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Abstract

Recognizing human actions in video clips has been
an important topic in computer vision. Sufficient
labeled data is one of the prerequisites for the
good performance of action recognition algorithms.
However, while abundant videos can be collected
from the Internet, categorizing each video clip is
time-consuming. Active learning is one way to al-
leviate the labeling labor by allowing the classi-
fier to choose the most informative unlabeled in-
stances for manual annotation. Among various
active learning algorithms, uncertainty sampling
is arguably the most widely-used strategy. Con-
ventional uncertainty sampling strategies such as
entropy-based methods are usually tested under ac-
curacy. However, in action recognition Average
Precision (AP) is an acknowledged evaluation met-
ric, which is somehow ignored in the active learn-
ing community. It is defined as the area under
the precision-recall curve. In this paper, we pro-
pose a novel uncertainty sampling algorithm for
action recognition using expected AP. We conduct
experiments on three real-world action recognition
datasets and show that our algorithm outperforms
other uncertainty-based active learning algorithms.

1 Introduction

Recognizing human actions in video clips has been an im-
portant topic itself, and also as a component in more com-
plex tasks such as event detection. Most action recogni-
tion datasets are collected from various sources, including
Youtube and Google videos, Hollywood movies, and so on.
With sufficient labeled data, action recognition algorithms are
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able to achieve good performance. However, while collect-
ing the videos takes effort, labeling them is a more complex
task in terms of time and money. Active learning is one way
to alleviate the pain of annotation by allowing the classifier
to choose the most informative data samples for labeling. It
has many applications in computer vision such as segmenta-
tion [Dutt Jain and Grauman, 2016], pose estimation [Liu and
Ferrari, 2017], and event detection [Yang ef al., 2015].

When it comes to applying active learning in classification
tasks, uncertainty sampling is arguably the “first choice” ow-
ing to its simplicity and effectiveness. However, there is no
guarantee that the traditional task-agnostic uncertainty mea-
sure matches the evaluation metric of the task at hand. In ad-
dition, recent advance [Ramirez-Loaiza et al., 2017] in active
learning suggests that conventional uncertainty sampling al-
gorithms may not work when the underlying evaluation met-
ric is not accuracy. Therefore, we argue that the uncertainties
of data samples change along with the underlying evaluation
metric. In action recognition, Average Precision (AP) is a
widely-used evaluation metric that calculates the area under
the precision-recall curve, which is somehow overlooked in
the active learning community. This paper aims at resolving
the issues with the conventional uncertainty sampling algo-
rithms by understanding their intrinsic properties, and devel-
oping new active learning algorithms for action recognition.

We propose to evaluate the uncertainty of one video by the
expected AP on all other unlabeled videos. Similar to Ex-
pected Error Reduction [Roy and McCallum, 2001], videos
with maximal expected AP are selected for labeling. Unlike
accuracy which can be re-interpreted as the average of indi-
vidual scores over all samples, AP is more related to complex
rank-based metrics (such as AUC). It cannot be viewed as the
average of instance-level scores and thus cannot be directly
calculated using previous techniques such as [Roy and Mc-
Callum, 2001]. In order to obtain expected AP, we face two
inevitable obstacles. The first one is “how to calculate AP
when the true labels of video clips are unknown,” while the
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second one is “under what distribution is the expected AP-
based calculated.”

Although the frue label of each unlabeled video clip is
unknown, the probability that the video belongs to the posi-
tive (negative) class is provided by the underlying one-vs-rest
classifiers. We treat each unknown true label as a indepen-
dent biased coin that flips head (one) with probability to the
positive class, and tail (zero) with probability to the negative
class. In other words, the true label associated with each un-
labeled video clip is defined as an independent Bernoulli ran-
dom variable, and the probability of success is defined as the
probability that the video belongs to the positive class. Af-
ter that, we explicitly calculate the expected AP on the joint
distribution of all true labels. Since most action recognition
datasets have more than two classes, the expected AP is calcu-
lated in a one-vs-rest manner. To the best of our knowledge,
this is the first work that optimizes AP in active learning for
classification. It is also suitable for action recognition tasks,
since AP is widely used in such applications.

