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ABSTRACT

We derive the synchrotron distribution in the Milky Way disk from HII region absorp-
tion observations over —40° < [ < 40° at six frequencies of 76.2, 83.8, 91.5, 99.2, 106.9,
and 114.6 MHz with the GaLactic and Extragalactic All-sky Murchison widefield ar-
ray survey (GLEAM). We develop a new method of emissivity calculation by taking
advantage of the Haslam et al., (1981) map and known spectral indices, which enable
us to simultaneously derive the emissivity and the optical depth of HiI regions at each
frequency. We show our derived synchrotron emissivities based on 152 absorption fea-
tures of HII regions using both the method previously adopted in the literature and
our improved method. We derive the synchrotron emissivity from HiI regions to the
Galactic edge along the line of sight and, for the first time, derive the emissivity from
Hi11 regions to the Sun. These results provide direct information on the distribution of
the Galactic magnetic field and cosmic-ray electrons for future modelling.

Key words: Galaxy: structure — HII regions — radio continuum: general — cosmic
rays

1 INTRODUCTION

At frequencies from about 10 MHz to 1 GHz, the diffuse
+E-mail: hongquan.su@icrar.org emission in the Milky Way is dominated by the synchrotron
+BE-mail: J.Macquart@curtin.edu.au emission originating from cosmic ray electrons spiralling in
tE-mail: nhwQicrar.org the Galactic magnetic field. The two-dimensional distribu-
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tion of this emission has been mapped and used for build-
ing the Global Sky Models (e.g. de Oliveira-Costa et al.
2008; Zheng et al. 2017 and references therein). However,
its three-dimensional distribution is difficult to infer (Beuer-
mann et al. 1985), largely due to the difficulty of separating
different components along the line of sight. One method
of obtaining depth information relies on the presence of op-
tically thick HiI regions embedded in this medium. At low
radio frequencies near 100 MHz, some HII regions become
optically thick to the background synchrotron emission. The
absorption of these HII regions enables us to separate the
synchrotron emission into components in front of and behind
these regions. Using this HII region absorption technique,
Nord et al. (2006) derived the brightness temperature be-
hind 42 HiI regions, mainly in the northern sky, using data
obtained with the 74 MHz receivers on the Very Large Array
(VLA). More recently, Su et al. (2017a,b) derived brightness
temperatures behind 47 HiI regions and detected 306 HIiI re-
gions in total (Hindson et al. 2016) using data at 88 MHz
from the Murchison Widefield Array (MWA; Tingay et al.
2013; Bowman et al. 2013 ).

Observations of the synchrotron emissivity obtained in
conjunction with HII regions can, in principle, constrain the
structure of the Milky Way. The synchrotron emission dis-
tribution is believed to be correlated with the spiral arm
structure of the Milky Way, however, there is no firm obser-
vational evidence available. The warp of the Milky Way’s
disk should also affect the synchrotron distribution. The
outer disk warps upwards (northwards) in the first and sec-
ond quadrants, downwards on the opposite side (Burke 1957;
Kerr 1957), and at least 12 HII regions exist in the outer
Scutum-Centaurus arm with a distance of about 15 kpc to
us (Armentrout et al. 2017). However, a denser sampling of
the synchrotron emission distribution is needed to investi-
gate its relationship to such structures.

To date, the distribution of the Galactic synchrotron
emission along the line of sight is too sparsely sampled
to constrain its complex distribution. Models of the syn-
chrotron emission based on the derived emissivity from Hir
region absorption is rudimentary (Nord et al. 2006; Su et al.
2017a), with the emission usually assumed to be confined
to an axisymmetric cylinder with a radius of 20 kpc and
a height of 2 kpc. This radius is a reasonable assumption
because the most distant Hil regions detected so far have
Galactocentric radii more than 19 kpc (Anderson et al.
2015), which may present the outer limit to the extent of
the massive star-forming disk. The extragalactic synchrotron
emission outside of this disk is usually neglected, assumed
to be small compared to the disk contribution.

The purpose of this paper is to present synchrotron
emission measurements using low-frequency MWA data to
derive the free-free opacities of 152 Hil regions in the Milky
Way and determine the synchrotron emission in front of and
behind these clouds at six frequencies of 76.2, 83.8, 91.5,
99.2, 106.9, and 114.6 MHz. The data from the MWA enable
us to triple the sample of HII region-absorbed measurements
from the multi-frequency observations with much-improved
angular resolution and surface brightness sensitivity. Fur-
thermore, we develop an improved method and re-derive re-
sults from other work using this methodology.

