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Abstract 18 

Freshwater scarcity is an ever-increasing problem throughout the arid and semi-arid countries, 19 

which results in poverty. Thus, it is necessary to enhance our insights into the freshwater resources 20 

availability, particularly groundwater, and to be able to implement functional water resources 21 

plans. This study introduces a novel statistical approach-data mining ensemble model, through 22 

implementing Evidential Belief Function and Boosted Regression Tree (EBF-BRT) algorithms for 23 

groundwater potential mapping of the Lordegan aquifer in central Iran. To do so, spring locations 24 

are determined and partitioned into two groups for training and validating the individual and 25 

ensemble methods. In the next step, twelve groundwater conditioning factors (GCFs) including 26 

topographical and hydrogeological factors are prepared for the modeling process. The mentioned 27 

factors are employed in the application of EBF model. Then, the EBF values of GCFs are 28 

implemented as input to the BRT algorithm. The results of the modeling process are then plotted 29 
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to produce groundwater spring potential maps. To verify the results, the Receiver Operating 30 

Characteristics (ROC) test is applied to the model’s output. The findings of the ROC test indicated 31 

that the areas under the curves are 75 and 82% for EBF and EBF-BRT models, respectively. 32 

Therefore, it can be inferred that the combination of the two techniques could increase the efficacy 33 

of them in the groundwater potential mapping. 34 

Keywords: Geographic information system (GIS), Groundwater, Water resources management, 35 

Data mining, Iran 36 

 37 

1. Introduction 38 

Groundwater could be regarded as the water identified in the saturated parts of the Earth, which 39 

fills the pore section of geologic formations and soil beneath the water table (Freeze and cherry 40 

1979). Groundwater has broader advantages over surface water including its capability to be 41 

utilized when needed, and it is less vulnerable to catastrophic incidents (Naghibi and Pourghasemi 42 

2015). Furthermore, groundwater contributes the most in supplying freshwater demands in arid 43 

and semi-arid areas such as the Middle East (Chezgi et al. 2015). Groundwater potential mapping 44 

is one of the well-studied subjects in the literature and has attracted many researchers over the 45 

years. 46 

Many researchers have used statistical and data mining algorithms to map groundwater potential. 47 

Some of them have used spring locations as groundwater indicator, while others used qanat and 48 

well locations. According to the literature, frequency ratio (Naghibi et al. 2015), weights-of-49 

evidence (Ozdemir 2011a; Corsini et al. 2009; Razandi et al. 2015; Tahmassebipoor et al. 2016), 50 

and index of entropy (Naghibi et al. 2015) are among the most popular methods used by the 51 
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scholars. Moreover, other data mining methods such as classification and regression tree, random 52 

forest, and boosted regression tree (BRT) are widely used techniques to assess the potential of 53 

groundwater (e.g. Naghibi and Pourghasemi 2015; Naghibi et al. 2016; Zabihi et al. 2016; Rahmati 54 

et al. 2016; Mousavi et al. 2017; Golkarian et al. 2018). Although data mining techniques have 55 

proved to be liable in working with nonlinear and complex data (Naghibi et al. 2016), one of the 56 

drawbacks is overfitting, which impacts the models’ estimation quality and prediction validity. In 57 

two recent papers by Naghibi and Moradi Dashtpagerdi (2016) and Naghibi et al. (2018), various 58 

data mining algorithms including random forest, BRT, support vector machine, artificial neural 59 

network, quadratic discriminant analysis, linear discriminant analysis, flexible discriminant 60 

analysis, penalized discriminant analysis, k-nearest neighbors, and multivariate adaptive 61 

regression splines were employed for groundwater assessment taking into account spring and qanat 62 

locations. Other techniques include evidential belief function (EBF) method to map the potentiality 63 

of groundwater (Nampak et al. 2014; Rahmati and Melesse 2016). Nampak et al. (2014) used EBF 64 

to map groundwater potential and compared its performance with a logistic regression model. The 65 

results indicated the superior performance of the EBF model to logistic regression. In another 66 

research, Naghibi and Pourghasemi (2015) examined the efficacy of the EBF model and compared 67 

the results with classification and regression tree, random forest, BRT, and generalized linear 68 

model. Their findings also yielded in an acceptable performance of the EBF model.  69 

The above-mentioned studies mostly used single models in the groundwater-related research 70 

however, the ensemble models have been used in other fields of study including landslides (Lee et 71 

al. 2012; Umar et al. 2014) and flood susceptibility modelling (Tehrany et al. 2013, 2014). Very 72 

recently, Naghibi et al. (2017b) introduced a novel ensemble model, which was constructed based 73 

on four data mining models and frequency ratio in a groundwater related study. The findings of 74 



