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Heat transfer from nanoparticles for targeted destruction of infectious 

organisms 

Whereas the application of optically- or magnetically-heated nanoparticles to 

destroy tumors is now well-established, the extension of this concept to target 

pathogens has barely begun. Here we examine the challenge of targeting 

pathogens by this means and, in particular, explore the issues of power density 

and heat transfer. Depending on the rate of heating, either hyperthermia or 

thermoablation may occur. This division of the field is fundamental and implies 

very different sources of excitation and heat transfer for the two modes, and 

different strategies for their clinical application. Heating by isolated nanoparticles 

and by agglomerates of nanoparticles is compared: hyperthermia is much more 

readily achieved with agglomerates and for large target volumes, a factor which 

favors magnetic excitation and moderate power densities. In contrast, destruction 

of planktonic pathogens is best achieved by localized thermoablation and very 

high power density, a scenario that is best delivered by pulsed optical excitation.  

Keywords: hyperthermia; photothermolysis; plasmonic heating; magnetic 

heating; thermoablation 

 

Introduction 

The use of an elevated temperature to destroy pathogens has been on a firm scientific 

footing since the pioneering work of Louis Pasteur in the mid-Nineteenth Century. 

However, the industrial process of pasteurization sterilizes almost everything 

– pathogen or not – in the material that it is applied to. It is only comparatively recently 

that strategies for selectively applying heat to a specific target cell or organism have 

been identified. If this can be done efficiently, then destruction would be localized at the 

position of a target cell or pathogenic organism and collateral damage to the patient’s 

healthy cells would be minimized. Although several strategies have been considered, 

the idea of targeting a micro- or nanoparticle to the infectious organism, followed by 
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coupling of an external energy source with the particle, is probably receiving the most 

attention. Essentially the external source of energy can be light or other electromagnetic 

radiation, an oscillating magnetic field, ultrasound, or an electric field or current. 

Depending on the rate and the intensity of the heating, there are two basic outcomes: 

hyperthermia (increase in local temperature of a few tens of degrees Celsius) and 

thermoablation. The latter may also involve thermolysis: fragmentation or 

decomposition of the nanoparticle due to it reaching an extremely high temperature. Of 

course, if a particle is used then it must be non-toxic, and it should somehow be 

invisible to the patient’s immune system. There are significant challenges in the field [1, 

2, 3, 4, 5] but the first clinical use of magnetic hyperthermia has begun [6, 7]. 

Here we will consider a narrow aspect of the topic: the coupling of the external 

energy source to the nanoparticles, and the subsequent transfer of heat from them to 

target organisms. The question that we address is how best to achieve the destruction of 

pathogens, especially planktonic pathogens, using currently available sources of 

excitation. Nanoparticles are usually defined as particles in the 1 to 100 nm size range 

[8]. They are attractive for targeted hyperthermia because they have an ability to 

penetrate deeply into tissue or organisms. Although heat can also be generated by so-

called fine particles (which are in the 100 nm to 2500 nm range [8]), we confine our 

analysis in the present paper to nanoparticles due to their more penetrating nature and 

the readiness with which they can be chemically functionalized. We do not address the 

methods by which the nanoparticles can be targeted to the pathogen as this topic has 

been extensively covered elsewhere. Suffice it to say that there is a variety of active 

(e.g. antibody functionalization) or passive (e.g. extravasation) targeting schemes that 

are receiving attention [9] and, for tumors, direct injection is also a possible strategy [1, 

2]. However active targeting would be the best method to use against a mobile 
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infectious organism. We note that most of the nanoparticle/ hyperthermia literature 

relates to the potential treatment of cancer whereas reports of targeting infectious 

pathogens this way [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] are relatively 

scarce. Nevertheless, the physical principles involved in the hyperthermal treatment of 

either are the same, so the cancer work remains broadly relevant within the framework 

of the present paper. The main differences are that, in the case of pathogens,  there are 

fewer options for targeting and destruction may require a higher temperature than for 

cancerous cells [11, 12, 17], thus, as we show here, the optimal power densities required 

are orders of magnitude greater. Targeting infectious pathogens is, therefore, a 

comparatively challenging endeavor. 

The following sections begin by reviewing mechanisms for energy capture by 

nanoparticles. We show that light and alternating magnetic fields offer different but 

complementary opportunities. Next, the heat transfer into surrounding tissue is analyzed 

and compared for isolated nanoparticles and agglomerates. It is found that extremely 

high power densities are required to raise isolated nanoparticles to useful temperatures. 

Special attention is given to the prospect of using gold nanoparticles for hyperthermia 

via optical excitation. This is due to the special optical properties and chemical nobility 

of these particles. Finally, merits of optical and magnetic excitation to target pathogens 

are compared and it is demonstrated that, whereas large tumors can be readily targeted 

using either light or magnetic fields, planktonic pathogens can only be targeted using 

light due to the very high power input required. 

