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ABSTRACT Different rendering styles induce different levels of agency and user behaviors in virtual 

reality (VR) environments. We applied an electroencephalogram (EEG)-based approach to investigate how 

the rendering style of the users’ hands affects behavioral and cognitive responses. To this end, we 

introduced prediction errors due to cognitive conflicts during a 3D object selection task by manipulating the 

selection distance of the target object. The results showed that, for participants with high behavioral 

inhibition scores (BIS), the amplitude of the negative event-related potential at approximately 50-250 ms 

correlated with the realism of the virtual hands. Concurring with the uncanny valley theory, these findings 

suggest that the more realistic the representation of the user’s hand is, the more sensitive the user becomes 

towards subtle errors, such as tracking inaccuracies. 

INDEX TERMS virtual reality; cognitive conflict; prediction error; virtual hand illusion; EEG; body 

ownership; 

I.  INTRODUCTION 

Recent advances in computer graphics hardware and 

rendering engines have enabled the creation of realistic 

virtual characters and environments in real time. However, 

a more realistic rendering style or a more immersive virtual 

environment does not always induce the preferred results or 

better user performance. For example, it is well known that 

near-human characters can produce negative audience 

reactions [1]. Schuchardt and Bowman [2] also found that 

the benefit of a more immersed virtual environment was 

only shown in a subset of spatial understanding tasks in 

their experiment. Choosing the right visual appearance is 

particularly important in therapeutic applications of VR, 

such as phobia treatment, so that the patient will experience 

the appropriate level of realistic experience without 

triggering a traumatic negative effect [3]. 

Researchers have been investigating the underlying 

psychological and neurological processes that induce 

different reactions towards different visual styles. Yuan and 

Steed [4] reproduced user responses in the classic rubber 

hand illusion experiment with immersive virtual reality and 

found that using an abstract hand style negated the illusion. 

González-Franco and colleagues [5] further identified a 

P450 potential and an event-related desynchronization of 

the mu rhythm in the motor cortex when a virtual threat was 

imposed on one realistically rendered virtual hand of the 

subject. Perani and colleagues [6] found that watching a 

video recording of the movements of realistic hands 

activated a visuospatial network, which included the right 

posterior parietal cortex. In contrast, watching an abstract-

like hand elicited little engagement of right hemispheric 

structures. Similar activation of brain regions related to 

motor planning have been reported previously only in 
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response to realistic rendering styles [7, 8]. Apart from 

changes in visual style stimuli, deviant changes in color [9, 

10], image contrast [11] and spatial frequency [12] in 

stimuli are also known to create a visual mismatch 

negativity (MMN) [13]. The MMN reflects an important 

electrocortical mechanism to enable attention towards 

important changes in the environment. Some researcher 

also generalizes it as prediction error signal [14] which is 

the result of cognitive conflict when there is a mismatch 

between the perceived information and the required 

response [15, 16]. 

Building upon this line of research, we investigated how 

different rendering styles of a user’s hand affect behavioral 

and cognitive responses during a fundamental user 

interaction task in an immersive virtual environment, 

namely, 3D object selection through direct 3D inputs 

(tracked hand motions). To this end, we introduced a 

prediction error object-selection paradigm for VR 

environments by manipulating, on a subset of trials, the 

selection distance of a target object and providing incorrect 

visual feedback that was perceived too early (figure 1). The 

discrepancy between the user’s prediction and the system’s 

action results in prediction errors and an accompanying 

negative event related potential (ERP) component with a 

fronto-central scalp distribution at approximately 150-200 

ms [17, 18]. Note that this error was not self-generated, and 

thus, the frontal negativity was different from the error-

related negativity (ERN). Furthermore, since the virtual 

hand was synchronized to the participant’s actual hand 

movements, ownership can be assumed. Thus, the resulting 

negativity is different from the observational error that 

peaks at approximately 300-400 ms [19]. 