4 
 

their research indicated that the produced ensemble model showed a better performance than a 75 

single application of the models. Similarly, Pourghasemi and Kerle (2016) combined EBF and 76 

random forest models to achieve better model performance and their results indicated a higher 77 

efficacy of the ensemble method.  78 

BRT as a data mining technique was selected for this purpose as it has the ability for feature 79 

selection (Naghibi et al. 2016) as well as implementing the stochastic gradient boosting to diminish 80 

variance and bias (Abeare, 2009). BRT model also defines the importance of the impacting factors 81 

in the modelling procedure. Considering the aforementioned strong features of the BRT model, 82 

this model was chosen to be combined with EBF model to improve its prediction accuracy. In this 83 

research, the proposed ensemble method (EBF-BRT) improves on the weak points of each method 84 

and combines their advantages by analyzing the relationships of groundwater with each 85 

independent layer and with each class of independent layers. Furthermore, groundwater-related 86 

independent variables can be assessed. Since this combined approach is almost new in 87 

groundwater potential assessment, through this research its efficiency and capability can be 88 

examined. This research aims to improve the performance of statistical techniques through the 89 

extension of statistical-data mining ensemble model in a groundwater potential mapping. Thus, 90 

the aims of this study are: (i) evaluating the performance of the EBF-BRT model in groundwater 91 

potentiality assessment, (ii) ranking the importance of Groundwater Conditioning Factors (GCFs) 92 

and the relationship between groundwater potential and the GCFs, and (iii) providing spatial 93 

information and guideline to support decision making process concerning groundwater 94 

management in the Lordegan aquifer. 95 

 96 

 97 
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2. Material and methods 98 

Spring can be defined as places where groundwater flows from an aquifer to the surface. Based on 99 

the physiographical and hydrological characteristics of the study area, this study assumes that the 100 

natural spring occurrences and their discharge rates can be related to the potential of groundwater 101 

resources in the studied basin. To quantify this relationship, Groundwater Potential Map (GPM) is 102 

proposed as a tool for providing spatial information and determining the relationship between the 103 

spring occurrence and effective factors, here is called conditioning factors.  104 

For modelling of groundwater potential, two datasets were prepared including spring locations 105 

inventory and the GCFs. Using the mentioned datasets, EBF model was conducted, and the 106 

resultant GPM was plotted using ArcGIS 10.4. In the next step, EBF values were extracted and 107 

then used as an input to the BRT model, and the ensemble EBF-BRT model was trained. Finally, 108 

by implementing ROC plot, the efficacy of the EBF and EBF-BRT methods were validated. Figure 109 

1 shows the methodology flowchart implemented in this research. 110 

2.1. Study area and preparation of the conditioning factors 111 

2.1.1. Study area 112 

The Lordegan Basin covers the areas between 31°19'09" and 31°38'06" North latitudes and 113 

50°28'02" and 51°13'13" East longitudes and is located in Chaharmahal-e-Bakhtiari Province, Iran. 114 

Lordegan Basin covers an area of 1,486 km2. Altitude in Lordegan Basin ranges between 850 and 115 

3,640 m above mean sea level (amsl) with a mean altitude of 2,044 m amsl. The lithology of the 116 

Lordegan Basin is mainly composed of sedimentary and tertiary rocks and quaternary deposits, 117 

and about 33.3% of its area is classified under group 5 including low-level piedmont fan and valley 118 

terraces deposits (Table 1). The dominated land use is rangeland, which covers approximately 44% 119 
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of the basin floor. Other types of land use encompass forest, agriculture, orchard, and residential 120 

area. Spring occurrence is not limited to the plain areas and it can be seen on different slopes and 121 

altitudes hence, the study was carried out at the basin scale.  122 

2.1.2. Data preparation 123 

In this study, a spring inventory dataset including 94 springs (2014) was prepared based on the 124 

field surveys (Fig. 2). The dataset was then split into two subsets for training (70% of the dataset: 125 

66 springs) and validating (30% of the dataset: 28 springs) the models (Pourghasemi and 126 

Beheshtirad 2015). It should be noted that the division of the spring dataset into two subsets was 127 

conducted on the basis of a random algorithm in ArcGIS 10.4.  128 

Based on the literature (Ozdemir 2011a, b) and availability of data, twelve GCFs were selected for 129 

the modelling process. GCFs are composed of eight topographical factors, two river-related 130 

factors, and two physical factors including land use and lithology. It should be noted that as EBF 131 

works with classified factors, GCFs were classified based on the literature (Ozdemir 2011a, b; 132 