Our contributions are as follows. First, we introduce a
novel technique that treats the true labels of unlabeled videos
as independent Bernoulli random variables, thus making it
possible to directly calculate the expected evaluation metric.
Second, this technique successfully reveals the intrinsic prop-
erties of existing uncertainty sampling algorithms. Third,
we calculate the expected AP using dynamic programming
in polynomial time, and empirically evaluate our algorithm
on three real-world action recognition datasets, and show
that our uncertainty sampling approach outperforms other
uncertain-based methods with (mean) AP being the evalua-
tion metric.

2 Related Work

There is an extensive body of literature about action recogni-
tion; here we only name a few related to the feature extractor
used in this paper. Trajectory-based methods such as Dense
Trajectories (DT) [Wang et al., 2011] and Improved Dense
Trajectories (IDT) [Wang and Schmid, 2013] are among the
most effective feature extractors in action recognition. There
are many works in literature that tries to improve on IDT, such
as multi-skip feature stacking [Lan er al., 2015] and Fisher
Vector encoding [Perronnin et al., 2010]. Since AP is an
important evaluation metric in many tasks including action
recognition, researchers propose different models that opti-
mize AP during training. For example, [Triantafillou er al.,
2017] optimizes AP for information retrieval models. [Yue et
al., 2007] proposes a variant of the SVMs that optimizes AP.
[Behl et al., 2014] further develops this method in weakly
supervised learning by minimizing an upper-bound for AP .

Pool-based active learning is an intensively-studied prob-
lem in the machine learning community (See [Settles, 2010]
for an overview). In the past two decades, many active
learning algorithms are developed, such as selecting uncer-
tain samples [Lewis and Gale, 1994], selecting samples about
which a committee of classifier disagree [Seung et al., 19921,
querying samplings that minimizes the expected error of the
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model [Roy and McCallum, 2001], selecting representative
samples [Yu et al., 2006], and many more. One of the most
widely-used groups of active learning algorithms is uncer-
tainty sampling [Lewis and Gale, 1994; Sharma and Bilgic,
20171, which selects the instances about which the classifier
is most uncertain for labeling. Uncertainty sampling is widely
used in computer vision tasks such as medical image classi-
fication [Zhou et al., 2017], human pose estimation [Liu and
Ferrari, 2017], facial expression recognition [Chakraborty ef
al., 2015], action recognition/event detection [Yang et al.,
2015], and so on. In most active learning literature, accuracy
is chosen as the evaluation metric, but researchers also de-
velop active learning algorithms for other metrics. For exam-
ple, [Culver et al., 2006] proposes a method that maximizes
AUC of the hypothesis, using a semi-supervised ranking ap-
proach. [Long er al., 2010] maximizes discounted cumulative
gain (DCG) to select the most informative instances. To the
best of our knowledge, there is currently no uncertainty sam-
pling algorithm that directly optimizes AP in literature.

3 The Proposed Method

In this section, we first review two most widely-used uncer-
tainty measures, namely maximum conditional and entropy,
and then we propose to treat unknown true labels as Bernoulli
random variables and show that maximum conditional im-
plicitly optimizes expected accuracy. After that, we propose
to optimize expected AP and obtain our Uncertainty Sam-
pling via maximizing expected Average Precision (USAP).

3.1 Uncertainty Sampling

Typical uncertainty sampling strategies select top-k instances
from the unlabeled pool U based on their individual uncer-
tainty ¢(-), formally we have

S* = argmax Z¢(m)

SCU,|S|=k ;=g

where S* is the set of the most uncertain samples. Two
common uncertainty measures are maximum conditional and
Shanon entropy. For binary classification, we have

beondi(x) = —max(P,1 — Pp) (D

d)entro(gj) - *Pllogpl - (1 - Pl)log(l - Pl) (2)
where Pj; indicates the probability sample = belong to the
positive class. Note that Eq. (1) and Eq. (2) selects the exact
same samples in binary classification. There are also multi-
class versions of the two algorithms

3)

¢condi(x) = man_P(y|$7w)

¢e7ztra(x) = Z *P(y|%w)l09p(y|17,w)

Y

“4)

where P(y|z,w) indicates the probability that instance x be-
longs to class y given the classifier with weight w.
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3.2 Uncertainty Sampling under Accuracy

