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ABSTRACT
Crowd counting, for estimating the number of people in a

crowd using vision-based computer techniques, has attracted
much interest in the research community. Although many at-
tempts have been reported, real-world problems, such as huge
variation in subjects’ sizes in images and serious occlusion
among people, make it still a challenging problem. In this pa-
per, we propose an Adaptive Counting Convolutional Neural
Network (A-CCNN) and consider the scale variation of ob-
jects in a frame adaptively so as to improve the accuracy of
counting. Our method takes advantages of contextual infor-
mation to provide more accurate and adaptive density maps
and crowd counting in a scene. Extensively experimental
evaluation is conducted using different benchmark datasets
for object-counting and shows that the proposed approach is
effective and outperforms state-of-the-art approaches.

Index Terms— Crowd counting, Scale Variation, Adap-
tive Counting CNN

1. INTRODUCTION

Nowadays, density estimation and counting the number of
people in a crowded scene is a desirable application espe-
cially in restricted, public event places such as train stations.
Incidents, traffic delay, and even terrible stampedes may be
caused by overcrowding in such a scene. Generally, there
is an urgent need for real-time decision making correspond-
ing to crowd changes. To deal with this situation, there exist
various challenges caused by occlusions, size and shape vari-
ations of people, perspective distortion, etc. Thus, correctly
counting in crowded areas is very necessary for many real-
world applications including visual surveillance, traffic mon-
itoring, and crowd analysis.

The existing approaches for crowd density estimation
can be divided into two main groups, i.e., detection based
methods, and feature regression-based methods [1]. Detec-
tion based methods (also called direct methods) segment
and detect every individual people or object in a scene with
pre-trained classifiers and then simply count them. How-
ever, in complex scenes with severe occlusions and extremely
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crowded scenes, these approaches often fail to detect in-
dividuals and therefore produce inaccurate countings. In
the feature regression-based approaches (also called indi-
rect approaches), learning algorithms or statistical methods
are utilized to analyze the image appearance features of a
crowded scene, and then estimate the number of people or
objects based on image appearance. Thus, these methods are
more suitable for dealing with highly crowded scenes where
detecting individuals often fail.

In this paper, based on the recent advance of Counting
Convolutional Neural Network (CCNN) [2], we propose a
new adaptive CCNN architecture, abbreviated as A-CCNN,
which processes each part of an input image using an op-
timally trained CCNN model to estimate the corresponding
density map accurately. As illustrated in Fig. 1, to tackle the
counting problem, our A-CCNN model is able to regress the
density function corresponding to a specified section. This al-
lows our model to accurately localize density maps for unseen
images.

The most remarkable properties that make the proposed
model outstanding for crowd analysis are: (1) the ability to
handle large-scale variations in people’s sizes when appearing
in images; and (2) the facility to generate local density maps
within a crowd scene. Therefore, the proposed model can give
a complete view about the scattering of a crowd. Compared
to the prior works, our approach does not use different CCNN
architectures and only tries to select the most effective Hyper
Parameters (HPs) for generating a CCNN model. Thus, it can
learn to address scale variations in an image with a simple and
effective way.

2. RELATED WORKS

In recent years, many researchers [3, 4, 5] have developed
deep learning models for image segmentation, classification,
and recognition, and achieved excellent results. Inspired by
these, Convolutional Neural Network (CNN) models have
been proposed to learn to count people and produce density
maps in images simultaneously, and they have worked well
for objects of approximately the same size in an image or a
video. Sindagi and Patel [6] proposed an end-to-end cascaded
network of CNNs that can learn globally relevant and dis-



Fig. 1. The overview of our proposed A-CCNN crowd count-
ing method. For an input image, our A-CCNN first esti-
mates head size and corresponding position, and then utilizes
a fuzzy engine to determine HP of the CCNN models for gen-
erating the density map.

criminative features to estimate highly refined density maps
with low count errors. Onoro-Rubio and Lopez-Sastre pro-
posed a regression model called Counting CNN (CCNN) [2],
which can map the appearances of input image patches to
corresponding density maps. They also introduced a Hy-
dra CNN based on the idea of multi-scaling crowd counting
and achieved a sufficient advantage in comparison with the
previous models.