Energy capture by nanoparticles 

Two methods of generating heat in nanoparticles are receiving the bulk of current 

interest. These are optical excitation and magnetic excitation. The principle behind each 
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type of excitation will be briefly explained and their use in therapeutic contexts 

summarized. In addition, it has been reported that heat can also be generated in gold 

nanoparticles and carbon  nanotubes by application of shortwave radiofrequencies [2] or 

in gold nanoparticles by radiofrequency magnetic induction [24] whilst magnetically-

induced mechanical oscillations in suitable particles can also disrupt target cells [25]. 

Discussion of these other possibilities, however, lies outside of the scope of the present 

paper.  

Optical excitation 

Principles 

When a photon of light strikes a nanoparticle (or indeed any substance), it may be 

absorbed, transmitted or scattered. Energy must be conserved so that the total energy of 

the incoming light equals the sum of the energies of the transmitted, absorbed or 

scattered light. It is the absorbed light that is converted to heat and hence of interest 

here. For exploitation of this principle in hyperthermal medicine, the ideal nanoparticle 

should possess strong absorption at a suitable position in the electromagnetic spectrum, 

and it should, of course, be biocompatible. Given these constraints, gold nanoparticles 

are widely believed to be the best candidate for hyperthermia by optical excitation.   

Spherical gold nanoparticles undergo an electromagnetic resonance with light 

which produces a strong absorption peak due to a localized surface plasmon resonance 

(LSPR). This is at about 520 nm (green light) which corresponds to the middle of the 

visible range. A relatively low power laser with emission matched to this peak could be 

a suitable source of energy. Unfortunately, the human body is not particularly 

transparent to green light so any clinical exploitation of isolated spherical gold 

nanoparticles is restricted to very shallow depths into tissue.  
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The optimum range of wavelengths for clinical exploitation of optically-excited 

heating is 670 to 890 nm, the so-called ‘tissue window’ or ‘NIR window’ [26] but, 

unfortunately, isolated spherical gold nanoparticles have a negligible optical absorption 

cross-section over these wavelengths. There are two solutions to this problem. The first 

is to make use of specialized gold nanoparticles that have shapes with LSPRs that do 

fall within the tissue window. Gold nanoshells [27] and gold nanorods [28] are probably 

the best-known examples of these. The relative merits of these two shapes have been 

explored elsewhere [29, 30]. Other specialized shapes that are also capable of 

undergoing LSPRs in the tissue window include gold nanocubes, triangles, so-called 

nano-stars, and similar geometries of lower symmetry. In all cases, the wavelength at 

which the LSPR occurs can be adjusted by modification of the geometry of the particle. 

An alternative strategy, but less common, is to use gold nanospheres, but to exploit the 

red-shifting of their LSPR that occurs when they form closely-packed agglomerates or 

aggregates [14]. (It is recommended that the term ‘agglomerate’ be used for clusters of 

nanoparticles that are weakly and reversibly bound by van der Waals or similar 

secondary bonds, and ‘aggregate’ be used for clusters of nanoparticles that are 

irreversibly bound together by primary chemical or metallurgical bonds [8].) Either way 

(whether lower symmetry particle or agglomeration of spheres) significant optical 

absorption can be developed at wavelengths that are within the tissue window. The 

LSPR peak associated with such agglomerated entities is broad but this is not a problem 

in the context of a hyperthermal therapy delivered with a monochromatic light source.  

Applications in hyperthermia 

Gold nanoshells have received considerable attention in this regard and clinical trials for 

head and neck tumors, prostate tumors, lung tumors, breast cancer, oropharyngeal 
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malignancies and acne have been mooted or initiated [2, 31, 32, 33, 34, 35]. However, 

there have been relatively few recent scientific reports so far on the outcomes of these 

trials. Preclinical studies involving nanorods are also frequently reported in the 

scientific literature, again usually with some cancer as the target, for example refs. [36, 

37]. As mentioned above, application of these principles to target infectious organisms 

is far rarer, but, for example, successful in vitro trials of the efficacy of gold 

nanospheres and nanorods  against the tachyzoite phase of the protozoan Toxoplasmosis 

gondii [11, 14] or of gold nanospheres against the bacterium Staphylococcus aureus 

[10] have been reported. 

Biocompatibility 

Gold is the most commonly used material for these types of applications, due to its 

biocompatibility [32] and good optical properties. In contrast, while silver actually has 

significantly better optical properties for these types of plasmonic applications, 

especially in the visible part of the spectrum, it is susceptible to corrosion. The 

difference in the optical properties of gold and silver reduces as the excitation 

wavelength lengthens into the tissue window and the near-infrared [38], a factor which 

also favors the use of gold.  

In conclusion, it is evident that gold offers a suitable combination of chemical 

and optical properties for light-induced hyperthermia. 

Magnetic excitation 

Principle 

Heat may be generated by applying an oscillating magnetic field to either ferromagnetic 

or superparamagnetic nanoparticles, however there are many advantages to using the 
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latter [39]. Like gold nanoparticles, the magnetic nanoparticles can be small and 

penetrating, can be chemically functionalized, and can be modified by control of their 

geometry. In addition, superparamagnetic nanoparticles also have the property that they 

can in principle be guided and heated by an external magnetic field, but that their net 

magnetic moment vanishes when the field is turned off, which is advantageous.  