The research goal of this paper was to investigate the 

feasibility of using cognitive conflict based on prediction 

errors to evaluate the interaction between rendering styles 

and the feeling of presence during a 3D object selection 

task in VR. We assumed that an increasing sense of 

presence in VR would be associated with more pronounced 

cognitive conflict in case of prediction errors. Under this 

context, we tested the following two hypotheses: 

• Hypothesis 1: Different rendering styles will not affect 

behavioral measurements.  

• Hypothesis 2: Different rendering styles will affect the 

users’ response towards errors, which can be measured 

by the amplitude of the ERP negativity. 

 
II. EXPERIMENT AND METHODOLOGY 

Participants and Environment 

EEG data were recorded from 32 right-handed male 

participants to determine the prediction error effect for three 

different rendering style of hand conditions with 95% power 

based on G*Power [20]. The median age of the participants 

was 22.7 years, with a range of 20-26 years. Following an 

explanation of the experimental procedure, all participants 

provided informed consent before participating in the study. 

This study obtained the approval of the institute’s human 

research ethics committee of National Chiao Tung 

University, Hsinchu, Taiwan and was conducted in a 

temperature-controlled and soundproofed room. None of the 

participants had a history of any psychological disorders, 

which could have affected the experiment results. 
 

 

FIGURE 1.  Our EEG-based experiment evaluated the interaction 
techniques in VR by measuring intentionally elicited cognitive conflict. 

VR Setup 

Our experiment used the HTC Vive [21] as the head-

mounted display. The Vive uses an OLED display with a 

resolution of 2160 x 1200 and a refresh rate of 90 Hz. The 

user’s head position was principally tracked with the 

embedded IMUs, while the external Lighthouse tracking 

system cleared the common tracking drift with a 60 Hz 

update rate.  

Participants’ hand motions were tracked with a Leap Motion 

controller attached to the front of the HTC Vive. The Leap 

Motion controller tracked the fingers, palms, and arms of 

both hands up to approximately 60 cm above the device. The 

tracking accuracy has been reported to be 0.2 mm [22], and 

the latency has been reported to be approximately 30 

milliseconds [23]. (See figure 1) 

EEG Setup 

In this EEG-based experiment, each participant wore an EEG 

cap with 32 Ag/AgCl electrodes, which were referenced to 

linked mastoids. The placement of the EEG electrodes was 

consistent with the extended 10% system [24]. The contact 

impedance was maintained below 5kΩ. The EEG recordings 

were collected using a Scan SynAmps2 Express system 

(Compumedics Ltd., VIC, Australia). The EEG recordings 

were digitally sampled at 1 kHz with a 16-bit resolution. 

 

An assistant helped the participants put on the EEG cap first, 

followed by the HMD. We directly put the top belt of the 

HTC Vive on top of the central channel of the EEG cap. 

Interestingly, since the EEG channels were pressed firmly 

onto the scalp, they provided cleaner signals. However, 

participants also found these firmly pressed EEG channels 
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uncomfortable. Thus, we manually adjusted the top belt of 

the Vive to avoid or reduce the pressure applied by the EEG 

channels. (See figure 1) 

 
 FIGURE 2. Experimental Design 

 

Each participant performed the 3D object selection task with 

their dominant hand tracked by the Leap Motion controller in 

VR. Figure 2 displays the scenario for a single trial. Each 

trial was seven seconds long. In the first two seconds, each 

participant looked at a fixation screen with his right hand on 

the lap. Afterward, two cubes were displayed on a table. The 

participant was instructed to reach and select (touch) cube 1, 

and then cube 2. The cube would turn red when it was 

touched. The participant was expected to finish the task 

within 5 seconds. Otherwise, the trial was stopped and 

marked as incomplete.  

r

D

position 1 position 2
 

 
FIGURE 3. Change in the selection distance. ‘r’ is the normal radius, and 
‘D’ is the changed radius that elicited the cognitive conflict. 
 