Inspired by the Hydra CNN method, some researchers
have tried to utilize more complex deep models to solve the
problem caused by the significant variance of crowd’s appear-
ance in a captured image/video. Deepak et al. [5] proposed
a switching CNN to select the best CNN regressor for each
of different receptive fields and achieved better results than
the state-of-the-art for crowd counting. Kumagai1 et al. [7]
proposed a mixture of CCNNs and adaptively selected mul-
tiple CNNs according to the appearance of a test image for
predicting the number of people. Zhang et al. proposed a
multi-column network and three independent CNN architec-
tures and then used the combined features of these three net-
works to get a density map [3].

Our work presented in this paper is based on the CCNN
architecture [2]. The CCNN approach takes a small patch
of the input image as input and generates the corresponding
density map for the image patch. By utilizing the sliding win-
dow technique, it extracts patches and applies a CNN model
to regress the density function. Therefore, CCNN is formu-
lated as a regression model that generates object density maps
based on the corresponding appearances of image patches.

Formally, in the original CCNN model, the ground truth
density map DI is defined as,

DI(p) =
∑
µεAI

N(p, µ,Σ), (1)

whereAI represents the number of annotated points in the im-
age I , and N (p; µ; Σ ) represents a normalized 2D Gaussian
function with a mean of µ and a covariance of Σ, evaluated at
each pixel position p.

The CCNN utilizes two crucial HPs for generating mod-
els, i.e., the patch size and the value of Σ in the Gaussian
function. Through careful analysis of CCNN, we have no-
ticed that it has a significant problem in producing a correct
density map because CCNN treats the whole parts of the input
image in the same way. Therefore, CCNN cannot achieve an
acceptable accuracy in density estimation when a scene has
a large-scale variation in the sizes of objects. We have ob-
served that more accurate density maps can be produced when
the values of the above mentioned two HPs are optimally and
properly chosen.

3. ADAPTIVE CCNN

In our work, to handle crowd images with large varieties in
targets’ appearances, we propose a new A-CCNN model for
crowd counting. As shown in Fig. 1, our A-CCNN architec-
ture takes an image as input and equally divides the image
to 16 parts and then determines the average of heads’ sizes
and position in different parts of an image. Then, by utilizing
a Fuzzy Inference System (FIS), it feeds each image section
with the same FIS linguistic output value to an appropriate
CCNN model with a proper HP to obtain the corresponding
density map for each section. In the end, it merges the output
of different parts to achieve the final density map output.

In reality, the sizes of people who are closer to the cam-
era appear to be bigger than those of the people who are fur-
ther from the camera. Based on our observation from exper-
iments, we find that there is a relationship between HPs and
the scales of people. Thus, we use smaller (and larger) Σ’s
and patch sizes for the areas containing smaller (and larger)
targets. Then, we train CCNN models to create density maps
for different sizes of patches. For each image in the testing
stage, our A-CCNN model extracts image patches from it and
generates their corresponding object density maps by utilizing
the relative CCNN models according to their sizes. Then, the
density maps of these patches are assembled into the density
map of the testing image.

Compared with CCNN, we have made the following im-
provement in the proposed A-CCNN. Firstly, we use differ-
ent patch sizes in A-CCNN according to the sizes of people
in the patches, different from using the same patch size for
all patches in the original CCNN. Secondly, we have utilized
various Σ values to generate the training patches. The Σ of
the Gaussian function in Eq. 1 is changed to adapt the size of
a patch. In comparison with the Switch-CNN, our proposed



A-CCNN uses only one well-known CCNN model with adap-
tive HPs, so it has less complexity than the Switch-CNN with
different CNN architectures.