Naghibi et al. 2018). 133 

In the first step, a 20 m resolution Digital Elevation Model (DEM) of the studied basin was derived 134 

from a 1:50,000-scale topographic map. The slope angle derived from DEM was split into four 135 

ranges of 0-5, 5-15, 15-30, and >30 degree (Fig. 3a). Slope aspect was also derived from DEM 136 

data and then classified into nine classes (Fig. 3b). Altitude is another important GCF (Ozdemir 137 

2011a, b) that was employed in this investigation (Fig. 3c). The altitude of the studied basin was 138 

partitioned into five equal classes. 139 

Plan curvature is a topographical-based variable, which shows the direction of flow (Ozdemir 140 

2011a) (Fig. 3d). Profile curvature clarifies at which rate the slope changes in the maximum slope 141 
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direction (Ozdemir 2011b) (Fig. 3e). Slope-length (LS) is considered as a mixture of the two 142 

variables of slope steepness and slope length (Naghibi et al. 2016) and is calculated as follows 143 

(Moore et al. 1991) (Fig. 3f): 144 

LS = (
As

22.13
)

0.6
(

sin α

0.0896
)

1.3
                                                                                                             (1) 145 

where, As depicts the specific watershed area and α is the estimated slope gradient (degree).  146 

Stream power index (SPI) could be implemented to show potential flow erosion at a specific 147 

location of the basin (Moore et al. 1986) (Fig. 3g). Further, Topographic Wetness Index (TWI) 148 

was taken into account in this investigation. TWI denotes the spatial changes of soil moisture 149 

(Moore et al. 1986) (Fig. 3h). 150 

Distance from rivers and river density are two crucial GCFs that affect the groundwater potentiality 151 

(Naghibi et al. 2015). These two layers were calculated in ArcGIS 10.4 using Euclidean distance 152 

and line density functions. Concerning the distance from rivers, 100 m-intervals were regarded, 153 

which was then classified into five groups (Fig. 3i). Rivers density map was partitioned into four 154 

categories by natural break classification method (Fig. 3j). 155 

Land use map was produced by implementing Landsat 8/ enhance thematic mapper plus (ETM+) 156 

images for the year 2015 based on a likelihood algorithm. The land use map contained five 157 

different land use classes of the orchard, residential area, rangeland, agriculture, and forest (Fig. 158 

3k). 159 

Geology is composed of three GCFs including lithological classes, and fault-related factors such 160 

as distance and density maps (Naghibi et al. 2016). After investigating the fault layer of the studied 161 

region, it was found that only a tiny portion of the studied region is affected by fault; therefore, 162 
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fault-related factors were not considered in the current research. Based on a 1:100,000-scale 163 

geological map, the geological units were partitioned into thirteen units including groups 1 to 13 164 

(Table 1) (Fig. 3l). 165 

2.2. Modelling process 166 

In this section, a description of the models is presented and then, the process of applying a novel 167 

statistical- data mining model (EBF-BRT) is explained.  168 

2.2.1. Evidential Belief Function (EBF) 169 

The EBF model is developed based on the Dempster–Shafer approach of evidence (Dempster 170 

1967; Shafer 1976), which includes uncertainty (Unc), belief (Bel), plausibility (Pls), and disbelief 171 

(Dis) that change from 0 to 1 (Carranza and Hale 2003). This model has a relative flexibility and 172 

is able to work with uncertain conditions (Nampak et al. 2014). In the Dempster–Shafer theory, 173 

Bel and Pls define the lower and upper probabilities of generalized Bayesian, respectively 174 

(Nampak et al. 2014). Therefore, it can be inferred that Bel is greater than or equal to Pls. Unc 175 

could be calculated by differentiating Pls and Bel values (Naghibi and Pourghasemi 2015). Based 176 

on the evidential data, disbelief depicts the belief in the false proposition. For calculating the Bel 177 

value, first, a frame of discernment could be calculated (Dempster 1967; Shafer 1976; 178 

Pourghasemi and Beheshtirad 2015): 179 

𝑚: 2Θ = {𝜙, 𝑇𝑃, 𝑇𝑃
̅̅ ̅, Θ}    𝑤𝑖𝑡ℎ Θ = {𝑆𝑃, 𝑆𝑃

̅̅ ̅}                                                                                (2) 180 

where, 𝑇𝑃 shows the pixels that include springs, 𝑇𝑃
̅̅ ̅ shows the pixels that do not include springs, 181 

and 𝜙 represents empty set. 182 
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From Equation (1), the bel function could be computed as follows (Park 2011; Pourghasemi and 183 