The selection distance of the second cube changed in 25% of 

the trials, such that 75% of the trials used distance ‘r’ (D1) 

and the remaining trials used distance ‘D’ (D2) (See figure 

3). Note that although we analyzed the ERP only for cube 2, 

the two-cube setup was designed to ensure that the 

participants approached the second cube with similar hand 

motions. 

 

FIGURE 4. Top subfigure shows the scene of experiment 2. Each 
participant was instructed to touch cube 1 and then to reach for cube 2. 
The three subfigures at the bottom are the three hand styles used. 

There were three levels of the rendering style of the virtual 

hand: a realistic hand (H1), a robotic hand (H2), and a 3D 

arrow (H3) (Figure 4, bottom). The experiment consisted of 

three sessions, with one session for each hand style. Each 

session consisted of 120 trials. The order of the sessions was 

counterbalanced. 

 

At the end of the experiment, the participants were presented 

with two sets of questionnaires. The first questionnaire asked 

for subjective ratings regarding the level of realism and 

personal preference towards each of the three different hand 

styles. The second questionnaire was the BIS [25], which 

contained 24 questions. The BIS questionnaire is commonly 

used to evaluate punishment sensitivity due to aversive 

events, such as conflict, which has been shown to correlate 

with ERP amplitudes [26].  

 

Overall, the experiment used a 3 by 2 repeated measures 

factorial design with two factors: hand style (realistic hand, 

robotic hand, and 3D arrow) and selection distance (D1, 

equal to the size of the cube; and D2, twice the size of the 

cube). On average, the experiment took about two hours, 

including the initial setup of the EEG cap, the HMD, and the 

completion of the questionnaires. 

EEG Data Analysis 

EEG data processing was performed using the EEGLAB 

toolbox in MATLAB. Raw EEG signals were filtered using a 

0.5-Hz high-pass and a 50-Hz low-pass finite impulse 

response (FIR) filter. Subsequently, the data were 

downsampled to 500 Hz and subjected to the visual 

inspection of the artifacts.  

 

Subsequently, an independent component analysis (ICA) was 

applied [27], and each epoch was extracted from 200 ms 

from the onset of the touching event for cube 2 to 800 ms 

after the response. A final artifact rejection was done on the 

epoched data by visual inspection. The EEG signals, without 

the components related to eye artifacts and muscle activity 

with a spectral peak above 20 Hz, were reconstructed using 

the back-projection method to selected channels to analyze 

the event-related potentials (ERPs). 

 

Following [26, 28, 29], we calculated the amplitude of the 

prediction error negativity (PEN) by first extracting the 

negative peak value at the electrode location FCz between 

50-250 ms for conditions D1 and D2, and we subsequently 

computed the difference wave by subtracting the ERPs with 

the onset of D1 from the ERPs with the onset of D2. 

Similarly, the P3 amplitudes were analyzed by extracting the 

positive peak value at FCz between 200 ms – 275 ms for 

conditions D1 and D2 and then subtracting both conditions. 

Note that when using the ERP amplitude as the 

measurement, the factor selection distance was eliminated. 
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III. BEHAVIORAL RESULTS AND DISCUSSION 

 
FIGURE 5. Average of task completion time (in sec) for all participants  

Figure 5 shows the average task completion time, i.e., from 

cube 1 to cube 2 in seconds. A repeated measures ANCOVA 

was conducted to compare the task completion times for the 

three different hand styles in the two conditions, using the 

continuous BIS scores as covariate. This included all the 

interaction terms between the hand styles and the task 

completion times as the within-participants factors. Levene’s 

test and normality checks were carried out, and the 

assumptions were met. There were no significant 

differences of the within-subject factor hand style (F(2, 

60)=.337, p=.715) nor for the covariates as a between-

subject effect (F(1, 30)=3.865, p=.059). There was also no 

significant hand styles * condition interaction (F (2, 60) 

=.337, p =.641) or among the hand styles * condition * BIS 

scores (F (2, 60) =.288, p =.674). The results supported 

hypothesis 1 by demonstrating that different rendering styles 

did not lead to significantly different behaviors during the 

task [30]. 