Superparamagnetism is a phenomenon that only occurs for small particles which 

possess locally ordered spin structure but have a low volume to give the distinctive 

magnetic properties illustrated in Figure 1, notably a strongly frequency-dependent 

magnetic response concurrent with the absence of permanent static magnetization. The 

low volume of a nanoparticle means that the energy barrier separating each of the 

degenerate magnetic states is small compared to the thermal energy provided by heat. 

Thus in the absence of an external field, the nanomagnet undergoes Néel relaxation via 

continuously flip-flopping between the two states with a characteristic relaxation time 

given by [40]:  

�� = ��. ��� �
∆�

���
�                                        (1) 

The magnetic relaxation time is determined by the size of the energy barrier 

∆�~��that is proportional to the volume of the nanoparticle (V) and the intrinsic 

crystalline anisotropy of the magnetic crystal lattice (K). For nanoparticles suspended in 

fluid, Brownian motion of the surrounding fluid introduces additional reorientation 

pathways, introducing a second form of relaxation: 

�� =
���

���
                                   (2) 

, involving biological factors, including the dynamic viscosity of the fluid � and the 

effective hydrodynamic diameter of the nanoparticle after opsonization (V) [41]. 

According to the equation from Shliomis [42], the total relaxation time is: 

� =  
����

�����
             (3) 
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At sufficiently high temperature (above the ‘blocking temperature’), the relaxation 

between the states is so frequent that on average no magnetization appears in a 

thermalized particle ensemble. It conveniently turns out that many nanosized materials 

remain in the superparamagnetic state even at room temperature. This unique feature of 

superparamagnetism accounts for the coexistence of high magnetization with the 

absence of remnant (permanent net magnetization) because the system undergoes a 

time-dependent relaxation towards zero average magnetization after the external field is 

removed. The low mass/high magnetization allows small concentrations of 

nanoparticles to yield appreciable effects in the body. The absence of permanent 

magnetism is an advantage because otherwise magnetized particles tend to interact and 

agglomerate even in the absence of a field due to dipolar interactions, limiting their 

blood half-life and biomedical applications.   

In the presence of an alternating field, magnetic nanoparticles will attempt to 

align their magnetic moment with the applied field. Associated with this magnetic 

reversal, there is an energy cost with irreversibilities leading to power dissipation in the 

form of heat. For hyperthermia, it is important that the magnetic material contains some 

degree of hysteresis in order to generate heat losses to the AC field. The increase in 

internal energy  is [41, 43]: 

∆� = −�� ∮ �(�)��       (2) 

per cycle, where H is the magnetic field intensity, M(t) is the dynamic magnetization, 

and the integral is performed over a single cycle of the field. Power dissipation at a 

frequency f is given by 

� = �. ∆� = ��� ∮ �(�)��      (3) 
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The integrated term is proportional to the area enclosed by the  M vs H 

hysteresis curve [40]. For a superparamagnet, this can be related to the out-of-phase 

dynamic susceptibility and is strongly dependent on the AC frequency because the 

integral involving M(t) is frequency dependent as it involves the superparamagnetic 

relaxation processes. 

Applications in hyperthermia 

Hypothermia or pasteurization using magnetic particles has a long history: the concept 

was mentioned in  a paper by Goldenberg and Tranter in 1952 [44]and tested on tumors 

in dogs by Gilchrist in 1957 [1]. Renewed interest appeared from the 1980s with 

numerous groups investigating smaller particles coated for increased biocompatibility. 

Superparamagnetic iron oxides, Fe3O4 and -Fe2O3, remain the material of choice. 

Many preclinical studies have shown that positive temperature differences can be 

induced between tumors and normal tissue, however, there are also reports claiming that 

useful results can be obtained even if a positive temperature difference cannot be 

measured, so-called “cold hyperthermia” [5, 45, 46]. This implies a more localized 

mechanism of action than whole-tumor hyperthermia in these cases.  

Despite the widespread preclinical interest, relatively few clinical trials have 

been reported, so far.  The examples known to the authors include investigations of the 

use of magnetic particles against glioblastoma multiforme, and prostate and pancreatic 

cancer [5, 47]. Some commercial clinical exploitation has recently begun in the 

European Union [6]. 

Biocompatibility 

Currently only the iron oxides are approved for human usage because of their known 



11 
 

metabolic pathways. There would be numerous advantages to using more typical 

ferromagnetic metals such as nickel, cobalt and Ni80Fe20 since these materials tend to 

have higher magnetization. On the other hand, such materials are carcinogenic or toxic, 

and would need to be insulated from the body by the use of a surface coating of gold or 

a polymer. While such approaches are certainly feasible, there is no horizon for the 

approval of such materials in clinical trials.  

 

Methods for analyzing local heating from a nanoparticle 

There have been a number or prior studies in which the heat transfer from particles or 

nanoparticles has been examined (see, for example, refs. [41, 48, 49, 50, 51, 52, 53, 54, 

55, 56, 57, 58]. There are, however, many important differences between the 

assumptions made in these studies and in the scenarios in which clinicians might wish 

to apply hyperthermia or thermoablation. In the present paper we focus on answering 

the question of how best to deliver a useful degree of hyperthermia or thermoablation to 

a pathogen.  