The process of the proposed A-CCNN is summarized as
follows and detailed in the following subsections. First, we
perform tiny-face detection [8] to estimate the sizes of heads
in each patch of an image. Then, by feeding the head sizes and
the corresponding head positions to a fuzzy inference system
(FIS), we generate the appropriate HPs corresponding to the
patches. Finally, these HPs are used to train CCNNs that can
adaptively generate the density maps for various patches.

3.1. Head Detection

To obtain the most suitable values of HPs, we need to know
the sizes of people or objects in different parts of an image.
Therefore, the tiny-face detection approach [8] is used to de-
tect faces in each part of the input image. It creates a coarse
image pyramid of the input image and then feeds the scaled
inputs into a CNN to get the template responses. Finally,
the final detection results are produced by applying the non-
maximum suppression (NMS) at the original resolution.

3.2. Adaptive HP Selection by FIS

As shown in the Fig. 1, to get the values of the HPs, a FIS
is designed to adaptively select the values of HPs according
to the sizes and the positions of heads. As shown in Fig. 2,
the FIS receives the fuzzy information about head sizes and
positions and outputs the fuzzy linguistic variables in the form
of fuzzy. We choose the same Gaussian membership function
for all input and output variables. Small, Average and Big are
the fuzzy linguistic variables according to head sizes, and Up,
Middle and Down are the fuzzy linguistic values according to
head positions. The output linguistic variables are High-Pred,
Mid-Pred, and Low-Pred.

Based on the Gaussian membership function, the input
values are converted into the fuzzy linguistic variable in FIS.
Then, the fuzzy if-then rules developed based on the Mam-
dani method [9] are used to map the input variables to ap-
propriate fuzzy output variables. In total, nine fuzzy if-then
rules are presented in Table 1. In general, higher (and lower)
values of Σ and sliding window (patch size) produce density
maps with lower (higher) counts of numbers of people. As an
illustration, if an output of FIS is High-Pred (Mid-Pred, Low-
Pred), the corresponding CCNN is trained with low (medium,
big) HP values.

3.3. Training Parameters

Showing the effectiveness of the proposed A-CCNN, we use
the same training parameters as in [2], except for two HPs,
which are the patch sizes and Σ’s, for people counting and
density estimation. These two HPs are empirically deter-
mined on the training dataset. Similar to the approach in [2],

Fig. 2. The fuzzy inference engine, where the head size and
corresponding positions are the two inputs and the level of
HPs for CCNN is the output.

Table 1. The fuzzy rule table for selecting HPs

Input Output
Head Size Position

Small Up High-Pred
Small Middle High-Pred
Small Down Mid-Pred

Average Middle Mid-Pred
Average Down Mid-Pred
Average Up Low-Pred

Big Up Mid-Pred
Big Down Low-Pred
Big Middle Low-Pred

a stochastic gradient decent algorithm is used during training.
The momentum, the learning rate, and the weight decay are
set to be 0.9, 0.0001 and 0.001 respectively. After 25 epochs,
the model can reach a local optimum.

4. EXPERIMENTAL RESULTS

To evaluate the performance of our A-CCNN algorithm,
experiments are conducted on three challenging crowd count-
ing datasets, i.e., the UCSD dataset [10], the UCF-CC
dataset [11], and the dataset of Sydney Trains Footage
(STF) [12]. Note that the first two are public benchmark
datasets.

The Mean Absolute Error (MAE) is used as the evaluation
metric for comparing the performance of A-CCNN against
the state-of-the-art methods, and it is defined as:

MAE =
1

N

N∑
i=1

∣∣Ci − CGTi
∣∣ , (2)

where N is the number of images, Ci is the crowd count pre-
dicted by the model being evaluated, and CGTi is the crowd
count from the human annotated one (i.e., ground truth).

4.1. The UCSD Dataset

The UCSD crowd counting dataset consists of 2000 frames of
size 238×158 from a single far distance scene. We split the
dataset into four subsets of training and testing images in the
same way as in [2].