 

FIGURE 6. Questionnaire results for realistic level of the hand styles  

As shown in Figure 6, all participants considered the realistic 

hand style to be more realistic than the robotic hand and the 

arrow hand. Surprisingly, the results showed that there were 

no significant differences between the realistic and the robot 

hand style in the ratings regarding the preference and 

suitability for the object selection task.  

The results showed that the participants did prefer the 

realistic hand style over the cursor style. However, this was 

not because of its realistic rendering style but rather 

because of the more naturalistic mapping between the 

physical hand and the virtual hand. This might also explain 

the absence of a significant difference in the preference 

ratings between H1 and H2. Interestingly, some users 

suggested that they preferred H2 for the 3D object selection 

tasks because it occluded the target less. 

IV. ERP RESULTS 

For the measurement of the PEN amplitude, a repeated 

measures ANCOVA was conducted to compare the effect 

of the hand styles on the two conditions while treating the 

continuous BIS scores as covariates. There was a significant 

difference in the within-subject factor of the hand style 

(F(2, 54)=3.586, p=.035, partial η2 = .117) but not for the 

covariate as a between-subject effect (F(1, 27)=3.015, 

p=.094, partial η2 = .100). Interestingly, there was a 

significant interaction between hand styles and continuous 

BIS scores (F (2, 54) =3.605, p =.034, partial η2 = .118). 

This lead us to further examine the continuous BIS scores 

as a between-subject factor, which was performed by 

dividing all the participants into two groups, namely, a high 

BIS group and a low BIS group (low BIS Score<=14; high 

BIS Score>=15). This resulted in 17 participants being 

labeled in the high BIS group and 15 participants in the low 

BIS group [31] with effect size (Cohen’s d=2.37 for H1, 

d=0.057 for H2 and d=0.14 for H3). A mixed measures 

ANOVA was performed to compare the effect of the hand 

styles on the amplitude between the BIS groups. It was 

found that there was a significant interaction effect between 

hand styles and BIS groups (F (1, 30) =11.984, p =.002, 

partial η2 = .285).   

 

Figure 8 shows the ERP plots of the two groups based on 

the BIS scores with the different hand styles grouped 

together, with high- and low-sensitive participants. The 

Hand style 1 X high BIS interaction revealed a clear 

negative ERP component, while the low BIS group 

participants showed only a P300 component, which is 

commonly evoked by relevant changes in visual stimuli 

[32].  

 
 

FIGURE 8. Average ERPs from all participants in response to hand style 
1 (H1), hand style 2 (H2), and hand style 3 (H3) with the two conditions 
of the normal (D1) and conflict radii (D2) over FCz based on the high 
and low BIS score-based groups. 



 

VOLUME XX, 2017 9 

We also calculated the topoplots (see Figure 9) for the high 

BIS group (top row) and the low BIS Group (bottom row). 

The high BIS group exhibited higher negativity in response 

to condition H1 than to H2 and H3, whereas the low BIS 

group exhibited strong positivity (P300) in response to H1 

compared to H2 and H3.  

 
FIGURE 9. Average topoplots of the differences between the two 
conditions (change - normal) for participants with high (upper row) and 
low (lower row) BIS scores. 

 

The correlation analyses between the BIS group and both 

the PEN and the P300 amplitude revealed a significant 

negative correlation between the high BIS scores and the 

amplitude of the negative ERP component in response to 

conflict during the realistic hand style condition (r=-0.9833; 

p=0.000) (see Table 1). Low BIS scores were positively 

correlated (r=0.8386; p=0.000) with a change in the ERP 

negativity amplitude. Low BIS scores were further revealed 

to have a significant positive correlation with the P300 

amplitudes in the realistic hand style (H1) condition. No 

significant correlation coefficients were observed for any of 

the other hand styles (all p’s >0.05). 