In general, the transfer of energy from the heated zone to the surrounding 

medium may be handled in two ways, either by assuming transfer by conduction or by 

convection. In the case of photothermolysis, radiative heat transfer could also be 

considered due to the very high temperatures reached by the particle. Somewhat 

different analytical forms result, with the assumption of the conduction case generally 

providing the faster rate of heat transfer since there is no boundary layer to retard heat 

flow [59]. 

The temperature of a nanoparticle and the flow of heat outwards into the 

surrounding fluid or other thermally conductive medium can be modelled using the 
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analytical expression of Goldenberg and Tranter [44], which, interestingly, was derived 

in 1952 to support early studies into radiofrequency-assisted pasteurization and 

sterilization, or it can be modelled by more tractable expressions due to Pustovalov [51]. 

The latter predict a slightly more rapid rate of heating within the nanoparticle than does 

the former due to slightly different assumptions having been made in its derivation, 

however outside of the heated sphere, the temperature distribution of the two solutions 

is effectively identical. In both cases, the models consider certain biological factors such 

as the thermal conductivity of the surrounding tissue, bones or fat. On the other hand, 

certain factors such as vascularization and multiple diffuse interfaces are simplified or 

ignored, so at best the models provide an upper limit on the heating. It is convenient to 

use the G&T equations when energy input is expressed in W/m3 and the Pustovalov 

ones when energy is expressed in W/m2 of flux. Both assume conductive heat transfer 

so are likely to slightly overestimate the cooling rate. In addition, the analytical solution 

for transient convective heat transfer from a sphere [60] will be used here to estimate 

cooling after the excitation is terminated. 

In the case of optical excitation, the power captured by an isolated nanoparticle 

that is undergoing a localized plasmon resonance is 

    
 2

1

.




 dECQ abs         (4) 

where 


Q  is the heat transfer rate (watts), Cabs() the wavelength-dependent absorption 

cross-section, E() is the spectral irradiance of the light source (W.m-2.nm-1), and 1 and 

2 (nm) are the limiting wavelengths of light over which the light source operates [54]. 

Cabs() is readily available for arbitrary shapes by calculation [61]. For illustrative 

purposes, a gold nanoparticle of 30 nm diameter will generate 1.410-9 W when 

irradiated with a 100 mW laser of 0.5 mm diameter under conditions where Qabs = 4. 
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Modelling the heat capture from the intrinsic magnetic properties of materials, 

by contrast, is more difficult because of the frequency-dependent susceptibility, and lies 

outside of the scope of the present paper. Generally, a measured value may be used for 

first-order estimates; for example data provided in a recent publication [45] may be used 

to provide an estimate of 5 10-13 W per oxide nanoparticle of 66 nm diameter when it 

is excited in  a typically applied magnetic field of 10 kA/m at about 900 kHz. 

Finally, a note on the units for power. The excitation power can be expressed in 

W/m2 if the particle is considered to lie in an excitation field and have a capture cross-

section (in physical units of area) with dimensionless efficiency . The captured power 

may also be parameterized as W/m3 relative to the active volume that is undergoing 

excitation. These parameters can be converted into one another by appropriate 

manipulation. The fluence delivered is obtained by multiplying the power by the time it 

is applied, and can similarly be presented per unit area or per unit volume, whichever is 

the more convenient. 

Heat transfer to the surrounding tissues: localized pasteurization versus 

thermoablation  

For the purposes of targeting and destroying pathogens via nanoparticle heating, it does 

not matter whether the energy was initially supplied by optical or magnetic excitation, 

the end result will be the same provided that the tissue surrounding the target is 

transparent to the laser wavelength used. In both cases the objective is usually to raise 

the temperature of the target cell or organism to a level at which apoptosis or direct 

necrosis occurs while avoiding damage to the surrounding tissue. Temperatures 

upwards of about 42 °C are required, and of course higher temperatures are better [2].  

It is, however, useful to draw a distinction between two rather different modes of action: 

local pasteurization and thermoablation. In the temperature range 43 to 50°C range, 
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apoptosis is the likely outcome, but extensive protein denaturing and necrosis will result 

as temperatures rise towards the boiling point of water.  We will group both of these 

phenomena together here as ‘localized pasteurization’. In contrast, in an alternative 

strategy, the temperature of the nanoparticle is raised so high (>2000°C) that it 

fragments and generates a steam shockwave, thereby perforating a nearby cell 

membrane or cell wall by mechanical means [10, 62, 63]. This latter mechanism has 

been termed ‘photothermolysis’ [64] if generated by light.  Thermolysis can only be 

achieved by a rate of heating that is so fast that the nanoparticle can effectively be 

treated as an adiabatic system. Since (as we will see later) heat transfer from particle to 

environment takes place on a time scale of a few nanoseconds, exploitation of 

photothermolysis requires that the fluence is delivered in even shorter pulses. 