In Section 2 we introduce the data used for this work.
The new method we developed is discussed in Section 3.

In section 4, we present our newly-derived emissivities and
in Section 5 we discuss our results and compare them to
previous work. We summarise our findings in Section 6.

2 DATA

We use data obtained by the MWA as part of the GaLactic
and Extragalactic All-sky MWA survey (GLEAM, Wayth
et al. 2015). The data in this work was collected in four
weeks within the first year of the GLEAM survey between
2013 June and 2014 July. This survey covers all the sky south
of declination +30° corresponding to a Galactic longitude
range of —=50° </ < 60° at b = 0° with HII region absorption
found in the range of —40° <[ < 40°, =2° < b < 4°. Hurley-
Walker et al. (2017) presented the calibration, imaging and
mosaicking of the GLEAM survey, particularly for the extra-
galactic catalogue. The data reduction of the Galactic plane
region will be reported in Hurley-Walker et al. (in prep).
Here we only highlight that a multiscale clean in WSCLEAN
(Offringa et al. 2014) is performed to better deconvolve the
complex structures on the Galactic plane.

The GLEAM survey has an angular resolution of about
4’ at 100 MHz and excellent u-v coverage. This resolution is
a 30-fold improvement over existing full-sky maps at compa-
rable frequencies, which have angular resolutions > 2°. This
angular resolution enables us to resolve 10% of the 8000 Hi1
regions in the Wide-Field Infrared Survey Explorer (WISE)
Hir region catalogue (Anderson et al. 2014). The angular
resolution varies between 5.41" and 2.89’ depending on the
frequency. We convert the average surface brightness of our
selected regions to brightness temperature using the listed
conversion factors in Table 1. Typical root-mean-squared
(rms) values of the GLEAM maps are 0.2 Jy beam™! at
76.2 MHz to 0.1 Jy beam™! at 114.6 MHz, estimated us-
ing the Background and Noise Estimator (BANE) v1.4.6
from the AEGEAN package (Hancock et al. 2012, 2018).
The GLEAM survey observes across the frequency range
between 72 and 231 MHz, but here we utilise data at the
lowest six frequencies from 72 to 118 MHz with a bandwidth
of 7.68 MHz each (see Table 1), these being the most perti-
nent to the detection and characterisation of the absorption
features caused by HII regions.

We use the all-sky 408 MHz map of Haslam et al. (1981,
1982) reprocessed by (Remazeilles et al. 2015) to estimate
the total power of Galactic synchrotron emission along the
line of sight towards the HII regions at the GLEAM frequen-
cies. The Haslam map is a combination of four different sur-
veys from the Jodrell Bank MkI, Bonn 100 meter, Parkes 64
meter and Jodrell Bank MKIA telescopes. This map is dom-
inated by the Galactic synchrotron emission with 6% free-
free emission (Dickinson et al. 2003) as neglectable contam-
ination for this work. We also neglect the free-free absorp-
tion due to the unresolved HII regions and the warm inter-
stellar medium. The reprocessed Haslam map removed the
strong point sources in the destriped/desourced (dsds) ver-
sion. Thus, the contamination of the extra-galactic sources
is minimized.

MNRAS 000, 1-20 (2018)



Table 1. Parameters of the GLEAM survey data with a band-
width of 7.68 MHz each. The resolution element is described by
the beam major axis (BMAJ) and beam minor axis (BMIN).

Frequency BMAJ  BMIN  Conversion factor

Jy beam™! to K

MHz arcmin  arcmin

76.2 5.41 4.43 2445.01
83.8 4.78 3.89 2598.84
91.5 4.35 3.54 2633.47
99.2 4.03 3.30 2596.70
106.9 3.99 3.22 2310.85
114.6 3.63 2.89 2467.46

3 IMPROVED METHOD OF EMISSIVITY
CALCULATION

A simplified method of calculating the Galactic synchrotron
emissivity was adopted by Nord et al. (2006) and slightly
modified to include the contribution of the measured back-
ground by Su et al. (2017a,b). We believe this approach can
be improved in two ways.

Firstly, it assumes the optical depths of HII regions are
much larger than 1. However, this assumption may not be
correct for some HII regions because they show only mild
absorption (r ~ 1) at the frequencies used to separate the
foreground and background emission.