Beheshtirad 2015):  184 

[𝜆(𝑆𝑃)𝐴𝑖𝑗
] = [

𝑁(𝑆∩𝐴𝑖𝑗)

𝑁(𝑆)
] / [(𝑁 (𝐴𝑖𝑗 − 𝑁(𝑆 ∩ 𝐴𝑖𝑗))) /[𝑁(𝑃) − 𝑁(𝑆)]]                                       (3) 185 

𝐵𝑒𝑙 = [
𝜆(𝑆𝑃)𝐴𝑖𝑗

∑ 𝜆(𝑆𝑃)𝐴𝑖𝑗

]                                                                                                                                      (4) 186 

where, 𝑁(𝑆 ∩ 𝐴𝑖𝑗) denotes density of spring pixels incidence in 𝐴𝑖𝑗, 𝑁(𝑆) denotes the total density 187 

of all springs in the studied basin, 𝑁(𝐴𝑖𝑗) represents the density of pixels in 𝐴𝑖𝑗, and N(P) is the 188 

density of pixels in the whole studied basin. More descriptions and information about EBF 189 

algorithm could be found in Carranza and Hale (2003). 190 

2.2.2. The novel statistical- data mining ensemble model 191 

The BRT is a data mining/machine learning approach, which comprises of both decision trees and 192 

boosting techniques and could be employed for both regression and classification issues (Youssef 193 

et al. 2015). It aims to increase the efficacy as well as prediction capability of a single methods by 194 

combining several fitted models (Naghibi et al. 2016). Boosting is applied in order to combine the 195 

results of the decision trees, which is similar to model averaging. There are some parameters that 196 

require optimizing in this model such as a number of trees, shrinkage (or learning rate), and 197 

interaction depth. Shrinkage or learning rate defines the importance of trees in the built model 198 

(Naghibi et al. 2016). Interaction depth or complexity determines the number of nodes in trees. 199 

The BRT model can be explained as follows (Elith et al. 2008; Naghibi et al. 2016): 200 

Starting weights to be equal to fi =1/n 201 

For m=1 to iteration classifier Cm): 202 
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1. Run classifier Cm to the weighted data, 203 

2. Calculate misclassification rate rm, 204 

3. Consider the classifier weight 𝛼𝑚 log (
(1−𝑟𝑚)

𝑟𝑚
), 205 

4. Recalculation of weights 𝑤𝑖 = 𝑤𝑖𝑒𝑥𝑝(𝛼𝑚𝐼(𝑦𝑖 ≠ 𝐶𝑚)), 206 

Finally, the majority vote can be obtained by: 𝑠𝑖𝑔𝑛 = [∑ 𝛼𝑚𝐶𝑚(𝑋)𝑀
𝑚−1 ]  207 

It is noted that the best set of parameters in BRT were selected by using accuracy index and 208 

Cohen’s kappa index, which can be calculated as below: 209 

Accuracy =
TP+TN

TP+TN+FP+FN
                                                                                                           (5) 210 

Kappa =
Pobs−Pexp

1−Pobs
                                                                                                                       (6) 211 

Pobs = TP + TN n⁄                                                                                                                        (7) 212 

Pexp = (TP + FN)(TP + FP) + (FP + TN)(FN + TN) √N⁄                                                        (8) 213 

where, n is the ratio of cells, which is correctly categorized, and N shows the number of total 214 

training cells. TP, FP, TN, and FN represent true positive, false positive, true negative, and false 215 

negative, respectively (Naghibi and Moradi Dashtpagerdi 2016). 216 

To apply a novel statistical- data mining ensemble model, first, EBF model was applied and belief 217 

values were assigned to different classes of the GCFs. Then, new maps of each factor were 218 

produced by lookup function in ArcGIS 10.4. A new dataset was provided for training of the data 219 

mining model (i.e. BRT). In this dataset, 1 was assigned to spring and 0 was assigned to non-spring 220 

locations. It is noted that the non-spring locations were randomly defined using ArcGIS 10.4. 221 

Using the new training dataset and new GCFs’ layers with Bel values, BRT model was conducted 222 
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using R open source software by the gbm package (Ridgeway, 2015). The BRT model was run 223 

using a 10-fold cross-validation deemed to be a sufficient number of the run for optimization of 224 

the assigned parameters. It needs to be clarified that the GPMs by EBF and BBF-BRT are classified 225 

into four classes of low, moderate, high, and very high by natural break classification method 226 