The isolated particle scenario is not particularly effective for local pasteurization 

as heat transfer out from such a particle is exceedingly rapid which hinders a high local 

temperature from being achieved [49, 58]. In fact, it is usually much better to deploy a 

multiplicity of particles to the vicinity of the target cell or organism in order to deliver a 

lethal dose of thermal energy [52], however the optical properties of agglomerates are 

quite different from those of individual isolated particles. Therefore, we will divide the 

discussion below into two threads, corresponding to heating from isolated nanoparticles 

and from agglomerated clusters of nanoparticles. 

Heat generation by isolated nanoparticles 

Our analysis does not depend on the source of the applied thermal energy (optical, 

magnetic etc.) but for simplicity we will use the language appropriate to the case of 

optical excitation in the discussion that follows. 
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 In broad summary, the local region over which the elevated temperature is 

obtained is very limited in the case of individual small, spherical heat sources. Some 

illustrative results of calculations for nanoparticles immersed in water are shown in 

Figure 2. In Figure 2(a) we show an illustrative calculation for a medium power pulsed 

excitation (1109 W/m2). It should be noted that the volume of surrounding medium 

that is heated into the hyperthermia range is very small, only 3.110-5 m3 if the 

threshold temperature is set at 50°C. Isolated particles will be ineffective in this 

scenario. In contrast, in Figure 2(b) we show the temperature distribution that can be 

reached when the nanoparticle is excited at a relatively high power, chosen here as 

1.61011 W/m2 so that the boiling point of gold is attained.  There is still a very steep 

fall in temperature with distance from the nanoparticle, but the volume of surrounding 

medium that is heated to at least 50°C is much larger, at 128 m3. Naturally, this is an 

example of the thermolysis mode so there will additionally be mechanical damage to 

nearby cells due to shock and/or physical perforation by gold fragments.  

The rate and duration of heating is a very important factor. Consider the case for 

a plasmonically-heated nanoparticle. When a single photon of the resonant frequency is 

absorbed by the nanoparticle, it generates a distribution of hot electrons in about 5 fs 

(510-15 seconds). The hot electrons couple to the lattice and relax to generate or 

amplify lattice phonons over the next ~5 ps (5 10-12 s). In effect, phonon vibrations are 

the main manifestation of the kinetic energy that determines the “temperature” of the 

nanoparticle from the perspective of heat transfer.  At this point the heating has been 

essentially adiabatic, i.e. little energy has been transferred yet to the medium 

surrounding the nanoparticle. Over the next 10 to 100 ps the heat flows out to the 

environment and after about 400 ps the nanoparticle temperature is the same as that of 

its adjacent medium. The only exception will be if the particle is struck by an intense 
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pulse of coherent photons (for example by a laser), in which case the initial temperature 

rise may be so high as to vaporize the nanoparticle and thereby cause a 

photothermolysis shockwave.  In contrast, if the intensity of the pulse is low then the 

small amount of heat delivered is rapidly transferred away into the surrounding medium 

with little effect. In this case prolonged illumination and/or a high density of 

nanoparticles is required to achieve localized pasteurization. 

Clearly, the only way that isolated nanoparticles can be effective in vivo is in 

thermolysis mode. The question then becomes: how many cell membranes or wall 

perforations are required to cause necrosis?  Pitsillides et al.[62] note that a cell’s 

natural repair processes will heal perforations over a time scale of a few minutes. The 

damage induced by the photothermolysis must accumulate faster than the rate of repair 

or else it will recover. In addition, different components of a cell (e.g. membrane, 

nucleus) will have different tolerance to damage. It is important to note that 

(photo)thermolysis mode can be effective at relatively low energy inputs (of the order of 

0.025 to 0.5 J/cm2 [10, 62, 63, 65]) provided that the laser pulse power is very high. 

This is because the effect is extremely local and the destructive process is achieved at 

the nanoscale before the energy is thermally dissipated into the surrounding medium 

[63]. In contrast, at least 1 J/cm2 is normally required [65]  for slower modes of heating. 

In general a safety threshold of 0.1 J/cm2 has been set for medical lasers [63], so clearly 

the lower fluences associated with photothermolysis are potentially advantageous. 

The FDA have imposed limits of ~3 W/kg on heating due to magnetic fields in 

MRI devices and there is also a view that the product of frequency and alternating 

magnetic field amplitude should be less than somewhere between 0.5109 and 5109  

A-turns/(m.s) in order to prevent stimulation of nerves or undesirable eddy currents  [5, 

66]. In practice, however, only a few hundred W/g is available from magnetic 
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nanoparticles anyway using standard AC fields [58, 66] and so the power required to 

destroy a pathogen, small cluster of cells or even small tumors cannot be achieved [58]. 

In contrast, exploitation of optical excitation allows for greater heating power, for 

example as in ref. [62].  

As mentioned, one issue with spherical gold nanoparticles is that their plasmon 

resonance wavelength lies well outside of the tissue window range. The problem can be 

addressed by using a shape such as the nanoshell or the nanorod. The optical absorption 

cross-sections for nanospheres of 15 nm diameter (a typical size for particles produced 

by the citrate [67] route) and gold nano-dogbone of 45.6 nm length, 22.5 nm diameter at 

mid-section are shown in Figure 3. (This latter shape can be produced by the 

silver/CTAB route [68]). We use it here merely as an illustrative example of the many 

gold nano-shapes that can exhibit a localized plasmon resonance within the tissue 

window.) 