Secondly, the method underestimates the emissivity be-
hind Hi1 regions when some flux density is resolved out by
an interferometric observation, especially when the all-sky
“zero-spacing” component is omitted (see Fig. 1). The short-
est spacing of the MWA tiles is about 7 metres, correspond-
ing to an angular scale of about 30 degrees, indicating that
the MWA is sensitive to the whole sky emission with fluc-
tuations on scales smaller than 30 degrees. Structures on
larger angular scales are resolved out by the MWA. This
undetected emission has the effect that the derived emis-
sivities are under-estimated. The surface brightness of the
Galactic synchrotron emission increases towards lower fre-
quencies, making its contribution large at the ~100 MHz fre-
quencies relevant to the detection of HiI regions compared
to 408 MHz at which the Haslam map was obtained.

To improve this method, we have developed a procedure
that attempts to solve for both the optical depth of the Hil
regions and the brightness temperature of the emission as-
sociated with the missing interferometric spacings. We scale
the 408 MHz all-sky image to the frequency of interest by a
global brightness temperature spectral index (a: S, o« v?¥) to
estimate the total power along the line of sight and then use
it to deduce the brightness temperature on scales resolved
out by our interferometer. We use two data sets from the
GLEAM survey with each one containing three frequencies
(76.2, 83.8, 91.5 MHz; and 99.2, 106.9, 114.6 MHz ) to per-
form calculations and assume that synchrotron and optical
depths have a power law scaling with the frequency. More
details of this new method are described in what follows.

3.1 Definition of parameters

Fig. 1 shows a schematic of the absorption process, indi-
cating the variables needed to solve for the emissivity. As
usual, we assume the Galactic synchrotron emission is con-
fined to an axisymmetric cylinder with a radius of 20 kpc
and a height of several kpc. Note that this assumption is

MNRAS 000, 1-20 (2018)
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only for the definition of the emissivity in Section 3.2.1. We
can avoid making this assumption if we are only interested
in the brightness temperature instead of the emissivity.

The measured or known parameters are the measured
brightness temperature in the direction of the absorbed re-
gion T;, the measured brightness temperature from the Sun
to the Galactic edge in the absence of Hil region emission
Tm (i.e. as derived from a region near the line of sight to the
Hil region), the observation frequency v, the spectral index
of the synchrotron brightness temperature «, the spectral
index of the HiI region optical depth B, the total brightness
temperature (without missing flux density) from the Sun to
the Galactic edge in the absence of HII region absorption T,
and the electron temperature of the Hil region Te. « is taken
to be =2.7 = 0.1 for the Milky Way (Guzmén et al. 2011;
Zheng et al. 2017). Note that this spectral index varies be-
tween -2.1 and -2.7 depending on the sky regions (Guzmén
et al. 2011). We use a low spectral index of -2.7 for the syn-
chrotron emission in this work because the high spectral in-
dex is due to the thermal free-free absorption of both the Hir
regions and warm interstellar medium. g is taken to be -2.1
for frequencies v < 10! 7, (v is in GHz and T, is in K) and
T. < 9% 10° K derived on page 47 of Lang (1980), which is
always true for Hi1 regions at the GLEAM frequencies. Note
that B is a constant does not mean the Hil region must be
optically thick; it can be optically thin. The errors caused by
these two spectral indices are discussed in Section 4.3. T is
derived from the improved Haslam map (Remazeilles et al.
2015), scaled from 408 MHz to the GLEAM frequencies us-
ing the spectral index of e. T is from Balser et al. (2015);
Hou & Han (2014) and references therein.

The unknown variables are the optical depth of the Hir
region 7, the total (the sum of the measured and missed)
brightness temperature of the synchrotron emission from the
Hir region to the Galactic edge along the line of sight Ty,
and the corresponding brightness temperature of the syn-
chrotron emission from the HiI region to the Sun T, the
brightness temperature of the emission on the missing short
interferometric spacings respectively between an HII region
and the Sun X¢, and between the Galactic edge and the Sun
Xp.

The selection criteria of the absorbed region and its
nearby background region are the same as those in Su et al.
(2017a). We define these regions at the lowest frequency of
76.2 MHz and then apply them to all other five frequen-
cies to get the brightness temperatures within these regions.
Hit regions overlapped with supernova remnants are not se-
lected (e.g. Hil region G35.6—0.5 with distance measured by
Zhu et al. 2013). Note that our selected background regions
are about one degree away from the absorbed regions, the
supernova remnants in Green (2014) catalogue, and obvi-
ous point-like sources in the GLEAM survey. Therefore, the
contamination of these sources is negligible, although the
Haslam map has a low angular resolution of 51’.