(Naghibi et al. 2018).   227 

 228 

3. Results and Discussion 229 

3.1. Evidential belief function 230 

The results of the EBF model are presented in Table 2 where the values of the Bel, Dis, and Unc 231 

are reported. As it was mentioned in the methodology section, a class with high Bel value has a 232 

high potential for the occurrence of the event, which in this case is the existence of the spring 233 

(Nampak et al. 2014; Pourghasemi and Beheshtirad 2015). Based on the results, it can be observed 234 

that there is an inverse relationship between slope angle and the Bel value, which means that the 235 

groundwater potential decreases with the increase in slope angle. Regarding the results of slope 236 

aspect, flat and north-east classes show the highest Bel values. On the contrary, south-east and 237 

south-west classes have Bel value of zero, which indicates their low potential of spring incidence. 238 

This finding can be related to the less sunshine duration over the north slope aspects in the northern 239 

hemisphere. In the case of altitude, the results indicated that an inverse relationship exists between 240 

GCF and spring incidence. In lower altitudes, water has concentrated near the rivers and therefore, 241 

wetness index is higher in these areas that can result in the higher potential of groundwater. The 242 

flat characteristic of the plan curvature had the highest Bel value (Bel=0.54). The highest amount 243 

of Bel was observed in (-0.001) - (0.001) category of profile curvature. An inverse relationship 244 

was observed between the slope length and spring incidence. In the case of SPI, the results 245 
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indicated that < 200 and 400-600 categories have the highest Bel value of 0.34 and 0.24, 246 

respectively. The findings of TWI signified a direct relationship between TWI and spring 247 

incidence. Regarding the distance from rivers, an inverse relationship between the distance from 248 

river and the spring occurrence was observed. Regarding river density, 0.86-1.46 class has the 249 

highest Bel value of 0.40 followed by >1.46, 0.31-0.86, and <0.31 classes. The modeling results 250 

with respect to land use showed that agriculture has the highest Bel value, followed by forest and 251 

rangeland. Regarding lithology, the highest values of Bel were observed for Group 2 and Group 252 

10 with values of 0.22 and 0.17, respectively.  253 

Overall, these findings signified that a direct relationship exists between spring incidence and TWI 254 

factor. On the contrary, an inverse relationship was observed between the groundwater potentiality 255 

and three GCFs including altitude, slope length, and distance from rivers. Naghibi and 256 

Pourghasemi (2015) obtained the same relationship between altitude, TWI, and distance from 257 

rivers and spring occurrence. However, in some other factors such as LS, our findings differ from 258 

theirs. These differences can be due to the different properties of the studied regions (i.e. 259 

topographical and hydrological characteristics). Furthermore, the results of the EBF-BRT model 260 

revealed that the distance from rivers, lithology, river density, and plan curvature had the highest 261 

importance in the groundwater potential mapping of the studied basin. 262 

GPM produced by the EBF model in the current study is presented in Figure 4a and Table 3. It 263 

should be noted that the final EBF map was obtained by summing all the Bel values. Based on the 264 

findings, the value of GPM in this model ranges from 0.88 to 5.29. Low, moderate, high, and very 265 

high potential categories composed 34, 28, 20, and 18% of the studied basin, respectively. 266 

 267 
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3.2. The novel statistical- data mining ensemble model  268 

The findings of the application of BRT algorithm are presented in Figure 5. The final BRT model 269 

was applied with minimum terminal node size of 10, shrinkage value of 0.1, 50 number of trees, 270 

and interaction depth of 1 (Accuracy index = 0.66 and Cohen’s Kappa index = 0.33). The 271 

contribution of the GCFs to the modelling process is presented in Figure 6. The results indicated 272 

that the distance from rivers, lithology, river density, and plan curvature have the highest 273 

contribution to groundwater potential estimated by EBF-BRT model (Fig. 6). The land use and 274 

profile curvature showed the lowest contribution and SPI showed no effect on groundwater 275 

potential. The GPM obtained from EBF-BRT method is presented in Figure 4b and Table 3. The 276 

GPM produced by EBF-BRT model resulted in low, moderate, high, and very high potential 277 

categories, which composed 32, 28, 25, and 15% of the studied basin, respectively.  278 

3.3. Validation and verification of the GPMs 279 

This section includes two steps: (i) validation of the maps using the validation dataset and ROC 280 

curve and (ii) verifying the results by taking the observed spring discharges into account. 281 

