
MATHEMATICS OF COMPUTATION
Volume 79, Number 272, October 2010, Pages 2451–2460
S 0025-5718(10)02337-9
Article electronically published on April 9, 2010

ODD HARMONIC NUMBERS EXCEED 1024

GRAEME L. COHEN AND RONALD M. SORLI

Abstract. A number n > 1 is harmonic if σ(n) | nτ(n), where τ(n) and
σ(n) are the number of positive divisors of n and their sum, respectively. It

is known that there are no odd harmonic numbers up to 1015. We show here
that, for any odd number n > 106, τ(n) ≤ n1/3. It follows readily that if n is

odd and harmonic, then n > p3a/2 for any prime power divisor pa of n, and
we have used this in showing that n > 1018. We subsequently showed that
for any odd number n > 9 · 1017, τ(n) ≤ n1/4, from which it follows that if

n is odd and harmonic, then n > p8a/5 with pa as before, and we use this

improved result in showing that n > 1024.

1. Introduction

We write τ (n) for the number of positive divisors of the natural number n and
σ(n) for their sum. It is well known that, if n has prime factor decomposition

n =
∏t

i=1 p
ai
i , then

τ (n) =
t∏

i=1

(ai + 1) and σ(n) =
t∏

i=1

pai+1
i − 1

pi − 1
,

from which it follows that these are multiplicative functions. That is,

τ (mn) = τ (m)τ (n) and σ(mn) = σ(m)σ(n)

when (m,n) = 1.
The number n > 1 is harmonic if

h(n) =
nτ (n)

σ(n)

is an integer. The function h is also multiplicative. Harmonic numbers are of
interest because it is easily shown that every perfect number (satisfying σ(n) = 2n)
is harmonic, yet no odd harmonic numbers have been found. If it can be proved
that there are none, then it will follow that there are no odd perfect numbers,
solving perhaps the oldest problem in mathematics.

Harmonic numbers were introduced by Ore [11], and named (some 15 years later)
by Pomerance [12]. For recent results in this area, see Goto and Shibata [9] and
Sorli [14]. In the latter, it was shown that there are no odd harmonic numbers
up to 1015. The method required the determination of all harmonic seeds (see
Cohen and Sorli [6]) to 1015 and the observation that all are even. This extended
the result announced in [6], determined similarly, that there are no odd harmonic
numbers less than 1012. Previous approaches used a straightforward incremental
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search, such as in [11] and Cohen [4], giving bounds of 105 and 2 · 109, respectively.
In this paper, we use specific estimates for the divisor function τ and some basic
results from cyclotomy to improve the bound, first to 1018 and then to 1024.

We use the following notation. We write ω(n) for the number of distinct prime
factors of n and we write m ‖ n to mean that m | n and (n, n/m) = 1. In particular,
pa ‖ n, p prime, if pa | n and pa+1 � n; in this case, pa is called a component of n.
We use p, q and r exclusively to denote primes.

Many details and computational results are omitted from this paper. They may
be found in the superseded paper [5], available from the second author or from the
Department of Mathematical Sciences, University of Technology, Sydney.

2. Estimates for the divisor function

Hardy and Wright [7] showed that, given ε > 0, there is a constant Aε, dependent
only on ε, such that τ (n) < Aεn

ε for all n. They gave an expression for Aε, but it
is of no use for our purposes.

Taking ε = 1
2 , Sierpiński [13] (Exercise 1, page 168) gave, as an exercise, the

result τ (n) < 2
√
n for all n. His hint to its solution leads readily to the following.

Theorem 1. If n is an odd number, not 3 or 15, then τ (n) ≤
√
n.

There are two proofs given in [5]. The first uses Sierpiński’s hint, but this gives
no suggestion for similar results with ε < 1

2 . The second proof gives that suggestion
and is the basis for the following result.

Theorem 2. If n > 106 and is odd, then τ (n) ≤ 3
√
n.

Proof. We say n has property T if τ (n) ≤ 3
√
n, and property T̃ otherwise. We

first wrote a program that checked each odd number in [3, 108] for property T .

There are 267 numbers in this interval with property T̃ , the largest three being
765765 = 325 ·7 ·11 ·13 ·17, 855855 = 325 ·7 ·11 ·13 ·19 and 883575 = 33527 ·11 ·17.
The gap between these and 108 is so large that it was likely all larger numbers had
property T , and this was verified as follows.