3.2 Equations to solve for the optical depth and
brightness temperature

A single-dish observation can recover the total power along
the line of sight in the case that the HiI region fills the beam.
The brightness temperature is a result of the contributions
from three components: the electron temperature of the Hir
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region, and the brightness temperature of the synchrotron
emission behind and in front of the Hil region (Kassim 1987),

Ty = Te(l - e_T) + Tbe‘_T +Tt. (1)

An interferometer observation does not sample the large
angular scale structures corresponding to visibility measure-
ments at small u-v distances. Thus Equation 1 should be
revised by subtracting the missing term from the brightness
temperature both behind and in front of the HiI region,

Th = Te(l - e_T) + (Tb - Xb)e_T + Tf - Xf. (2)

Note that this equation does not require the u-v coverage to
be identical at different frequencies because we do not as-
sume the brightness temperature of the missing term follows
the same spectral index. We allow the value of the X terms
to float with frequency, as X depends on the angular scale at
which emission is being missed, which varies with frequency.

The total brightness temperature from the Sun to the
Galactic edge in the absence of HII region absorption is sim-
ply the sum of the brightness temperatures behind and in
front of the HII region,

TtZTf+Tb. (3)

The measured brightness temperature on the source-
free region (i.e. immediately adjacent to the HiI region) be-
comes the difference between the total brightness tempera-
ture and that of the brightness temperatures of the emission
associated with the missing interferometric u-v spacings,

Tm =T — Xf — Xp. (4)

As well as the above three relations, we have supplemen-
tary information that encodes the scaling of the brightness
temperature and the optical depth with frequency. The total
brightness temperature both behind and in front of the Hi1
region should follow a power law distribution,

Ty, o« v,
Tp o v, (5)
7o VP

We apply Equations (2)-(5) to our measurements at dif-
ferent frequencies to solve for the optical depth of HII regions

and the brightness temperatures behind and in front of each
Hir region. In summary, we have:

Ty, = Te(1 = ™) + (Ty, = Xp)e™ " + Ty, — Xy,

Tti = Tfi + Tbi’
Tmi = Tti - Xf, - Xbi’
vi\¥
T, =Ty (—| .
o (Vl) (6)

Vi @
Iy, =Ty V_l )

Viﬁ
Ti=T1 ; >

where the subscript i = (1,2, 3) indexes the frequencies from
low to high. A minimum of three frequencies is required to
solve for the unknown variables.

We derive the value of 7, Ty, Tt, X, Xf using Equation 6.

Using two sets of three frequencies data, we obtain emissiv-
ities at the six frequencies listed in Table 1. We use data at
76.2, 83.8, and 91.5 MHz to derive the emissivites at these
three frequencies. And then use another three frequencies of
99.2, 106.9, and 114.6 MHz to perform the same analysis. So
we derive the emissivities at six different frequencies. Table 1
lists the emissivities at 76.2 MHz only. We did not use other
combinations of data to derive emissivities. We can derive X},
and Xy using the Haslam map to estimate the total emission
along the line of sight. We then compare this total emission
with that measured. Therefore, our equations can find out
how much emission is undetected in our observations.

8.2.1 Definition of emissivity

The emissivity is defined to be the brightness temperature
divided by the corresponding distance, i.e.,

€ = T/ Dy,
& = Tt/ Dy,

(7)

where ¢, is the average emissivity between the HIIl region
and the Galactic edge, € is the average emissivity between
the HiI region and the Sun, Dy, is the distance from the Hir
region to the Galactic edge, and Dy is the distance from
the HII region to the Sun. The value of Dy is derived from
Anderson et al. (2014, 2017); Balser et al. (2015); Hou &
Han (2014). The value of Dy, is calculated from Dy assuming
a Galactocentric radius of 20 kpc.