The thermal stability of isolated gold nanoparticles must also be considered. 

There will be a strong tendency for the gold shapes to coalesce into solid spheres under 

the action of the intrinsically high surface tension of gold, especially when heated by a 

laser of a resonant wavelength [69]. Change in shape, for example from a rod to a 

sphere, will cause the resonant wavelength of the gold particle to blue-shift, away from 

the tissue window and possibly away from the excitation wavelength(s) used. This is a 

thermally-activated process so that it will be exacerbated by higher temperatures and/or 

longer times. This places limits on the temperature and time-at-temperature that a gold 

nanorod, nanocage, nanoshell etc can be exposed to. Clearly, in individual particle 

mode, these special shapes would be best used in low-temperature hyperthermia mode 

(for which prolonged exposure is feasible) or in a once-off photothermolysis shot 

(which will destroy the shape of the nanoparticles). This limitation is less applicable to 
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solid gold spheres (since they are already in their most stable shape) although it should 

be noted that there will be some changes in the optical properties of gold due to lattice 

expansion and electron scattering as it heats up [70].  

Heat generation by agglomerates of nanoparticles 

The previous section highlighted the challenges of using isolated or dilute 

concentrations of nanoparticles for hyperthermia. On general grounds, many of these 

limitations can be overcome if agglomerates of many nanoparticles are used instead 

because local heating effects will, on balance, be increased. This is despite the fact that 

agglomeration induced by biological factors will decrease per particle heating efficiency 

due to changes in capture cross-section and, in the case of magnetic excitation, to 

changes in local viscosity [41].There is, however, no simple analytical solution for the 

heat transfer in this situation. The optical extinction cross-section of a specific 

arrangement of particles may be numerically calculated using the discrete dipole 

approximation mentioned previously but some simplifying assumptions are normally 

made for the heat transfer. The dimensionless optical extinction efficiency of an 

agglomerate is generally inferior to that of a single nanoparticle, but the key point is that 

the absorption cross-section in physical units is much larger. In addition, the peak 

extinction is red-shifted, possibly into the tissue window. For the case of gold 

nanospheres, this is a distinct advantage as it permits excitation at wavelengths at which 

they would otherwise be nearly transparent [14, 71, 72, 73, 74].  The situation is 

compared in Figure 4 for an isolated gold nanosphere and an agglomerate.  

It is clear that the formation of the agglomerate has created optical absorption 

within the tissue window. In addition, the optical or magnetic properties of 

agglomerates are not especially sensitive to how many particles are involved once some 
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threshold (about ten) has been exceeded so the actual configuration of the agglomerated 

particles is not very important. 

Of course agglomerates of magnetic nanoparticles can also be heated.  

Regardless of the source of excitation, an agglomeration of nanoparticles generates a 

volume of local heating, with each nanoparticle shedding heat into a warming volume. 

In practice, this strategy is attractive, as agglomerations of nanoparticles on or in a 

target organism or cell can be readily accomplished by some kind of chemical targeting 

or, in the case of macrophage targets, by the process of endocytosis [75]. Indeed, 

agglomeration of nanoparticles is the expected behavior in physiological fluids unless 

great care is taken to prevent it.  

The heat transfer problem for agglomerates can be solved, at least to a first-order 

approximation, by allowing all absorbed energy to heat the local spherical volume of 

water that just envelops the agglomerate, and then estimating the transfer of that heat 

outward to the surrounding medium which does not contain any nanoparticles. 

Examples of this approach may be found in the literature [50, 57, 76]. Here we will term 

the volume of material that contains the nanoparticles the active volume, to differentiate 

it from the surrounding medium which does not contain any source of heat. (The same 

equations used for an isolated spherical nanoparticle can be used for a spherical active 

volume but with internal heat generation assumed to be homogeneous. The power input 

must be rescaled according to the density of nanoparticles present and the thermal 

conductivity and diffusivity of the active volume can be approximated with the values 

for water or human tissue.)   

The active volume will begin to shed heat to the surrounding medium as soon as 

it starts to heat up. The temperatures that can be reached depend on the rate of heating 

within the active volume, on the magnitude of the heat transfer coefficient that moves 
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the heat out of the active volume into the surrounding medium, and, very pertinently, on 

the volume of the active region. Generally, however, it is assumed in the agglomerated 

particle scenario that the thermal payload needs to be delivered within the active volume 

or very close to it. In this paradigm the temperature outside of the active volume is of 

little importance provided that it is low enough to prevent collateral damage to the 

patient’s healthy tissues.  

An illustrative analysis for the case of laser heating is shown in Figure 5. An 

analogous analysis would apply in the case of heating by an agglomeration of magnetic 

particles within a fluctuating magnetic field. In either case, the active volume is heated 

by a continuous excitation (laser or magnetic field) of an intensity that will bring it to, 

for example, 80°C. The active volume is simultaneously being cooled by a combination 

of conduction and convection. Only energy deposited in the active volume is taken into 

account here so the actual energy flux applied may need to be larger than the values 

shown. In the following analysis both active volume and surrounding fluid are assumed 

to have the heat transfer properties of water. The equations of Pustovalov [51] have 

been used.  