First, it is easy to see that if ω(n) = 1, then n has property T̃ only in the seven
cases

n = 3, 5, 7, 32, 52, 33, 34.

A program was written and run in which each of these was multiplied in turn by 3,
5, 7, 11, . . . , and then in turn by 32, 52, 72, . . . , and if necessary by 33, 53, 73, . . . ,
and so on, until in each case property T held. In this way, all 36 odd numbers n

with ω(n) = 2 and property T̃ were found. In the order implied by this algorithm
and after removing duplications, those numbers are

3 · 5, 3 · 7; 5 · 7, 5 · 32, 5 · 33, 5 · 34; 7 · 32, 7 · 33, 7 · 34;
11 · 3, 11 · 5, 11 · 32, 11 · 33, 11 · 34; 13 · 3, 13 · 32, 13 · 33;

17 · 3, 17 · 32, 17 · 33; 19 · 3, 19 · 32; 23 · 32; 32 · 52;
52 · 3, 52 · 7, 52 · 33, 52 · 34; 72 · 3, 72 · 32, 72 · 33;

53 · 32, 53 · 33; 34 · 52; 35 · 5, 35 · 7.
Then these 36 numbers were treated similarly to find all 89 odd numbers n with

ω(n) = 3 and property T̃ , and the process was repeated to find all 96 with ω(n) = 4



ODD HARMONIC NUMBERS EXCEED 1024 2453

and property T̃ , all 36 with ω(n) = 5 and property T̃ , and the three with ω(n) = 6

and property T̃ . On the next run of the program all numbers had property T . The

total found this way with property T̃ was 267, as above.
Hence if n is odd and n ≥ 883577, then τ (n) ≤ 3

√
n. �

The second author used the same bootstrap approach to give the following im-
provement.

Theorem 3. If n > 9 · 1017 and is odd, then τ (n) ≤ 4
√
n.

In proving this, Sorli found that there are 2372091 odd numbers n with τ (n) >
4
√
n. The largest is n = 883086389887727025 = 34527 · 11 · 13 · 17 · 19 · 23 · 29 ·

31 · 37 · 41 · 43, for which ω(n) = 13. No odd n with τ (n) > 4
√
n has a greater

number of prime factors; the largest prime factor encountered is 2011 and the
largest exponent on a prime factor is 11. The modal number of prime factors is
8; there are 645321 odd numbers n with τ (n) > 4

√
n and ω(n) = 8, of which the

largest is 2637919811401875 = 34547311213217 · 19 · 23.
There is the following attractive consequence of Theorem 3: for any odd number

n > 9 ·1017, its positive divisors have harmonic mean at most n1/4, geometric mean
equal to n1/2, and arithmetic mean at least n3/4.

3. Application to odd harmonic numbers

We can quickly give the following applications of Theorem 2.

Lemma 1. If n is an odd harmonic number, then τ (n) ≤ 3
√
n.

Proof. We need only note that certainly there are no odd harmonic numbers less
than 106. �

Lemma 2. If n is an odd harmonic number and pa | n, then n > p3a/2.

Proof. We may assume pa ‖ n. Then σ(pa) | nτ (n) and, of course, pa | nτ (n).
Then paσ(pa) | nτ (n) since (pa, σ(pa)) = 1, and we have, using Lemma 1,

n 3
√
n ≥ nτ (n) ≥ paσ(pa) > p2a,

and the result follows. �

This result is an important tool for our first improvement on the lower bound of
the set of odd harmonic numbers, 1018 in place of 1015. It corresponds to a similar
tool in the derivation of a lower bound for the set of odd perfect numbers. In that
field it is known that if n is an odd perfect number and pa | n, then n > p2a.
The bound is currently 10300. See Brent and Cohen [1], and Brent, Cohen and
te Riele [2]. In the latter paper, a conditional improvement on the result n > p2a

is discussed and used.
Lemma 2 could have been used to good effect by Mills, and his 1972 paper [10]

shows that he had the machinery to obtain such a result. In [10], he proved that
an odd harmonic number n must have a component greater than 107. Then, by
Lemma 2, n > 1010.5. Furthermore, Mills indicated that he had extended his result
to show that there must be a component greater than 655512, so n > 655513 >
2 · 1014, a far greater bound than was known until Sorli’s 2003 result.