4 RESULTS
4.1 Emissivities from simplified equations

We calculate the synchrotron emissivities behind Hii regions
using the 152 HII region absorption features detected in the
GLEAM survey using the previous simplified method (Col.
11 in Table 1). The last column in Table 1 shows the emis-
sivities derived from the simplified method described in Su
et al. (2017a). The measurements are made at six frequen-
cies from 76.2 to 114.6 MHz. The emissivities behind Hi1
regions at 76.2 MHz are plotted in Fig. 2. The derived emis-
sivities in the fourth Galactic quadrant are consistent with
our previous results in Su et al. (2017a,b). The emissivities
in the first quadrant are consistent with those in Nord et al.
(2006) within three standard deviations.

We check the spectral index of the emissivities at six
frequencies derived from each Hil region. The average index
is about -1.5, which is higher than the expected synchrotron
emission spectral index of -2.7 (see Fig. 3). The difference
between these observed two spectral indexes is most likely
caused by the missing flux density mentioned in Section 3.
To produce a flat spectrum with a spectral index of -1.5, the
brightness temperature of the emission on scales that are
resolved out should be frequency-dependent, with bright-
ness temperatures under-estimated at lower frequencies in
our observations, even though our lower frequencies recover
more of the extended emission than the high frequencies:
this demonstrates that we need to improve this simplified
method to derive more accurate emissivities.
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4.2 Emissivities derived from our new method

Using the improved method described in Section 3, we ob-
tained the synchrotron emissivities and Hil region optical
depths at six frequencies simultaneously (see Table 1). Fig. 4
shows the emissivities at 76.2 MHz and the paths over which
these emissivities are averaged. The electronic version of the
full tables with our derived emissivities at all six frequen-
cies is available from VizieR. Figs. 5 and 6 show our derived
emissivities at 76.2 MHz both behind and in front of Hir
regions using the improved method.

4.3 Error estimation

For the emissivities derived from simplified equations, we
propagate the error throughout the simple equations to es-
timate their errors. For our improved method, the equations
are too complex to permit directly calculating the uncer-
tainty of each solution caused by the variance of the known
parameters from the measurements. The sources of the error
include

e the error of the HII region electron temperature,

e the error of the distance from HII region to us,

e the rms of the brightness temperature for the absorbed
region in the GLEAM map,

e the rms of the brightness temperature for the back-
ground region in the GLEAM map,

e the rms of the brightness temperature for the back-
ground region in the Haslam map,

e the variation of the spectral indices of the synchrotron
brightness temperature and the HiI region optical depth.

We use a Monte Carlo method to statistically estimate the
error of these solutions caused by the first five error sources.
Specifically, we use the values of known parameters to cal-
culate the solutions and then sample around these parame-
ters. We set each input parameter to be a random number
following a Gaussian distribution with a mean from the best
input value and a standard derivation from our one-sigma
measurement error. Using these new input parameters, we
can find new solutions. By repeating the calculation, we
get a distribution of each solution and then calculate the
one-sigma upper and lower limits. The estimated errors are
about 10-90% of the emissivity values (see Table 1). Note
that we do not include the contribution of the spectral in-
dices of the synchrotron brightness temperature and the Hi1
region optical depth because finding the solutions becomes
computationally expensive with these two spectral indices
included. The spectral index of the brightness temperature
cause a difference of about 15% of the emissivity values, es-
timated from the variance of the Haslam map scaling, when
this spectral index changes from -2.7 to -2.6. Although this
causes extra error to the derived emissivities, it is still nec-
essary to use the Haslam map; otherwise, the derived emis-
sivities behind the HII regions will be under-estimated due
to the missing flux density, and the emissivities in front of
Hir regions cannot be calculated. The error contributed by
the spectral index of the Hil region optical depth is small
(< 1% of the emissivity) because the term e™7 in Equation 6
is small when the optical depth is much larger than one.
We check which input parameter dominates the errors
of the final emissivities. We set only one input parameter to
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be a random number while setting all other parameters to
be constants. Then, similarly to the above error estimation,
we calculate the one-sigma upper and lower limits of the
emissivities. The error contribution of each input parameter
is shown in Fig. 7. We find the rms of the brightness temper-
ature of the Haslam map contributes the most to the final
errors of the derived emissivities.

In the future, new maps using new data processing
techniques may be able to recover the total power along
the line of sight, which will avoid extrapolating the Halam
map from 408 MHz to the GLEAM frequencies. For ex-
ample, Eastwood et al. (2017) use a new widefield imaging
technique, named the Tikhonov-regularized m-mode analy-
sis imaging to map the northern sky with most of the large-
scale structures recovered. The lunar occultation technique
enables measuring the Galactic synchrotron emission inte-
grated along the line of sight where the Moon occults the
sky (e.g. Shaver et al. 1999; McKinley et al. 2013 and McKin-
ley et al. submitted). Future large single-dishes observing at
around 150 MHz will assist further.