Chung and Fabbri (2003) stated that the validation is regarded as a very necessary stage in the 282 

modeling procedure. To do so, the ROC curve was implemented to define the accuracy of the 283 

GPMs produced by EBF and EBF-BRT models. The GPMs were verified employing training and 284 

validation datasets. The area under the curve of ROC varies between 0.5 and 1 (Sangchini et al. 285 

2016; Hong et al. 2017; Kalantar et al. 2018). A larger area under the curve of ROC denotes higher 286 

efficacy of the models in spatial modeling (Jaafari and Gholami 2017; Pham et al. 2018) such as 287 

groundwater potential mapping. Figure 7 presents the prediction performance of the produced 288 

GPMs by EBF and EBF-BRT models implementing ROC curve. Accordingly, the area under the 289 
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curve of ROC for validation dataset was defined as 75.5 and 82.1% for EBF and EBF-BRT models, 290 

respectively. Further, area under ROC curve for training dataset was calculated as 77.2 and 83% 291 

for EBF and EBF-BRT, respectively. It was assumed that the values of more than 70% indicate an 292 

acceptable performance of the model (Naghibi et al. 2016). 293 

To verify the resulted groundwater potential map of the basin, the spring discharge record was 294 

used. For this, the observed discharge values higher than the median discharge, 0.75 L/s, were 295 

selected for models’ verification. Distribution of the selected springs in different potential zones 296 

produced by EBF and EBF-BRT is presented in Table 4. As can be seen in the table, among 47 297 

high-discharge springs, 15 and 16 springs were located in the very high potential zone produced 298 

by EBF and EBF-BRT, respectively. According to the modeling results, very few springs with 299 

high-discharge were located in the low potential zone (Table 4). The distribution of the high-300 

discharge springs in the identified groundwater potential zones, as well as the computed area under 301 

ROC curve, confirm the satisfying performance of the models in this study. 302 

3.4. Performance comparison 303 

The findings of this study indicated superior performance of the EBF-BRT to EBF in producing 304 

groundwater potential maps. Therefore, it can be observed that making the ensemble EBF-BRT 305 

model increased the efficacy of the GPM in this research. The validation results also indicated an 306 

acceptable capability of the EBF model in producing GPM. Naghibi and Pourghasemi (2015) and 307 

Nampak et al. (2014) employed EBF model for producing GPMs. Their results depicted acceptable 308 

performance of the EBF, which is in agreement with the findings of this study. Other researchers 309 

have employed different methods to improve the performance of the EBF model. Tien Bui et al. 310 

(2015) employed an EBF-fuzzy logic hybrid method for modelling landslide. Their findings 311 

showed the higher efficacy of the hybrid method relative to EBF model. In another research, 312 
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Pourghasemi and Kerle (2016) employed an EBF-random forest model to map landslide 313 

susceptibility, and their findings depicted a better performance of the EBF-random forest model 314 

than EBF model. In a related work, Naghibi et al. (2017a) used and ensemble model comprised of 315 

four data mining models and frequency ratio. Their results indicated a better performance of the 316 

ensemble model by the reduction of overfitting. Moreover, Naghibi et al. (2017b) used a genetic 317 

algorithm to optimize random forest as an ensemble model, and this combination yielded a better 318 

performance. In the current research, the more accurate results of the EBF-BRT model could be 319 

due to the strong features of the single BRT and EBF models. The BRT model is capable of coping 320 

with nonlinear relationships (Naghibi et al. 2016). BRT applies a combination of boosting and 321 

regression techniques, which results in a better performance (Elith et al. 2008). The EBF, on the 322 

other hand, is proved to be a robust model for managing uncertainties in spatial modelling and can 323 

deal with missing values (Tangestani and Moore 2002).  324 

 325 

4. Conclusions 326 

Groundwater potential mapping has been considered as an important aspect of groundwater-related 327 

studies and has attracted many scholars worldwide. In this study, a novel ensemble EBF-BRT 328 

model was introduced, and its performance was assessed in groundwater potential mapping. EBF-329 

BRT model was applied using a training dataset of the belief values extracted from EBF model 330 

results. Using the ROC curve, performance of the EBF and EBF-BRT models was evaluated. The 331 

findings indicated that EBF-BRT model yielded better performance than simple EBF model. 332 

Therefore, it can be concluded that application of the BRT model can enhance the prediction 333 

strength of the EBF model. However, both of the models had acceptable performance in this study. 334 