We also require the following well-known results concerned with odd harmonic
numbers.
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Lemma 3. If n is an odd harmonic number and pa ‖ n, then pa ≡ 1 (mod 4).

Lemma 4. If n is an odd harmonic number, then p | τ (n) for some prime p ≥ 3.

Lemma 5. If n is an odd harmonic number, then ω(n) ≥ 3.

The first two results are due to Garcia [8] (his Theorems 2 and 3, respectively);
the second generalizes a result of Ore [11], that an odd harmonic number cannot be
squarefree. The third result is due to Pomerance [12] and Callan [3], independently.

From standard cyclotomy theory, as applied also in [1] and [2], we have the
following.

Lemma 6. For any prime p, σ(pa) | σ(pb) if (a+1) | (b+1). If a > 1 and q = a+1
is prime, then the possible prime divisors of σ(pa) are primes r ≡ 1 (mod q), and
q itself if and only if p ≡ 1 (mod q). In the latter case, q ‖ σ(pa).

At the end of the paper, we will describe the possible use of the following result,
which is Lemma 1 in [2]:

Lemma 7. If p and q are odd primes with q | σ(pk) and pa | (q + 1), then k ≥ 3a.

The full details of the derivation of the next result are given in [5].

Lemma 8. If n is an odd harmonic number, then n > 1018.

The proof in [5] is essentially a manual one, but computer assisted for factoriza-
tions and many intermediate results. The result of Theorem 3, which was obtained
some time after that of Lemma 8, then fortuitously allows the following theorems,
proved in the same manner as Lemmas 1 and 2.

Theorem 4. If n is an odd harmonic number, then τ (n) ≤ 4
√
n.

Theorem 5. If n is an odd harmonic number and pa | n, then n > p8a/5.

These prompted the search for a more fully programmed approach to an im-
provement of Lemma 8, based on the earlier approach. This led to the following.

Theorem 6. If n is an odd harmonic number, then n > 1024.

4. Proof of the main result

We give the proof of Theorem 6 as the result of a number of propositions, the
first of which follows immediately from Theorem 5.

Proposition 1. Let n be an odd harmonic number and a a positive integer. If
p > 1015/a and pa | n, then n > 1024.

For example, taking a = 4 and noting that the smallest prime greater than
1015/4 is 5639, we have, for any odd harmonic number n: If p4 | n for p ≥ 5639,
then n > 1024.

In the proof of subsequent propositions, there will be tacit use of the first state-
ment of Lemma 6, as we now describe.

Cyclotomy tells us that

σ(pb) =
∏
d>1

d|(b+1)

Fd(p),
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where Fd is the cyclotomic polynomial of order d. If b > 1, then Fa+1(p) =
1 + p+ · · · + pa = σ(pa) divides σ(pb), where a+ 1 is the smallest prime factor of
b+1. From Lemma 6 it may be inferred that if it has been shown that pa ‖ n implies
n > 1024 where a + 1 is prime, and this has been done through consideration of
the prime factors of σ(pa), then also pb ‖ n implies n > 1024 when (a+ 1) | (b+ 1).
Therefore, only components pa where a+ 1 is prime need be considered.

Proposition 2. Let n be an odd harmonic number. If p ≥ 5 and p | τ (n), then
n > 1024.

Proof. If p ≥ 37, then q36 | n for some odd prime q, so, by Theorem 5, n > q8·36/5 ≥
357.6 > 1027, and the result is proved.

A single run of a program allowed the proof to be completed, and only a few
highlights will be described here. The algorithm may be summarised as:

* pa : σ(pa) B partial calculation of [log10 n].