5 DISCUSSION OF THE DERIVED
EMISSIVITIES

We compare the emissivities from the simplified method and
our improved method in Fig. 2 (left). The emissivities from
the old method are systematically lower than those from the
new method, which indicates the old method underestimates
the emissivities due to the missing flux density.

We compare the total and missing brightness temper-
atures behind the HII region in Fig. 2 (right). The unre-
covered brightness temperature behind HII regions (X}) is
about 50% of the total brightness temperature behind Hit
regions (Ty), indicating that about 50% of the large-scale
structure behind HII regions has not been recovered in our
observations. The brightness temperature in front of HII re-
gions that was not recovered (Xy) is comparable with the
total brightness temperature in front of Hil regions (7¢) in-
dicating that nearly all the large-scale structures in front
of HiI regions have not been recovered. Thus, the missing
structures must be considered in the emissivity calculation.
Note that the X, and Xy are comparable, while 7} is about
50% of Ty. It is reasonable that most of Ty are not detected
because an interferometer measures the difference along the
Hi11 region direction and its nearby direction, and also be-
cause most HII regions are nearby so that accumulated Tt is
small compared to Tj,. The emission from the Hil region to
us is nearly the same for both directions, therefore, is not
easily detected. However, Ty, is ‘different’ on the Hil region
direction and its nearby direction because most of the Ty, is
absorbed by the HII region on its direction, so the MWA
detects a portion of T,.

To confirm that the portion of missing detection is rea-
sonable, we compare the GLEAM map and the Haslam map
at the visibility plane. We use nine square regions with size
of 10°, 30°, and 60° centred at I = 0°, 20°, and 340°, b = 0°.
We use the GLEAM map at the frequency of 76.2 MHz. The
Haslam map is scaled from 408 MHz to the same frequency
of 76.2 MHz using a spectral index of -2.7. The GLEAM map
is smoothed to the same angular resolution of the Haslam
map (51 arcmin), and the two maps are made with the same
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pixel size. For each region, we convert the two images to
the visibility plane using Fast Fourier Transform (FFT) and
then plot the amplitude against u-v distance to compare the
difference between the two visibilities (see Fig. 8). The dif-
ference varies with the region size and location. On average,
about 60% of the amplitude in the visibility of the Haslam
map is not detected in the GLEAM survey. Our absorption
analysis shows that 50% of the large-scale structures are not
recovered for the emission behind HII regions, and nearly all
emission from the column between the Hil region and the
Sun is not detected. These two results are generally consis-
tent.

The most apparent feature in the derived emissivities is
that they increase towards the Galactic centre. Both the
emissivity and the brightness temperature peak near the
Galactic centre and decrease as the line-of-sight goes far
away from the Galactic centre (Fig. 2). To further confirm
this trend, we check the average emissivity measured in the
GLEAM map from the Sun to the Galactic edge (Fig. 9). It
is evident that the emissivity along the path from the Sun
to the Galactic edge peaks at the Galactic centre direction.
This trend indicates the emissivity decreases with Galac-
tocentric radius, which is modelled in Su et al. (2017a,b).
This is consistent with the lowest order of disk component
of the Galactic magnetic field, which is usually assumed to
be exponentially distributed in the previous models (e.g.
Beuermann et al. 1985; Sun et al. 2008). Face-on galaxies
with spiral arms directly observed also show a similar profile
as the one in Fig. 9, e.g. the LOw Frequency ARray (LO-
FAR; van Haarlem et al. 2013) observation of the Whirlpool
Galaxy (also known as M51) at the frequency of 150 MHz
(see Fig. 13 in Mulcahy et al. 2014).

The average emissivities along the paths near the line of
sight to the Sun are much higher than those far away from
the Sun, though they have large errors. Several reasons can
explain this effect. Firstly, the emissivity near the Galactic
edge is much lower than that near the Galactic centre, which
makes our average emissivities along the path high near the
Galactic centre and low near the Galactic edge. Secondly,
it may simply indicate that all distances from the HiI re-
gion to the Galactic edge along the line of sight are over-
estimated, which makes the emissivities behind HII regions
decrease fractionally with distance. Thirdly, it may indicate
the region near the Sun is not a representative region of
the whole Milky Way because previous studies show that
we are in a local bubble created by two or three supernovae
(Mafz-Apelldniz 2001), which may increase the density of
cosmic-ray electrons within several kpc of the Sun.