Table 2 presents the MAE results for our proposed A-
CCNN and six state-of-the-art methods. As shown in Ta-
ble 2, our A-CCNN performs competitively against other ap-
proaches with the lowest ever MAE of 1.04 and 1.48 for the
upscale and minimal subsets respectively. Furthermore, in the
other subsets, the results indicate that A-CCNN outperforms
the CCNN by more than 8 percent. Overall, proposed model
reaches the best average result with MAE of 1.35.

Table 2. Comparison of the MAE results between A-
CCNN and state-of-the-art crowd counting on UCSD crowd-
counting dataset [10]

Methods Max Down Up Min Avg

Density Learning [13] 1.70 1.28 1.59 2.02 1.64
Count Forest [14] 1.43 1.30 1.59 1.62 1.49
Arteta et al. [15] 1.24 1.31 1.69 1.49 1.43
Zhang et al. [16] 1.70 1.26 1.59 1.52 1.52
Switch-CNN [5] - - - 1.62 1.62

CCNN [2] 1.65 1.79 1.11 1.50 1.51

A-CCNN 1.51 1.36 1.04 1.48 1.35

4.2. The UCF-CC Dataset

The UCF CC 50 [11] is a small dataset with 50 picture col-
lections of annotated crowd scenes. We have followed the
same experimental settings as those of six other state-of-the-
art models [5].

In Table 3, the MAE performance of our A-CCNN com-
pared with other methods is shown. As shown in Table 3,
proposed approach outperforms four out of six methods and
improves the MAE score by more than 24 percentage com-
pared to the original CCNN. Considering its simplicity, A-
CCNN’s performance is comparable to that of Switch-CNN
and Hydra-CCNN.

Table 3. Comparison of the MAE results between A-CCNN
and state-of-the-art crowd counting on UCF CC dataset [11].

Methods MAE

Density learning [13] 493.4
Idrees et al. [11] 419.5
Zhang et al. [16] 467.0

MCNN [17] 377.6
Hydra-CCNN [2] 333.73
Switch-CNN [5] 318.1

CCNN [2] 488.67

A-CCNN 367.3

4.3. The Sydney Train Footage

To evaluate the robustness of our model on real-world prob-
lems with heavy occlusions, low resolution and large variance
in people’s sizes, we have utilized CCTV footages of a train
station in Sydney and created annotated data for training and
testing with our proposed approach. An example is shown in
Fig. 1. This dataset has two separate scenes, taken by cam-
eras C5 and C9 with 788 and 600 frames, respectively, with
crowd varying between 3 to 65. The sizes of the input frames
are 576×704, and the mask and annotation are provided. The
huge variation in people’s sizes and heavy extreme occlusions
make it a very challenging task. Generally, in this dataset, the
sizes of people who are in front of the cameras are three to
four times larger than the sizes of people in further areas.

Table 4 reports the MAE performance on this dataset.
The crowd count of A-CCNN is significantly higher than the
original CCNN. This reinforces the fact that utilizing our ap-
proach can efficiently manage both the difference in appear-
ances and sizes of people. Thus, the various trained CCNNs
employed by A-CCNN can provide precise density maps, in-
dependent of the datasets.

Table 4. Comparison of the MAE results between A-CCNN
and state-of-the-art crowd counting on STF [12].

Methods C5 C9

Farhood et al. [12] 2.28 2.67
CCNN [2] 3.90 4.23

A-CCNN 1.69 1.87

5. CONCLUSION

Aiming to tackle the difficult problem of crowd counting such
as scale variance and extreme collusion, we have presented
an Adaptive CCNN architecture that takes a whole image as
input and directly outputs its density map. The proposed
method has made full use of contextual information to gen-
erate an accurate density map. To leverage the local informa-
tion, we have utilized the combination of CNN-based head
detection and the fuzzy inference engine to choose an optimal
CCNN model adaptively to each patch of the input image. We
have achieved noticeable improvements on three challenging
datasets, i.e., the UCSD, UCF-CC and the crowd dataset col-
lected by ourselves from a train station in Sydney, and have
demonstrated the effectiveness of the proposed approach.
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