Here, pa is an assumed component of n, which gives rise to σ(pa) (as suggested by
the colon), in factored form. Further, pa is the root of a tree. Later branches of the
tree are shown (in examples below) by indented lines and each is based similarly
on the largest available prime factor of n, which will be the largest prime factor
of the current σ(pa) or that of σ(pa) from an earlier branch, provided it has not
previously been used for the same purpose in the same tree. If this largest prime
factor, r say, has already been shown to be such that, if r | τ (n), then n > 1024 (for
example, if r ≥ 37 by virtue of the preceding paragraph), then indeed it may be
taken as a factor of n, rather than of τ (n). (There will be instances below where
there is no such largest prime, and this matter will be considered then.) In ∗,
“B” precedes a number which is the partial calculation of [log10 n] (where [·] is the
floor function), based on the product of those factors of n that are known to that
point, with prime factors of each σ(pa) taken to power 1 if 1 (mod 4) and power 2
if 3 (mod 4), in accordance with Lemma 3. Calculations are continued within a
tree until [log10 n] ≥ 24 (so n > 1024, as required) and branches are continued for
given p by incrementing a until Proposition 1 is applicable, but having regard for
Lemma 6.

With respect to Lemma 5, in all cases where a chain of calculations involves three
or more distinct primes and the partial calculation of [log10 n] does not exceed 24,
a simultaneous partial calculation of h(n) has been carried out to ensure that no
harmonic number less than 1024 has occurred.

A similar algorithm was used in [1] and [2].
Since the result is known to be true for p ≥ 37, the program runs through the

possibilities p = 31, . . . , p = 5 (in decreasing order of primes).
For example, take p = 13. Then q13k+12 | n for some prime q and k ≥ 0. By

Lemma 6, we need consider only k = 0 (and thus q12 ‖ n) and, by Proposition 1
with a = 12, we need consider only 3 ≤ q ≤ 17. Then, as follows, there are six trees
to process, with roots 1712, . . . , 312. Further comments on the algorithm follow the
sixth tree.

1712 : 212057 · 2919196853 B 29
1312 : 53 · 264031 · 1803647 B 38
1112 : 1093 · 3158528101 B 24
712 : 16148168401 B 20
161481684011 : 2 · 103 · 709 · 110563 B 37
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512 : 305175781 B 16
3051757811 : 2 · 3499 · 43609 B 28

312 : 797161 B 11
7971611 : 2 · 398581 B 17
3985811 : 2 · 17 · 19 · 617 B 23

∗ 6171 : 2 · 3 · 103 B 27
6172 B 26

3985812 : 3 · 1621 · 32668561 B 33
7971612 : 3 · 61 · 151 · 22996651 B 36

By way of further illustration, when we assume that 312 ‖ n we have σ(312) =
797161 | σ(n) | nτ (n), so we may assume that 797161 | n since 797161 ≥ 37. Then
n > 312797161 > 1011, as indicated by “B 11”. We continue the tree by assuming
that 797161 ‖ n (and later, in another branch, that 7971612 ‖ n), and obtain n >
312398581 ·797161 > 1017. At the line marked ∗ we have 312617 ·398581 ·797161 ‖ n
and n > 31217 · 1921032617 · 398581 · 797161 > 1027 > 1024. This uses the fact that
at this stage the proposition has been established already for p ≥ 17, so it may also
be assumed that 17 · 19 · 103 | n, and 19 ≡ 103 ≡ 3 (mod 4), so in fact 1921032 | n.
That n > 1027 is indicated in ∗ by “B 27”, and this branch need be carried no
further. In the following line, there is no need to factorize σ(6172), since we have
n > 31217 · 1926172398581 · 797161 > 1026.

As dictated by Proposition 1 with a = 10, 6 and 4, the program runs through,
respectively, q10 ‖ n for 3 ≤ q ≤ 31, q6 ‖ n for 3 ≤ q ≤ 313 and q4 ‖ n for
3 ≤ q ≤ 5623. We give one further illustration, arising when p = 5 and 1634 ‖ n,
to show the choice of the largest available prime for each new branch:

1634 : 11 · 31 · 1301 · 1601 B 20
16011 : 2 · 3289 B 22
13011 : 2 · 3 · 7 · 31 B 23
891 : 2 · 325 B 23
312 : 3 · 331 B 28
314 B 26

892 B 25
13012 B 25

16012 : 37 · 103 · 673 B 31
16014 B 29 �

In proving Theorem 6, it follows now that we may assume p | n when p | σ(n)
and p ≥ 5, and that τ (n) = 2a3b. By Lemma 4, the theorem will follow once it
has been shown that b = 0. That is, in principle, the theorem will follow once
Proposition 2 has been extended to p = 3, and it is plausible to do this by applying
the algorithm above to q2 ‖ n for 3 ≤ q ≤ 31622743 (although complications will
arise, corresponding to primes in the set S2, below). Partly for historical reasons
(the approach adopted in [5]) and partly as a template for later more ambitious
attempts to improve the bound, we proceed in a manner that does not require such
an extensive run.