No obvious spiral arm structures can be visually seen
from our observed emissivities because the emissivity is av-
eraged along different path lengths. Further modelling work
in the future will help to reveal that whether the emissiv-
ity distribution is correlated with the spiral arms or not,
because this information is embedded in our derived emis-
sivities. From an observational aspect, we can see the spi-
ral arms as peaks in emissivity and brightness temperature
along the total paths from the Sun to the Galactic edge as a
function of Galactic longitude (see Fig. 6 in Su et al. 2017a
and Fig. 1 in Beuermann et al. 1985).

We estimate the number density of relativistic electrons
in the Galactic disk to confirm that our derived emissivities
are consistent with existing electron models. Specifically, we

get the relativistic electron density by using the total power
of the synchrotron emission in the Galactic disk divided by
the total power of one relativistic electron and then divided
by the volume of the Galactic disk. In the above calcula-
tions, we use an average Galactic magnetic field strength of
5 = 1 uG (Sun et al. 2008) and an average emissivity of
1+ 0.5 K pc! at 76.2 MHz where 1 K pc™! is equal to
5.75 x 100" W m™ Hz7! sr™!. We use a typical energy
of relativistic electrons of 10 £ 1 GeV (Stephens 2001), a
radius of the Galactic disk of 20 kpc (Nord et al. 2006),
and scale height of the Galactic disk of 1 kpc. We inte-
grate the power of synchrotron emission in the frequency
range 10 MHz to 1000 GHz. We derive a number density
of relativistic electrons of 168 + 108 cm™. The relativis-
tic electrons follow a power law distribution with energy,
n.(E) = k E73152 (Adriani et al. 2017). Using this distribu-
tion, we derive the average density of 10 GeV electrons to
be (5.6 + 3.6) x 107 cm™>, which is similar to the value of
(4 + 3) x 107 cm™3 from the literature (see Fig. 4 in Jans-
son & Farrar 2012, cited from GALPROP in Strong et al.
2010). Note that the estimated electron density has large
errors due to the above typical values adopted. To further
investigate the electron distribution, future work should use
comprehensive Galactic magnetic field models (Han et al.
2006; Brown et al. 2007; Sun et al. 2008; Sun & Reich 2010;
Van Eck et al. 2011).

6 SUMMARY

We develop a new method of emissivity calculation by im-
proving upon the previous simplified method. Using this new
method, we calculate the synchrotron emissivities both be-
hind and in front of 152 HII regions at six frequencies of 76.2,
83.8, 91.5, 99.2, 106.9, and 114.6 MHz. This new method en-
ables us to derive the HiI region optical depth and estimate
the amount of flux density missing from our observations
at each frequency. We find that the emissivities increase to-
wards the Galactic centre. This lowest order of emissivity
variation is consistent with the current Galactic magnetic
field and relativistic electron distributions because both the
magnetic field strength and the relativistic electron density
increase towards the Galactic centre. The high emissivities
nearby the Sun (if actually real) might be caused by the
local bubble.

The number of line-of-sight measurements will increase
in the MWA phase II stage (Wayth et al., in prep.) because
both the number of antenna and the maximum baselines are
increased, and in the future, we will have better knowledge
of the distance and electron temperature of HiI regions. The
lack of Hil regions with larger distances is a key factor hold-
ing back the modelling at present because most HII regions
are located near the Sun with distances less than several
kpc. Future total power surveys at similar frequencies can
improve the accuracy of the emissivity measurements. The
derived emissivities may help to recover the 3-D distribu-
tion of synchrotron emission in the Milky Way. Furthermore,
they provide direct information on the spatial distribution
of the Galactic magnetic field and the relativistic electrons
for the future modelling.