For binary classification, accuracy is defined as the proportion
of samples that are correctly classified over all tested samples,
ie., accuracy = (tp +tn)/(tp + fp + tn + fn). Forn
unlabeled samples {z;}?_;, let the labels be selected from
{0,1} and let p; be the posterior probability that z; belongs
to the positive class, i.e., p; = P(y = 1|a;,w). Let {y; }",
be a set of independent Bernoulli random variables such that
1; takes one with probability p; and zero otherwise. In other
words, we have

yi ~ Ber(p;) &)

Intuitively, for each unlabeled instance z;, we flip a biased
coin and let the outcome y; be the true labels of z;. Given the
true labels, the accuracy can be easily calculated as follows

ACC = = ZI

where I(-) is the indicator function and g; is the predicted
label of z;. For binary classification, we usually assume ;
takes one if p; > 1 — p; and zero otherwise, i.e.,

=) (6)

i = I(p; > 0.5) @)

By flipping n coins once, we obtain one sample of the accu-
racy. If the coins are flipped multiple times, the accuracies
obtained each time will center around its mean. To avoid ac-
tually generating y; for each x;, we can calculate the expec-
tation of accuracy over the joint distribution of all y;, i.e.,

ACC = Eyi-pertp) ACC

.....

®)

After substituting Eq. (6) and Eq. (7) into Eq. (8), we have
Z Iy

7ZE 7wBer(;m)I( - I(pi > 05))

i=1 i=1,....,n

1 n
EZpi x I(p; > 0.5)+ (1 —p;) x I(p; <0.5)
i=1

1 n
LS (i, 1 i)
n =1

ACC E ~Ber = y’b

C))

Recall that uncertainty of one instance is defined as the ex-
pected evaluation metric on all other instances, i.e., for in-
stance x;, we have its uncertainty ¢(x;) under accuracy as

n

Z max(pj, 1- p])
i=1,itj
n

1
n—1

o(x;5)

pj) — max(p;, 1 — pj))

(10)
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After dropping constants, we have the uncertainty measure
that matches the maximum conditional in Eq. (1) as follows

pacc(z;) = —Dj) = Peondi(x;)  (11)
By introducing Bernoulli random variables as true labels, we
prove that the maximum conditional strategy implicitly maxi-
mizes the expected accuracy, which is usually the underlying
evaluation metric. However, recent study [Ramirez-Loaiza
et al., 2017] shows that when the underlying evaluation met-
ric is not accuracy, the maximum conditional strategy may
fail. Since AP is widely used in action recognition as a eval-
uation metric, it is desirable to select instances that directly
optimizes AP. In the following, we develop an uncertainty
sampling algorithm under AP using the same technique.

- ma‘X<pj7 1

3.3 Uncertainty Sampling under AP

AP is a more complex evaluation metric than accuracy. It
can be described as the area under the precision-recall curve.
It is originally used as an evaluation metric for information
retrieval tasks, and is now widely-used in classification appli-
cations such as action recognition.

For video samples {z;}7_, with true labels {y;}, €
{0,1}", let {p;}_, be the probability output of the c1a551ﬁer
satisfying p; = P(y = 1|z;,w). Without loss of generality,
we assume that {p;}?_, are sorted in descending order, i.e,
p1 = p2 > ... > p,. For convenience, we also define the
positive label set Ut = {i|y; = 1} and let |U™| be the car-
dinality of UT. For each ¢ € U™, by carefully setting the
classification threshold so that only the first ¢ instances are
predicted positive, we have recall that equals i/|U™"|. The

corresponding precision equals 22:1 y;/i. In other words,

each i € U™ corresponds to a single precision-recall point on
the precision-recall curve. Therefore the area under the curve
can be approximated by

AP = |U+| Z Zyﬂ/l

ieUt j=1

Using the fact that (U] = Y1 | y;, and let {y;}?; be the
Bernoulli random variables satisfying y; ~ Ber(p;), the ex-
pected AP can be formulated as

D1 Yi Z;‘:l y;/i
,fxl) Z?:1 Yj

At first glance, the above expectation is difficult to calculate
because the denominator Z _1 Y; is not a constant. Here we

expand the expectation by 1ts definition as

> Tl -y Bt Emnl
n

y;i€{0,1} I=1 Zj:l Y

=1

(12)

AP = E,, ~Ben(
i=1,.