Proposition 3. Let n be an odd harmonic number. Except for the 44 primes q in
Table 1, if 3 ≤ p < 104 and p | n, then n > 1024. If q is one of the 44 primes in
Table 1 and q2 ‖ n, then n > 1024.
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Table 1. Primes q ∈ S2, q < 104, with factorizations of σ(q)/2.

q (q + 1)/2 q (q + 1)/2 q (q + 1)/2 q (q + 1)/2

5 3 809 345 2861 3353 6337 3169
17 32 953 3253 2957 3 · 17 · 29 7829 335 · 29
29 3 · 5 1009 5 · 101 3169 5 · 317 8009 325 · 89
53 33 1601 3289 3433 17 · 101 8069 3 · 5 · 269
89 325 1613 3 · 269 4373 37 8089 5 · 809

101 3 · 17 1801 17 · 53 5189 3 · 5 · 173 9161 32509
173 3 · 29 1901 3 · 317 5209 5 · 521 9221 3 · 29 · 53
269 335 2017 1009 5717 3 · 953 9341 33173
317 3 · 53 2609 325 · 29 5857 29 · 101 9377 32521
509 3 · 5 · 17 2689 5 · 269 5881 17 · 173 9433 53 · 89
521 3229 2753 3417 6053 3 · 1009 9677 3 · 1613

Proof. The proof relies on deriving a number of results of the form “if p | n, then
n > 1024” in a particularly useful order until finally obtaining them for all primes in
[3, 104], apart from the tabled exceptions. The set of primes for which the results
are obtained is denoted by S1 and the set {5, 17, 29, . . . , 9677} of exceptions
by S2. The set S1 is developed largely to provide primes up to 104 that assist
in the treatment of other, usually larger, primes, and the set S2 to specify those
primes up to 104 that cannot be used this way.

The results are obtained with the same algorithm as before, with one addition:
a notation such as “pa : q . . . D” (in the examples below) means that q | σ(pa) and
q | n has previously been shown to imply n > 1024. That is, q ∈ S1 implies that if
pa is a component of n, then n > 1024. In proving p ∈ S1, where pa ‖ n, it follows
from the above that we need consider only a = 1 when p ≡ 1 (mod 4), and a = 2,
with a similar comment for branches that may arise.

The proof begins by showing as follows that 127, 19, 11, 7, 331, 31 ∈ S1:

1272 : 3 · 5419 B 11
54192 : 3 · 31 · 313 · 1009 B 20
10091 : 2 · 5 · 101 B 22
1011 : 2 · 3 · 17 B 24

10092 : 3 · 37 · 9181 B 28

192 : 127 . . . D

112 : 19 . . . D

72 : 19 . . . D

3312 : 7 . . . D

312 : 331 . . . D

It continues in a straightforward fashion to show that 67, 37, 47, 433, 631, 43, 79,
23, 307 ∈ S1. The order of treatment of the first few primes is the order found to
be convenient for odd perfect numbers in [1] and it is also similar to the approach
adopted in [10].

Whichever order is adopted, there will be difficulties associated with the set S2.
The primes p ∈ S2 are such that p ≡ 1 (mod 4) and σ(p) = p + 1 has no prime
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factors greater than 5 or is a product 2 · 3a
∏

qi∈S2
qi, where the qi have already

been shown to belong to S2. For such primes, we are content to show that p2 ‖ n
implies n > 1024 (and then, by Proposition 2 and Lemma 6, pa | n implies n > 1024

for a not of the form 2b−1, b ≥ 1). In the algorithm, when it is useful as a reminder
(when results are to be displayed) an underlined prime q on the right of pa : σ(pa)
indicates that q ∈ S2; also, p on the left is underlined on its first occurrence in a
chain if it is being demonstrated that p ∈ S2.