Two clinical situations are considered: destruction of a labile pathogenic 

organism of about 10 m diameter to which an active volume  has been attached, and 

destruction of solid tumor of 10 mm diameter that has been infiltrated somehow with 

nanoparticles (for example by extravasation or direct injection) so that the entire tumor 

is actually the active volume. From Figure 5(a) it is clear that the tumor can be heated 

with relatively modest power input whereas an appreciably more intense excitation is 

required to maintain the temperature of the much smaller active volume attached to a 

pathogen. In the latter case, convective heat transfer out of the active volume is 

extremely rapid due to its greater ratio of surface area-to-volume, and this is why the 
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much higher power input is required to maintain the temperature. Note, however, that a 

significantly smaller dose of energy is delivered in the case of the ‘pathogen scenario’ 

owing to the smaller active volume. For example, if the two scenarios are compared at 

100 seconds, a single active volume in the pathogen scenario has delivered only 1.610-

2 J of thermal energy. Of course, there would be many pathogens and hence many active 

volumes in the putative anti-pathogen hyperthermia. The actual total thermal energy 

delivered would depend on the number of active volumes within the region of 

excitation. If, for example, the excitation volume contained 100,000 active volumes 

then the total energy delivered would be much larger (1620 J). By comparison, in the 

case of the tumor only 162 J would have been delivered.  The very high powers and 

energy inputs needed for the ‘pathogen’ or ‘isolated particle’ scenarios are the result of 

the very rapid heat transfer from nano- or micron-sized particle or active volumes. This 

is particularly evident if cooling following termination of the external excitation is 

considered, Figure 5(b). Here a heat transfer coefficient of 50 W/m2/K has been 

assumed (i.e. corresponding to natural convection in water). Even faster cooling would 

prevail if there were vascular fluid flow adjacent to the active volume [58]. 

Discussion: options for treating pathogens 

As shown here and by others [49, 58], hyperthermia of dispersed or planktonic 

pathogens using magnetic excitation of isolated nanoparticles would appear to be 

impractical as negligible heating would be generated, even by reasonably strong 

alternating fields. This is due to the way heat transfer rates scale with specific surface 

area, and to the limited amount of energy that can be input using an alternating 

magnetic field. Indeed, even pathogen-sized active volumes containing agglomerates of 

magnetic nanoparticles cannot be heated to temperatures high enough to kill pathogens 
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if they are planktonically dispersed.  

In contrast to the difficulty in targeting mobile pathogens using isolated 

particles, agglomerates of nanoparticles, or ‘active volumes’ containing a high density 

of nanoparticles provide a feasible strategy for pathogens due to the much greater 

heating power that is possible. The question is: how many nanoparticles are required per 

active volume at a given heating power?  It is convenient to use the analytical heat 

transfer solution provided by Goldenburg and Trantor [44] here as this is set up in terms 

of a volumetric power density. We use the typical thermal conductivity (0.48 W/m/K) 

and thermal diffusivity (1.310-7 m2/s) values for human tissue [77] for the medium and 

those of water for the active volume. We consider that heating is by gold nanospheres 

with a diameter of 30 nm and a Qext of 4. For illustrative purposes the results are 

provided for two different irradiation scenarios. These are (1) a lengthy, low power 

pulse that brings the active volume to a steady state temperature of 100 °C, which we 

designate as low-power/long-pulse (corresponding for example to a 100 mW CW laser 

focused to 0.5 mm diameter spot and 1.4410-9 W per nanoparticle) and (2) a high 

power, short pulse with a power that, if allowed to continue to steady state, would 

eventually heat the active volume to 500°C. However, in our scenario this excitation is 

only applied long enough to bring the active volume to 100°C and is then terminated. 

We designate this as high-power/short-pulse. (This is obtainable from a pulsed laser 

excitation of user controllable duration and power. Since, as we will show, the fluence 

is much reduced under this scenario, it is permissible to apply the excitation at a higher 

power. Here we imagine the use of a laser of 10 W power applied to a spot of 0.5 mm 

diameter so that we get 1.4410-7 W per nanoparticle). In both cases an active volume 

of the diameter indicated on the horizontal axis is considered, and the number of 
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nanoparticles per active volume that are required to reach 100°C under the two 

scenarios plotted.  

As is already well-known [49, 58], it is trivial to obtain the 100°C in a large 

volume similar to that of a tumor, but it is more difficult to reach 100°C for pathogen-

sized active volumes. Note also, that there is a geometric packing limit on how many 

individual nanoparticles can be closest-packed into an active volume. This constrains 

the power that can be produced for very small active volumes. For the conditions 

applied here, the high-power/short-pulse scenario is more attractive as it reaches 100°C 

in smaller active volumes and with fewer gold nanospheres than the alternative 

scenario, Figure 6(a). The fluence, or total thermal energy delivered, is the other factor 

to consider. This energy will be passed outwards to the surrounding tissue and should be 

strictly limited to prevent unnecessary collateral damage. If the active volume has a 

diameter of 1 m then it takes 0.2 s to bring it to 100 °C in the low-power/long-pulse 

scenario but only 1.410-7 s in the high-power/short-pulse scenario. There is 

correspondingly a much lower fluence in the latter case notwithstanding the higher 

power delivered. The fluences delivered in the two scenarios are compared in Figure 

6(b).   