13)

.....

We introduce a auxiliary variable ¢ = Z?:
pected AP becomes'

1Y;, and the ex-

(14)

:; (n

'we set AP=0 when 3"y =0
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where .
ft)y= > I(t=> y;)h(n) (15)
yLE{O 1} j=1
i=1,.
and

n n A
=TI =) > uid> /i
=1 i=1 j=1

Therefore, instead of directly calculating expected AP, we can
calculate function h(-) and f(-,-) instead. For n >= 1 and
t >= 1, we can calculate h(-) (and further f(-,-)) using
dynamic programming by splitting Eq. (15) into two terms
which separately indicate the case that y, = 0 and y,, = 1.
Formally, we have

n—1
hin—1)+ [ pf" (1
=1

Yn=1

h(n) =

—p)' Zyj/n)

+ (1 —pu)h(n—1)
—_——
Yn=0
and thus f(n,t) can be reformulated as

Fot) = puf(n— 1t 1)+ P g — 1,6 - 1)
Yn=1 (16)
+ (1 =pn)f(n—1,1)
Yyn=0

where

g t) =1 yi=1) > [[pi'a-p)"

i=1 yie{0,1} =1
i=1,...,n

Similar to Eq. (16), we obtain formula for function g(-, -) by

splitting on y,,. Formally, we have
g(n,t) =ppgn — 1, t — 1)+ (1 — pp)g(n — 1,1)

Considering the corner cases, g(n,t) (t >= 0,n >= 0)
has the following formulation:

0 t>n,ort=0,n>0
1 t=0,n=0
g(n,t) =
Pag(n ) otherwise
+(1 - pn).g(n - 17t)
a7
Similarly, f(n,t) (¢ >= 0,n >= 0) can be reformulated as
0 t>n,ort=0,n>0
1 t=0,n=0
f(nat): pnf(n_Lt_l)
+pitg(n —1,t —1) otherwise
n
+(1 - pn)f(n - ]-at)

(18)
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Most of the existing action recognition datasets have more
than two classes, therefore we use one-vs-rest classifiers and
sum the expected AP over all classes. Algorithm 1 demon-
strates our Uncertainty Sampling via maximizing Average
Precision (USAP) method. When the number of unlabeled
samples becomes large, it would be time-consuming to cal-
culate the exact expected AP. To alleviate this issue, we use
a fast screening rule to obtain fast approximations for the ex-
pected AP, and use it to filter out uninformative samples. Al-
gorithm 1 runs in O(cn?) for c-class classification with n un-
labeled samples.

Algorithm 1 USAP

Input: number of selected videos k, number of classes c,
number of unlabeled videos n, probability estimate p €
[0, 1]™*¢, unlabeled video set U
Output: selected video set S
1. <0
2: fori=1tocdo
for j=1 ton do
P’ < pxi\{pji } % the i-th column of p without p;;
Sort p’ in descending order
Calculate g(-, ) using Eq. (17) and p’
Calculate f(-,-) using Eq. (18) and p’
: Calculate AP using Eq. (14)
9: (25]' < (i)j -+ AP
10:  end for
11: end for
12: Select S C U corresponding to the k largest ¢ value
13: Return: S

3
4
5:
6:
7.
8

3.4 Fast Screening Rule

As the previous section shows, calculating the expected AP
can be slow in practice. Therefore, we use the precision@n
for n video samples as an approximation to filter out uninfor-
mative samples.

