach the tempo-ral 

consistency term adapted to the temporal similarities of the 

cortical folding. It achieves significantly improved clas-

sification performance for complex human cerebral cortexes, 

and the detail preservation shows more robustness. Extensive 

experimental comparative studies confirm that MRFES 

outper-forms five popular methods in terms of efficiency, 

accuracy, and stability. 

 

VII. ANALYSIS AND DISCUSSION 
 

In RST, the size of the boundary region affects the feature 

selection process because it reflects the characterizing ability 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
of available condition features. The larger the boundary region, 

the weaker the feature selection performance. Compared with 

tradition algorithms, MRFES can locate small boundary regions 

well, which indicates that MRFES can greatly improve the 

feature selection process. The results show that MRFES has 

potential for some application scenarios, especially cere-bral 

cortex-based classification. The strategy of the UCAND solutions 

ensures that the underlying similarity between any pair of feature 

points in the same feature decision class can be fully reflected, 

and results in better generalization abili-ties in the same 

neighborhood radius vector. Thus, MRFES is preferred to some 

other methods.  
The applicability of MRFES has been shown on large 

datasets and has been evaluated by various statistical mea-

sures. Overall, its performance is comparable and satisfac-

tory. We have demonstrated its suitability for classification 

and selection compared with four traditional feature selec-tion 

algorithms, and it is efficient in terms of computational 

complexity. This paper has provided a fundamental way to 

explore an MCCM model for feature ensemble selec-tion of 

large-scale datasets with the multiple relevant feature sources. 

 

The proposed unified consistency dominance strategy to 

achieve the adaptive balance between local solutions and 

global dominance solutions by co-evolutionary memeplexes is 

more informative compared with other methods, which will 

further guarantee that it selects out the optimal feature subsets 

including strongly multiple relevant and nonredundant fea-

tures. We tested MRFES for various complex large datasets 

and real human cerebral cortex MRIs. The results were very 

encouraging and surpassed those of other state-of-the-art 

methods.  
The experimental results also revealed that different feature 

selection algorithms display distinctive characteristics. FCBF can 

consistently deliver compact feature subsets. PCFS obtains high 

classification accuracy, but with larger sized feature sub-sets. 

NSPSOFS can achieve a proper balance between feature 

selection accuracy and dimensionality reduction, but with only a 

few large solutions by occasion. In addition, FCBF and PCFS do 

not always yield better feature subsets because remaining 

redundant subsets through feature selection may the decrease 

overall performance. But MRFES significantly outperforms 
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its counterparts, making it an efficient and flexible model for 

feature selection and classification in large-scale datasets.  
It is evident that the large number of large datasets requires 

substantial time feature selection, whose process relies on the 

efficacy of some operators of co-evolutionary consensus 

MapReduce. For extremely large datasets, it may be benefi-

cial to choose the MCCM scheme, reducing time complexity 

compared with traditional algorithms.  
Nevertheless, there are some limitations when using 

MRFES in large datasets with multiple relevant feature 

sources.  
First, we ignore the missing data in original feature sets, 

because the integrity of data may reduce the efficiency of 

feature ensemble selection. Therefore, it is necessary to esti-

mate missing values to facilitate the enough detection of much 

more noncooperative co-evolutionary behaviors to main-tain 

the ensemble consensus co-evolution of memeplexes. 

Therefore, it is expected that a more adaptive and robust con-

sensus scheme must be designed for multiple-relevance-

feature ensemble selection.  
Second, we adopt the strategy of unified consistency aggre-

gation for Nash dominance, which helps to achieve adaptive 

balance between the local solutions and global dominance 

solutions for feature ensemble selection by the co-evolutionary 

memeplexes. This could provide more robust feature selection 

sets. This strategy will further guarantee the choice of opti-mal 

feature subsets, including strongly multiple- relevant and 

nonredundant features. This strategy can adaptively produce 

feature sets by avoiding partial overcrowding as well as by 

guiding the search toward different directions in the archive.  
Third, some performance parameters of MRFES are empir-

ically determined by preliminary repeated trials. A compara-

tively good solution is to attempt a multiobjective 

optimization algorithm to find the optimal settings of these 

parameters and then to generate a more profitable co-

evolutionary consensus MapReduce strategy. 
 
 

VIII. CONCLUSION 
 

In this paper, we have proposed a novel MRFES algorithm. 

It not only constructed an MCCM model for feature selection 

of large scale datasets with multiple relevant feature sources 

and but also established a unified consistency framework 

between the local solutions and global dominance solutions 

achieved by the co-evolutionary memeplexes that participate 

in the cooperative feature ensemble selection process. This 

MCCM model attempted to reach a mutual decision 

agreement among a group of co-evolutionary memeplexes. A 

series of detailed experiments illustrated the thorough 

complexity anal-ysis of MRFES, including aspects of the 

accuracy, efficiency, and robustness. This paper demonstrated 

the application of MRFES to human cerebral cortex-based 

classification in com-plex brain analysis, where it was shown 

to perform well and provide high classification accuracy to 

extract effectively good features.  
Although be in promising, much can be done to fur-ther 

realize the potential of this approach. With the rapid 

development of the Internet of Intelligent Things and 

 

advanced electroencephalography sensing technology, we 

plan to enhance MRFES by using personalized adaptive 

architec-ture to predict human cognitive states assessments 

from sensed brain activity and other physiological signals. 
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