 Thus far we have addressed only the two cases at opposite extremes of the 

hyperthermia spectrum, namely destroying macroscopic tumors or microscopic 

planktonic pathogens.  The key insight is that very high power density is required to 

destroy the latter. Of course, there are other scenarios. For example, pathogens may 

infect localized areas such a bone, the surfaces of implants, or wounds. In these 

instances it would be feasible to concentrate the nanoparticles at the site of infection 

and, importantly, heat transfer in these cases may be constrained in some directions. 

This latter factor would lower the power density required to cause successful targeting. 
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Indeed, viable magnetic field-induced hyperthermia has already been demonstrated in 

certain 2D configurations [78].  There is also the possibility of treating the pathogens ex 

situ. For example, the patient’s blood could be diverted to an external device in which 

the irradiation is performed. While a high power density of irradiation would still be 

required, in principle, it would be easier to control temperature in such a configuration. 

Another important point is that ex situ treatment can solve the problem of variable 

attenuation of the radiation source since the radiation path length can be kept short and 

consistent. Further research into this possibility therefore seems worthwhile. 

 

Conclusions 

It is clear that treating pathogens with nanoparticle-induced heating presents 

some unique challenges compared to the case of treating centimeter-sized solid tumors. 

The two most commonly discussed modes of excitation in this field are laser 

illumination of a plasmonically-resonant nanoparticle, or magnetic field excitation. The 

challenges are that some way must be devised to attach or assemble active volumes of 

nanoparticles on each pathogen, and that a rather higher excitation power must be used 

to maintain an effective temperature. The latter is due to the far higher ratio of surface 

area-to-volume of a pathogen compared to a centimeter-sized solid tumor. For example, 

whereas an absorbed energy of 2104 W/m2 is adequate to raise a 10 mm diameter 

tumor to 80°C,  a 1 m diameter pathogen requires 2108 W/m2 to achieve the same 

result. This latter figure is simply not available from magnetic excitation at present.  

The heat payload of a nanoparticle can be delivered in the limiting cases as 

localized pasteurization or as a thermolysis micro-explosion. While the payload can be 

delivered in principle by isolated nanoparticles using optical excitation, this would only 

be effective in thermolysis mode.  This is because in this case heating is practically 
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adiabatic due to the very short times involved and heat losses to the surrounding tissue 

can be neglected, however, very high power density is required. In contrast, heating by 

agglomerates of nanoparticles presents less demanding requirements for the excitation 

power. In the case of plasmonic-heating, allowing agglomeration of nanoparticles at the 

site of the pathogen brings the added advantage of increasing optical absorption cross-

section within the so-called tissue ‘window’.  

We defined the concept of an active volume, a volume that contains the 

agglomerated nanoparticles and which can be treated as a heat source in its own right.  

The heat transfer characteristics for active volumes containing agglomerates were 

analyzed under various scenarios. Destruction of a pathogen by means of co-located 

active volumes is viable by optical excitation of gold nanoparticles but not by magnetic 

excitation. High power pulses of light with very short duration are clearly the preferred 

option for pathogens in order to limit the total fluence delivered, for example, pathogen-

scale volumes can be raised to 100°C by a short, high power laser pulse that delivers a 

fluence of only 10-9 J per pathogen whereas a slow lower power pulse might need to be 

applied at 10-3 J per pathogen to achieve the same effect. 

Destruction of planktonic pathogens via hyperthermia, therefore, faces strong 

physical challenges, and relies on extremely high power densities. It may nevertheless 

offer a way forward for very specialized situations, for example those that cannot be 

treated with antibiotics. 
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Figures 

 

 

Figure 1. The magnetization versus field response of a superparamagnetic material at (a) 

high driving-field frequencies and (b) very low frequencies.  

 

 

Figure 2.  (a) An example of hyperthermia, obtained using a pulsed excitation intensity 

of 1109 W/m2. (b) An example of photothermolysis, obtained using a pulsed excitation 

intensity of 1.61011 W/m2
.
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Figure 3. Calculated optical absorption efficiencies for 15 nm diameter gold 

nanospheres and a gold nano-dogbone with aspect ratio of 2:1. 

 

 

Figure 4. Optical absorption cross-sections for an isolated gold nanosphere of 15 nm 

diameter, and a random cluster of twenty spheres.  
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Figure 5. (a) Comparison of the time-temperature profiles when heating a 10 mm 

diameter tumor and a 1 m diameter active volume (labelled as ‘pathogen’). In both 

cases the excitation energy has been adjusted to give a steady state temperature of 80°C. 

(b) Comparison of the cooling profiles of the above two scenarios after excitation is 

terminated. 
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Figure 6. Comparison of the low-power/long-pulse heating scenario with the high-

power/short-pulse scenario. (a) Number of nanoparticles required to achieve 100°C. (b) 

Total energy delivered. 
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