Precision is the fraction of positive instances among the
positively predicted instances, i.e. PREC = tp/ (tp + fn).
Given probability estimate {p;}_; of n samples in descend-
ing order. Precision@Qn corresponds to recall of 1 because
the classification threshold is set so small that all samples are
predicted positive. Same as the previous section, we assign
Bernoulli random variables {y;}?_; as true labels of video
samples. Under such circumstances, we have

1 n
PREC = — i 19
- ; y (19)
and the expected precision becomes
PREC = E, o Z yi = Zpi (20)
1, i

Therefore, the approximation of video x; can be viewed as

sz p]

¢preC(T;) 2D
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Dataset HMDBS51 UCF50
#L Rand | Pmax | Entro | Usdm | Rank | USAP Rand | Pmax | Entro | Usdm | Rank | USAP
10c 43.47 | 4347 | 43.47 | 43.47 | 43.47 | 43.47 83.88 | 83.88 | 83.88 | 83.88 | 83.88 | 83.88
l1c 44,17 | 44.38 | 4439 | 44.83 | 4443 | 44.60 83.87 | 84.95 | 85.60 | 84.75 | 85.75 | 85.24
12¢ 44.49 | 4557 | 45.02 | 45.89 | 4546 | 45.87 84.76 | 85.96 | 86.12 | 86.08 | 86.15 | 85.97
13c 4478 | 46.79 | 46.17 | 47.02 | 4643 | 46.87 85.01 | 87.45 | 86.57 | 86.12 | 87.58 | 87.79
14c 4515 | 4779 | 4744 | 47.94 | 47.30 | 47.59 85.81 | 87.81 | 87.15 | 86.46 | 88.14 | 88.25
15¢ 4559 | 48.71 | 48.18 | 48.60 | 48.01 | 48.41 86.62 | 87.89 | 87.99 | 86.84 | 88.65 | 88.83
16¢ 46.20 | 49.44 | 48.90 | 48.30 | 48.71 | 49.06 86.90 | 88.44 | 88.66 | 87.13 | 88.96 | 89.28
17¢ 46.47 | 50.18 | 49.66 | 48.67 | 49.31 | 49.93 87.49 | 89.09 | 88.92 | 87.38 | 89.16 | 90.14
18¢ 46.99 | 50.88 | 50.49 | 49.36 | 50.02 | 50.69 87.43 | 88.95 | 88.98 | 88.70 | 89.42 | 89.94
19¢ 47.39 | 51.36 | 51.02 | 50.00 | 50.71 | 51.53 87.33 | 89.14 | 89.25 | 89.27 | 89.57 | 90.58
20c 47.96 | 52.22 | 51.70 | 50.57 | 51.33 | 52.94 87.89 | 89.72 | 89.33 | 89.10 | 89.91 | 90.82
21c 48.26 | 52.83 | 52.59 | 51.02 | 51.99 | 53.89 88.30 | 89.97 | 89.40 | 90.23 | 89.89 | 91.36
22¢ 48.43 | 53.35 | 53.22 | 51.44 | 52.46 | 55.44 88.69 | 90.28 | 89.68 | 90.58 | 90.07 | 91.29
23c 48.82 | 53.89 | 53.65 | 52.21 | 5296 | 55.29 88.75 | 90.55 | 90.22 | 90.56 | 90.04 | 91.27
24c¢ 49.14 | 54.37 | 54.09 | 52.58 | 53.55 | 55.71 88.80 | 90.87 | 90.45 | 90.47 | 90.10 | 91.42
25¢ 49.65 | 54.85 | 5440 | 52.79 | 54.04 | 56.04 89.17 | 91.46 | 90.59 | 90.79 | 90.15 | 91.65
26¢ 50.07 | 55.30 | 54.69 | 53.22 | 54.44 | 56.32 89.33 | 91.65 | 90.81 | 91.19 | 90.32 | 91.88
27c 50.49 | 55.45 | 55.02 | 53.43 | 5498 | 56.74 89.28 | 91.55 | 91.15 | 91.50 | 90.64 | 92.02
28¢ 51.02 | 55.89 | 55.76 | 53.88 | 55.27 | 57.25 89.50 | 91.71 | 91.21 | 91.62 | 90.72 | 92.34
29c¢ 51.34 | 56.26 | 56.10 | 5449 | 55.59 | 57.52 89.64 | 91.86 | 91.34 | 92.05 | 90.99 | 92.30
30c 51.72 | 56.69 | 56.53 | 54.62 | 56.01 | 57.83 90.09 | 92.14 | 91.36 | 91.96 | 91.23 | 92.35

Table 1: MAP (in percentages) of all compared methods on dataset HMDBS51 and UCF50. The method with the highest MAP is in boldface.