The better performance of EBF-BRT model could be due to stronger features of the BRT model 335 
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such as its capability to cope with phenomena in which there are nonlinear relationships. Regarding 336 

the conditioning factors, it was observed that the distance from rivers, lithology, rivers density, 337 

and plan curvature have the highest importance in the GPMs by EBF-BRT model. Considering the 338 

findings of this study, the implemented methodology can be recommended for other areas with 339 

similar geological and hydrological setting. GPMs can be regarded as a guiding tool for freshwater 340 

professionals to properly manage land and water resources. GPMs would also provide superior 341 

insight of groundwater condition in various parts of a basin that would subsequently lead to 342 

efficient exploitation of groundwater.  343 

The GPMs can be employed for functional water resources management especially through land 344 

use planning. Those activities with high water requirements, i.e. irrigated agriculture, can be 345 

located in areas with higher groundwater potential. However, the rate of exploitation should be 346 

monitored and controlled. The GPMs can also support decision making processes in the land use 347 

and water resources planning that ultimately leads to environmental sustainability, which is very 348 

crucial in the Middle Eastern countries such as Iran.  It is evident that overexploitation issue causes 349 

many problems for people and the government in most of the aquifers in Iran. The outputs of this 350 

study could be channeled to the relevant agencies/organizations and result in a better aquifer 351 

management strategy through defining the places where are more groundwater productive. A better 352 

land use planning could lead to lower pressure on aquifers. However, it is the first step and there 353 

need to more remediation steps such as artificial recharge through water harvesting, and flood 354 

spreading. 355 

  356 
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Table 1. Lithology characteristics of Lordegan Basin, Iran. 494 

Class Lithology characteristics 

Class 1 Anhydrite, salt, grey, and red marl alternating with anhydrite, argillaceous limestone and limestone 

Class 2 Blue and purple shale and marl inter bedded with the argillaceous limestone 

Class 3 Bluish grey marl and shale with subordinate thin- bedded argillaceous-limestone 

Class 4 Brown to grey, calcareous, feature- forming sandstone and low weathering, gypsum- veined, red marl 

and siltstone 

Class 5 Low level piedmont fan and valley terraces deposit 

Class 6 Low weathering grey marls alternating with bands of more resistant shelly limestone 

Class 7 Pale red marl, marlstone, limestone, gypsum and dolomite 

Class 8 Cream to brown- weathering, feature- forming, well- jointed limestone with intercalations of shale 

Class 9 Dark red, medium- grained arkosic to subarkosic sandstone and micaceous siltstone 

Class 10 Limestone, dolomite, dolomitic limestone and thick layers of anhydrite in alternation with dolomite in 

middle part 

Class 11 Massive, shelly, cliff- forming partly anhydrite limestone 

Class 12 Undivided Bangestan group, mainly limestone and shale, albian to companian 

Class 13 Undivided Eocene rock 

 495 
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 Table 2 Spatial relationship between GCFs and springs using EBF model.   497 

Factor Class 
% of pixels in 

domain 

No. of 

Springs 
Bel Dis Unc 

Slope Angle 

(Degree) 

0-5 29.46 38 0.54 0.15 0.31 

5-15 22.58 20 0.37 0.23 0.41 

15-30 35.25 8 0.09 0.34 0.57 

>30 12.71 0 0.00 0.29 0.71 

Slope Aspect 

Flat 8.70 10 0.22 0.19 0.59 

North 13.59 8 0.11 0.21 0.68 

Northeast 14.69 13 0.17 0.19 0.64 

East 8.65 4 0.09 0.21 0.70 

Southeast 8.66 6 0.00 0.00 1.00 

South 10.47 4 0.07 0.21 0.72 

Southwest 13.60 10 0.00 0.00 1.00 

West 11.17 8 0.14 0.00 0.86 

Northwest 10.47 3 0.06 0.00 0.94 

Altitude (m) 

<1400 1.63 4 0.61 0.24 0.15 

1400-1900 40.15 36 0.22 0.19 0.58 

1900-2500 45.22 25 0.14 0.29 0.57 

2500-3000 9.22 1 0.03 0.28 0.70 

>3000 3.79 0 0.00 0.00 1.00 

Plan Curvature 

(100/m) 

Concave 29.54 16 0.28 0.36 0.36 

Flat 37.60 39 0.54 0.22 0.24 

Convex 32.86 11 0.18 0.42 0.41 

Profile 

curvature 

(100\m) 

< (-0.001) 35.30 23 0.33 0.34 0.33 

(-0.001)-(0.001) 32.79 30 0.46 0.27 0.27 

> (0.001) 31.91 13 0.21 0.39 0.40 

Slope Length 

(m) 