For example, 5, 17, 29, 53 ∈ S2 since σ(5) = 2 · 3, σ(17) = 2 · 32, σ(29) = 2 · 3 · 5,
σ(53) = 2 · 33, and
52 : 31 . . . D

172 : 307 . . . D

292 : 67 . . . D

532 : 7 . . . D

We show now that 73 ∈ S1; note the subsequent comment concerning the line
marked ∗.
731 : 37 . . . D
732 : 3 · 1801 B 6
18011 : 2 · 17 · 53 B 9
531 : 2 · 33 B 9

∗ 171 : 2 · 32 (132412592612712 B 26)
32 : 13 B 12
131 : 7 . . . D
132 : 3 · 61 B 14
611 : 31 . . . D
612 : 3 · 13 · 97 B 16

971 : 7 . . . D
972 : 3 · 3169 B 22
31691 : 2 · 5 · 317 B 25
31692 B 26

18012 : 7 . . . D

From the four lines up to and including that marked ∗, we observe that when
17 · 53 · 7321801 ‖ n we have 36 | σ(n). Then we must have either 35 | τ (n/732),
or 32 ‖ n and 32 | τ (n/32732). (Possibilities such as 38 ‖ n are covered as usual by
Lemma 6.) In the former case, since the five smallest primes greater than 3 and
not yet shown to belong to S1 or S2 are 13, 41, 59, 61, 71, we have n ≥ 13217 ·
41253 · 5926127127321801 > 1026. This is implied in parentheses in ∗. (Multipliers
such as 138412592612 are clearly covered by this.) In the latter case, the algorithm
continues with node 32.

We proceed similarly to show that 97 ∈ S1:

971 : 7 . . . D
972 : 3 · 3169 B 7
31691 : 2 · 5 · 317 B 10
3171 : 2 · 3 · 53 B 12
531 : 2 · 33 B 12
51 : 2 · 3 (132412592612712 B 28)
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32 : 13 B 14
131 : 7 . . . D
132 : 3 · 61 B 17

611 : 31 . . . D
612 : 3 · 13 · 97 (412592 B 25)

3172 : 7 . . . D
31692 : 3 · 3348577 B 17
33485771 : 2 · 1674289 B 23
16742891 : 2 · 5 · 167429 B 29
16742892 B 29

33485772 B 24

It is then straightforward to show, in order, that 61, 13, 3 ∈ S1, and to then
complete the proof of Proposition 3 by running through all remaining primes to
104. �

With regard to the proofs that 73 ∈ S1 and 97 ∈ S1, we remark that the program
easily identified these cases, and no others, for special treatment, and then that
treatment was handled manually, as above. Future improvements of the lower
bound for the set of odd harmonic numbers, beyond 1024, will have corresponding
difficulties with these cases and with similar cases that may arise. Indeed, they
produce the odd numbers which are “closest” to being harmonic; for example, if
m = 325 · 13253 · 612972317 · 3169, then h(m) = 61 · 97/32.

Now we give our final preliminary result.

Proposition 4. Let n be an odd harmonic number. If pa ‖ n where a is not of the
form 2b − 1, then n > 1024.

Proof. According to Proposition 3 and Proposition 1 with a = 2, it remains to
consider those primes p, 104 < p < 31622743, for which possibly p2 ‖ n. We give
first the following improvement of Proposition 1 when a = 2:

† If p2 ‖ n and p ≥ 1316099, then n > 1024.

To prove this, we consider the two cases p ≡ 2 (mod 3) and p ≡ 1 (mod 3). By
Lemma 6, we may write σ(p2) = u in the first case and σ(p2) = 3u in the second,
where u ≡ 1 (mod 3). Certainly, 3 � u, so in both cases we must have u | n. In the
first case, since p > 106 then n > p2u > p4 > 1024, and in the second case

n > p2u >
p4

3
≥ 13160994

3
> 1024.

Then the usual algorithm considered all possibilities p2 ‖ n, with 104 < p <
1316099. In each case, it was shown that p2 ‖ n implies n > 1024. �

In [5], the two cases leading to the analogue of † were further subdivided to allow
still shorter computer runs. The approach, in which u is considered separately to
be prime and composite, makes use of Lemma 7 and would be useful for improving
the bound in Theorem 6 beyond 1024.

Completion of the proof of Theorem 6. From Proposition 4, if n is an odd harmonic
number less than 1024 and p | n, then pa ‖ n for some a of the form 2b − 1, b ≥ 1.
(This might include members of S2 and primes p ≡ 1 (mod 4) with p > 104.) But
then Lemma 4 is contradicted. �
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