Given the above approximation, we calculate ¢prpc(-) for
each unlabeled videos and each one-vs-all classifier output,
and sum ¢prpc(-) over all classes. The videos with small
sums are discarded for efficiency purposes. The screening
rule runs in O(cn) for c-class classification with n unlabeled
samples.

4 Experimental Results

Experiment Setting For each video clip, a level-three MIFS
[Lan et al., 2015] feature extractor is used to extract fixed-
length feature, and Logistic Regression with parameter C' =
100 is used as the underlying linear classifier to conduct one-
vs-rest classification. Note that the purpose of this paper is
not to obtain state-of-the-art action recognition results, but
to demonstrate the necessity to consider underlying evalua-
tion metric when building active learning algorithms for ac-
tion recognition. For each dataset, we use the official train-
ing set as unlabeled set and official testing set as the unseen
testing set. All active learning methods select data from the
unlabeled dataset, and one-vs-rest classifiers are trained on
all labeled data and tested on testing set. We use Mean Aver-
age Precision (MAP) as the evaluation metric. For a c-class
video classification, we randomly select 10 videos of each
class as initial labeled dataset. As a result, there are 10c¢ la-
beled videos in the beginning. We iteratively select ¢ videos
until the labeling budget is reached. All experiments are re-
peated with different initial labeled data, and the averaged
MAP is reported.

Compared methods We compare our USAP method with the
following multi-class baselines:

e Rand: the method that selects unlabeled videos uni-
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formly at random

Pmax: the method that chooses uncertain samples
based-on the maximum posterior probability in Eq. (3)
[Lewis and Gale, 1994]

Entro: the uncertainty sampling method based on Shan-
non entropy in Eq. (4)

Usdm: the method that maximizes entropy along with
diversity [Yang er al., 2015]

Rank: the method that combines entropy with Mutual
Information as diversity [Chakraborty et al., 2015]

Datasets Three representative datasets are used:

The HMDB51 dataset [Kuehne et al., 2011] has 51 action
classes and 6766 video clips extracted from digitized movies
and YouTube. [Kuehne et al., 2011] provides both original
videos and stabilized ones. Only original videos are used in
this paper. There are three official train-test splits for this
dataset. For each split, we run all active learning methods
with two different initial labeled set.

The Hollywood?2 dataset [Marszalek et al., 2009] contains
12 action classes and 1707 video clips that are collected from
69 different Hollywood movies. It has 1707 videos in total
with a pre-defined split of 823 training videos and 884 test
videos. We run each active learning method with five differ-
ent initial labeled set on this dataset.

The UCF50 dataset [Reddy and Shah, 2013] has 50 ac-
tion classes spanning over 6618 YouTube videos clips that
can be split into 25 groups. The video clips in the same group
are generally very similar in background. We use one group
as testing data and the other 24 groups as unlabeled data, so
there are 25 different splits for this dataset. We use the first
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Dataset Hollywood2
#L Rand | Pmax | Entro | Usdm | Rank | USAP
10c 47.50 | 47.50 | 47.50 | 47.50 | 47.50 | 47.50
l1c 48.27 | 48.54 | 48.92 | 48.95 | 48.09 | 48.53
12¢ 49.51 | 49.18 | 49.29 | 49.59 | 48.99 | 49.25
13¢ 50.06 | 49.85 | 50.06 | 50.08 | 49.37 | 49.98
14c 50.96 | 50.12 | 50.67 | 50.53 | 50.13 | 50.65
15¢ 51.85 | 50.73 | 50.88 | 50.41 | 50.80 | 51.85
16¢ 52.52 | 51.48 | 51.50 | 51.82 | 51.27 | 52.86
17¢ 52.99 | 52.11 | 52.27 | 52.53 | 52.17 | 53.94
18¢ 5343 | 53.10 | 53.21 | 53.19 | 52.35 | 54.56
19¢ 53.99 | 54.01 | 53.56 | 53.54 | 52.95 | 55.08
20c 5444 | 5458 | 53.48 | 53.73 | 53.64 | 55.94
21c 5476 | 54.87 | 54.14 | 53.66 | 54.34 | 56.61
22¢ 55.20 | 55.26 | 54.77 | 54.06 | 54.73 | 56.66
23c 55.51 | 55.77 | 55.32 | 55.34 | 55.21 | 57.22
24c¢ 55.89 | 56.47 | 56.05 | 55.67 | 55.84 | 58.11
25¢ 56.45 | 57.02 | 56.16 | 56.10 | 56.13 | 58.23
26¢ 57.08 | 57.50 | 56.55 | 56.27 | 56.71 | 58.37
27¢ 57.52 | 57.63 | 57.20 | 56.83 | 56.92 | 58.71
28¢ 5777 | 58.01 | 57.45 | 5743 | 57.24 | 59.17
29c¢ 58.28 | 58.25 | 57.84 | 58.05 | 57.73 | 59.31
30c 58.74 | 58.25 | 58.26 | 58.15 | 58.27 | 59.61