MNRAS 000, 1-20 (2018)



Simplified method:
1) assume optical depth >> 1
2) only applicable when no flux density missed
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Figure 1. A schematic of how the missing flux density affects
the derived emissivities in the simplified method (top) and in the
improved method (bottom).
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Figure 2. The effect of missing short interferometric spacings on the derived emissivities at 76.2 MHz. Left: Emissivities behind Hix
regions from the simplified and improved methods. Right: the brightness temperature from HiI regions to the Galactic edge and the
brightness temperature of its missing term.
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Figure 3. The spectral index distribution of the derived emissiv-
ity from the simplified method and improved method. The spec-
tral index is calculated from the emissivity (behind the HiI region)
at the frequency from 76.2 to 99.2 MHz, from 83.8 to 106.9 MHz,
and from 91.5 to 114.6 MHz. The bin width is 0.3. Most of the
spectral indices from the simplified method are far away from the
expected value of -2.7 shown by the black vertical line, indicating
the missing flux density is affecting the simplified method. How-
ever, the emissivity from the improved method gives a spectral
index close to -2.7. Note that emissivity is defined by the bright-
ness temperature divided by a distance. For each HII regions, its
distance is a constant, so the emissivity behind that HiI region
and the corresponding brightness temperature should follow the
same spectral index of -2.7.
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Emissivity (K pc™ 1)

Figure 4. Our new derived emissivities at 76.2 MHz both behind and in front of HiI regions. Each line indicates a path over which the
emissivity is averaged with a white dot on it indicating the location of the HiI region. The background image is an artist’s concept with
the up-to-date information about the structures of the Milky Way. We adjusted its colour to avoid obscuring the colour of emissivities.
Background image credit: NASA / JPL-Caltech / R. Hurt (SSC-Caltech) with this link: https://www.nasa.gov/jpl/charting-the-milky-
way-from-the-inside-out.
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Figure 5. Correctly-calculated emissivities derived from our new method from HiI regions to the Galactic edge (left) and from Hi

regions to the Sun (right) along the line of sight.
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Figure 6. Emissivity distribution as a function of Galactic longitude (left) and Galactic latitude (right) at 76.2 MHz. For the distribution
with Galactic latitude, we only plot the emissivities derived from HII regions in the latitude range from -1 to 1 degree.
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Figure 7. The contribution of different input parameters to the
error of the emissivities at 76.2 MHz from HII regions to the Sun.
The total error of the emissivity is from different input parame-
ters which are the rms of the absorbed region (HII), the rms of
the nearby region (Background), the error of the electron tem-
perature (Tg), the rms of the background region in the Haslam
map (Haslam), and the error of the distance from HII region to
us (Distance). Each error here is an average of all the 152 absorp-
tion measurements. “front” on the y-axis means the emissivities
are averaged along the path from HII region to the Sun (in front
of HiI region). The error from the rms of the Haslam map con-
tributes the most to the final error of the derived emissivities. The
horizontal line indicates the average uncertainties of all the de-
rived emissivities between the HII region and the Sun. Note that
the error involved in scaling the Haslam map to our frequencies
is not included here.
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Figure 8. Comparison of the visibility of the GLEAM and
Haslam maps in the square region centring at [ = 340°, b = 0°
with a box size of 10°. The unit of the u-v distance is A rather
than kA, because of the long wavelength of about 4 meters. The
visibility data is binned (2000 bins) to show the differences clearly.
The x-axis on top of the plot shows the angular size correspond-
ing to the u-v distance. The y-axis has an arbitrary unit, but
this does not affect our comparison because they should use the
same factor to make it has a physical unit. The y-axis is in log
scale, so the amplitude with u-v distance close to zero dominate
the total difference of the two amplitudes. The minimum u-v dis-
tance of the GLEAM map is small (about 0.52, corresponding to
an angular scale of about 30°). The u-v distance between the two
vertical lines is included in the Haslam map but is not included in
the GLEAM map because of the shortest baseline of 7.7 metres.
The maximum u-v distance is the same for both maps because we
smoothed them to the same resolution. The integrated amplitude
with the u-v distance of the GLEAM map is 40% lower than that
of the Haslam map in this region. This percentage varies with
regions on the Galactic plane. The average percentage of all the
nine regions we checked is about 60%.
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Figure 9. Distribution of the measured average emissivity in the
GLEAM survey along the path from the Sun to the Galactic edge
with Galactic longitude from 50° to —50° and latitude |b| < 3°.
All detected sources and diffuse emission are included in this plot.
The bin size in Galactic longitude is 485 and in Galactic latitude
is —=3° < b < 3°. The Galactic centre direction has higher average
emissivity compared with other directions. The existence of spiral
arms possibly causes other low peaks. Note that these emissivities
are directly from the GLEAM map without any correction using
the Haslam map.
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Galactic synchrotron distribution
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