<20 38.46 40 0.41 0.16 0.43 

20-40 16.73 12 0.29 0.25 0.47 

40-60 14.23 8 0.22 0.26 0.52 

>60 30.58 6 0.08 0.33 0.59 

Stream Power 

Index 

<200 30.62 27 0.34 0.21 0.45 

200-400 12.96 7 0.21 0.26 0.54 

400-600 9.55 6 0.24 0.25 0.51 

>600 46.87 26 0.21 0.28 0.50 

Topographic 

Wetness Index 

<8 19.44 2 0.05 0.39 0.56 

8-12 56.23 32 0.29 0.38 0.33 

>12 24.33 32 0.66 0.22 0.12 

Distance from 

Rivers (m) 

<100 4.69 27 0.71 0.17 0.12 

100-200 4.15 5 0.15 0.27 0.58 

200-300 4.10 2 0.06 0.28 0.66 

300-400 4.03 1 0.03 0.28 0.69 

>400 83.04 31 0.00 0.00 1.00 

River Density 

(Km/Km2) 

<0.31 60.74 18 0.08 0.42 0.50 

0.31-0.86 11.82 8 0.18 0.23 0.60 

0.86-1.46 21.94 33 0.40 0.14 0.45 

>1.46 5.50 7 0.34 0.21 0.45 

Land use 

Agriculture 24.58 33 0.61 0.16 0.23 

Forest 30.83 11 0.16 0.30 0.54 

Orchard 0.04 0 0.00 0.25 0.75 

Rangeland 43.99 22 0.23 0.29 0.48 

Residential area 0.57 0 0.00 0.00 1.00 

Lithology 
Group 1 3.25 4 0.16 0.07 0.76 

Group 2 4.22 7 0.22 0.07 0.71 
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Group 3 0.22 0 0.00 0.08 0.92 

Group 4 4.44 5 0.15 0.07 0.78 

Group 5 33.32 26 0.10 0.07 0.82 

Group 6 8.23 2 0.03 0.08 0.89 

Group 7 1.53 0 0.00 0.08 0.92 

Group 8 28.52 17 0.08 0.08 0.84 

Group 9 2.39 1 0.06 0.08 0.87 

Group 10 1.60 2 0.17 0.08 0.76 

Group 11 0.02 0 0.00 0.08 0.92 

Group 12 1.40 0 0.00 0.08 0.92 

Group 13 10.86 2 0.03 0.08 0.89 

 498 
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Table 3. Range and area of different classes of the groundwater potential map (GPM) produced 500 

by EBF model. 501 

 EBF EBF-BRT 

Class Range of the values Area % Range of the values Area % 

Low 0.88-1.91 34 0-0.23 32 

Moderate 1.91-2.60 28 0.23-0.41 28 

High 2.60-3.41 20 0.41-0.61 25 

Very high 3.41-5.29 18 0.61-0.96 15 

 502 

 503 

Table 4. Distribution of the high-discharge springs in the identified groundwater potential zones. 504 

Potential Zones 
EBF BRT 

No. Spring Spring (%) No. Spring Spring (%) 

Low 8 17.02 4 8.52 

Moderate 10 21.28 12 25.53 

High 14 29.79 15 31.91 

Very high 15 31.91 16 34.04 

 505 

  506 
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  507 

Figure 1. Flowchart of the methodology implemented in this study. 508 

  509 



29 
 

  510 

Figure 2. Location of the study area in Iran, training, and validation spring. 511 
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Figure 3. The GCFs considered in this study (a) slope angle, (b) slope aspect, (c) altitude, (d) plan 514 

curvature, (f) profile curvature, (g) slope length, (h) stream power index, (i) topographic wetness 515 

index, (j) distance from rivers, (k) rivers density, (k) land use, and (l) lithology. 516 
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Figure 4. Groundwater potential map produced by (a) EBF and (b) EBF-BRT models. 518 
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 519 

Figure 5. Results of the EBF-BRT application. 520 

  521 
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 522 

Figure 6. Importance of the groundwater conditioning factors (GCFs) in the BRT model 523 

(RiverDist: distance from rivers; Litho: lithology; RiverDens: rivers density; PlanC: plan 524 

curvature; TWI: TWI; SlopeAngle: slope angle; SlopeAspect: slope aspect; LS: LS; Altitude: 525 

altitude; Landuse: land usel; ProfileC: profile curvature; SPI: SPI). 526 
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 528 

  

Figure 7. Receiver operating characteristics (ROC) curve calculated for the EBF and EBF-BRT 529 

models for training (a) and validation datasets (b), respectively.  530 