Table 2: MAP (in percentages) of all compared methods on dataset
Hollywood2. The method with the highest MAP is in boldface.

5 of them to test all active learning algorithms, each with one
initial labeled set.

To speed up our algorithm, on large datasets UCF50 and
Hmdb51, we use the fast screen rule in Section 3.4 to filter out
uninformative video samples so that the size of the unlabeled
pool does not exceed 2000. Algorithm 1 is then used to select
uncertain samples accordingly on the remaining videos.

Results We illustrate the performance of the active learning
algorithms for action recognition application in Table 1 and
2. In the two tables, each row corresponds to the number of
selected videos, and each column corresponds to an active
learning algorithm.

60

Il Rand
[ JUsdmAP

*% I RankAP

521

50

15¢c 20c

#selected videos

25¢

Figure 1: MAP (in percentages) of Rand, UsdmAP and RankAP on
dataset Hollywood2
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As shown in the two Tables, we have three observations.
First, on dataset HMDB51 and UCF50, all active learning al-
gorithms generally outperform random sampling, while on
hollywood?2, all other active learning algorithms (except ours)
fail to outperform random sampling. This is because movie
videos of this dataset sometimes have more than one labels,
which misleads the conventional uncertainties. Second, our
algorithm outperforms the other active learning algorithms
when the number labeled samples becomes large. This shows
that optimizing AP for active learning is effective. Note that
Usdm and Rank sometimes have higher MAP than our algo-
rithm in the initial stage of active learning, which is the effect
of the diversity used. Third, our algorithm selects fewer video
samples than other active learning algorithms to achieve the
same MAP when the labeled set becomes large. For example
in hollywood2, our algorithm requires 24c labeled videos to
achieve 58% MAP while Pmax and Entro need 28¢ and 30c
respectively.

Combine USAP with diversity In order to integrate our AP-
based uncertainty with diversity, we replace entropy-based
uncertainty with our AP-based uncertainty (¢ in Algorithm 1)
for algorithm Rank and Usdm. The two new algorithms, de-
noted as RankAP and UsdmAP, are tested on dataset Holly-
wood2 with 15¢, 20¢, and 25¢ labeled videos.

In Figure 1, UsdmAP and RankAP outperforms Rand in
three different number of labeled videos, namely 15¢, 20c and
25¢, while Table 2 shows that, without our uncertainty mea-
sure, Usdm and Rank sometimes has slightly lower MAP than
Rand. This result demonstrates that under MAP, our USAP
uncertainty measure is able to find more informative videos
than the conventional Shanon entropy, combined with exist-
ing diversity measures in Usdm and Rank.

5 Conclusion and Future Work

In this paper, we propose a novel active learning algorithm for
action recognition by maximizing expected AP, and treating
the unknown true labels of unlabeled videos as independent
Bernoulli random variables. The expected AP can be for-
malized and calculated on the joint distribution of all random
variables. Then the uncertainty of each unlabeled video is de-
fined as the expected AP of all other unlabeled videos. The
proposed uncertainty sampling algorithm is tested on three
real-word action recognition datasets. Experiments show
that our algorithm outperforms other uncertainty-based algo-
rithms. As future work, we plan to explore new active learn-
ing methods under other metrics such as mean accuracy, F-
measure and AUC.
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