 

IV. DISCUSSION ON THE ERP RESULTS 

As hypothesized in hypothesis 2, the results showed a 

larger amplitude of the PEN / P300 components in response 

to H1 than to H2 and H3. The results agree with the 

mismatch theory [33, 34], which argues that the negative 

component amplitude correlates with the degree of 

mismatch between the correct and erroneous responses. 

More specifically, we believe that H1 gave participants a 

higher level of body ownership and, thus, a stronger 

expectation regarding when the virtual hand should reach 

cube 2. Thus, false feedback evoked a larger negative 

amplitude. 

 

This result echoes the uncanny valley theory [35], which 

states that as a robot approaches, but fails to attain, a likable 

human-like appearance, there will be a point where users 

find even the slightest imperfection unpleasant. In our case, 

as the virtual hand became more realistic, the participants 

also became more aware of the errors. In a related vein, the 

absence of the PEN component in the least realistic hand 

style (H3) condition seemed to imply that participants felt 

less body ownership and were, thus, more tolerant of or less 

sensitive to incorrect feedback. This finding suggests that, 

depending on the goals of the interaction and the hardware 

capability, a higher rendering quality might not always be 

the best. For example, if the tracking precision is likely to 

be compromised or the display quality of an HMD is not 

ideal, then using a less realistic rendering style might be 

helpful. Only if the nature of the task and the available 

hardware permits, the users’ favored human-like looking of 

their virtual body should be realized. 

 

The results also suggested that there is a correlation 

between BIS scores and the amplitude of the PEN, but it 

applies only to the H1 as the realistic hand. In contrast, for 

the low BIS group, P300 might be a more effective ERP 

feature. The correlations between BIS scores and the PEN / 

P300 amplitudes also concur with the results of previous 

studies [25, 36] that functionally linked these components 

with flexible behavioral adaptation. 
 

TABLE 1. CORRELATION MATRIX FOR HIGH AND LOW BIS WITH PEN AND 

P300 AMPLITUDE FOR H1, H2, AND H3. DARK-HIGHLIGHTED CELLS 

REPRESENT THAT A CORRELATION IS SIGNIFICANT 

 

Correlation 
Hand 

style 

High BIS 

score 

Low BIS 

score 

Prediction 

Error 

Negativity  

(PEN) 

H1 -0.9833* 0.8386* 

H2 -0.3142 0.2319 

H3 -0.0488 0.1177 

P300 

amplitude 

H1 -0.1782 0.6100* 

H2 -0.3678 0.2633 

H3 -0.0604 -0.2143 

The BIS scale has been used to measure punishment 

sensitivity. The central implication of the BIS is that 

individuals with higher punishment sensitivities are more 

sensitive to negative outcomes or to errors in prediction 

than individuals with lower punishment sensitivities.  

 

In the context of the current experiment, it seemed that 

participants with higher BIS scores were sensitive enough 

to detect the error of cube 2 turning red before they touched 

it, thus, generating a larger PEN and a negative correlation 

between BIS scores and the PEN amplitude. On the other 

hand, the participants with lower BIS scores were less 

sensitive to the error and, thus, ignored or tolerated the 

selection distance change and showed a small PEN 

amplitude.  

 

The positive correlation between the low BIS group and the 

PEN/P300 amplitude in response to H1 was surprising. Due 

to the positive direction of the correlation, we suspected 

P300 to be the main ERP component. A potential 

explanation could be that the participants with lower BIS 

μV 
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scores were less sensitive to the error and, thus, tolerated 

the change in the selection distance more, which resulted in 

a small PEN amplitude. This also implied that more 

weighting is put into the visual feedback system, which 

evokes the P300 component.  

 

V. FUTURE WORKS 

We believe the experimental procedure proposed in this 

paper can also be used to investigate other important 

questions: 

Evaluating the Importance of Different Factors for 3D 
Object Selection 

Researchers have long been curious about the relationship 

between levels of immersion and presence [37]. There have 

been many inspiring works in recent years that aimed to add 

different sensory feedback into VR and interaction design 

[38]. For example, Impacto [39] rendered haptic feedback 

with both solenoid and electrical muscle stimulation, Level-

Ups [40] adds a self-contained vertical actuator to the bottom 

of the foot, and HapticTurk [41] replaces the motion platform 

with actual human motion. Most of these works relied on 

questionnaires and interviews to evaluate the effect of the 

feedback. However, most of them have a clear event, e.g., the 

time when the haptic feedback or motion feedback is applied, 

and the ERP associated with this cognitive conflict will be a 

useful tool for providing continuous user feedback to the 

system [9]. 

Manipulating Sense 

The proposed experimental methodology can also be used to 

evaluate the effectiveness and the range of recent works that 

manipulated the senses to overcome the constraints of 

physics, such as a limited number of props [42], limited 

space [43], and cybersickness [44]. Again, in these cases, by 

controlling the source of the conflicts, e.g., visual warping, 

we can estimate a reasonable range for subtle sense 

manipulation without being noticed or causing discomfort.  

 

VI. LIMITATION 

Our current setup used the Scan SynAmps2 Express system, 

and the recorded EEGs were analyzed off-line. Due to its 

long setup time, this device is only suitable for an initial 

investigation in a lab environment. We believe it should be 

possible to reproduce the results using off-the-shelf, portable 

EEG devices, and to process the data in real time [45-47].  

 

During the experiment, we manually adjusted the belt of the 

HMD to avoid contact with the sensors on the EEG cap. This 

might not be possible if caps with higher sensor densities are 

used. We believe the integration of the EEG cap with the 

HMD is a natural one, and we expect to see commercial 

products from companies such as MindMaze to be available 

on the market soon. 

 

Synchronization is also a challenging issue for hardware 

integration, especially if specific components, such as the 

N200 or P300, are being targeted. Leap Motion introduces a 

30 ms delay [23], and both Vive and Leap Motion have a 

potential tracking precision error. Additionally, the event 

generated from Unity 3D is limited by the rendering frame 

rate (60 FPS). There is also another system delay for the 

communication between Unity and the parallel port of Scan 

(our EEG system). We estimated the latency to summate to 

approximately 100 to 150 ms, which might cause some delay 

in the ERP (Figure 8). For future works that focus on specific 

ERPs, such as N200 or P300, dedicated synchronization 

hardware should be used. 

 

The participants who took part in the experiment were 20-26 

years old and did not represent the whole population. For 

future work, a broader age population will be recruited for 

such experiments to make sure that age does not influence 

conflict perception in virtual reality.  

 

Finally, for well-defined tasks, such as the 3D object 

selection in VR, cognitive conflict is most undesirable and 

might harm an individual’s sense of presence. However, for 

tasks that are more complex or interactive, the cognitive 

conflict might not always diminish the sense of presence. For 

example, the cognitive conflict has long been used as a 

strategy for encouraging students to examine their previous 

knowledge and to aim for conceptual change [48]. We 

believe that extending this framework to address such 

complex scenarios is an exciting future research direction. 

 

VII. CONCLUSION 

We investigated how different visual styles affect the 

behavioral and cognitive processes of users in VR. An EEG-

based experiment was conducted to evaluate how the 

rendering style of the users’ avatar hand affected user 

behavior and electrophysiological responses towards a 

prediction error during object selection with direct 3D input 

in VR. The results suggested that the more realistic the 

virtual environment is, the more sensitive the users become 

to subtle errors, such as tracking inaccuracies, which concurs 

with the uncanny valley theory. 
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